电渣重熔工艺
- 格式:ppt
- 大小:68.50 KB
- 文档页数:5
电渣重熔技术电渣重熔是利用电流通过熔渣时产生的电阻热作为热源进行熔炼的方法。
其主要目的是提纯金属并获得洁净组织均匀致密的钢锭。
经电渣重熔的钢,纯度高、含硫低、非金属夹杂物少、钢锭表面光滑、洁净均匀致密、金相组织和化学成分均匀。
美国霍普金斯(R.K.Hopkins)于20世纪40年代首先提出这种精炼方法的原理。
其后苏联和美国相继建立工业生产用的电渣炉。
一九五八年,乌克兰德聂泊尔特钢厂建成了世界第一台0.5吨工业电渣炉,使电渣冶金进入了工业化生产进程。
60年代中期由于航空、航天、电子、原子能等工业的发展,电渣重熔在苏联、西欧、美国获得较快的发展,但炉子容量不大,一般为0.5~2.5吨。
生产的品种包括:优质合金钢、高温合金、精密合金、耐蚀合金以及铝、铜、钛、银等有色金属的合金。
1980年世界电渣重熔钢生产能力已超过120万吨。
随着电渣冶金的发展及金属材料要求的不断提高,钢锭大型化已成为电渣冶金发展的必然趋势。
最初各国工业电渣炉容量仅为0.5t,大一些的一般也不超过3吨。
八十年代中期,很多国家都有了50吨以上的电渣炉。
多年来,国外电渣冶金已不满足于一般电渣锭的生产,在工业技术成熟的基础上向着更深更广的领域发展,形成了一个跨专业、跨行业的新学科。
已开发出的工艺技术有:电渣熔铸、电渣浇注、电渣转注、电渣热封顶、电渣离心浇注、电渣复合熔铸及快速电渣重熔等。
尤其值得重视的是电渣熔铸异形件的发展,小到几十克重的不锈钢假牙齿,大到几十吨重的发电机转子,直至重量超过百吨的水泥回转窑炉圈等,均可不经锻造在异形水冷结晶器中直接熔铸成型。
现在电渣熔铸的主要产品有大型发电机转子、水轮机叶片、船舶柴油机大型曲轴、各种高压容器、大型环件、各类轧辊、模具、透平涡轮盘、厚壁中空管、石油裂化管、齿轮毛坯、三通管、核电站压水堆主回路管道等。
种类规格之多,形状之复杂不胜枚举。
除此之外,实用性较强,具有发展前景的还有电渣热封顶、电渣离心浇注及快速电渣重熔等。
模具钢电渣重熔工艺电渣重熔是金属及其合金的一种特殊的冶炼方法,虽然电渣冶金可划分出多种技术方法和应用于不同的领域,但其基本和核心的技术是电渣重熔(Electroslag Remelting,简称ESR)。
电渣重熔的基本原理是:在铜制水冷结晶器中加入固态或液态的炉渣,将自耗电极的端部插入其中。
当自耗电极、炉渣和底水箱通过短网与变压器形成供电回路时,有电流从变压器输出通过液态熔渣。
由于在上述供电回路中熔渣的电阻相对较大,占据了变压器二次电压的大部分压降低,从而在渣池在产生大量的热,使其处于高温的熔融状态,由于渣池的温度远大于金属的熔点,从而使自耗电极的端部逐渐加热熔化,熔化的金属汇聚成液滴,在重力的作用下金属熔滴从电极的端头脱落,穿过渣池进入金属熔池,由于水冷结晶器的强制冷却,液态金属逐渐形成钢锭。
1.电渣重熔的特点电渣重熔属于二次精炼方法,自耗电极是其原料,自耗电极可由其他的冶炼方法获昨,如电弧炉、感应炉、真空感应炉和真空自耗炉等制备。
电渣重熔的目的是在初炼的基础上进一步提纯钢、合金和改善钢锭的结晶组织,从而获得高质量的金属产品,与其他的冶金方法相比,具有以下的特点:①金属的熔化、浇注和凝固在一个较纯净的环境中实现,减少了钢液的污染。
②具有良好的冶金反应的热力学和动力学条件,电渣重熔过程中渣池温度通常在1750℃以上,电极下端至金属熔池中心区域的熔渣温度可达1900℃左右,钢液的过热度可达450℃左右,高温熔池促进了冶金物理化学反应。
良好的动力学条件表面在电渣重熔过程中钢渣能进行充分接触,同时由于电磁力的搅拌作用,不断更新了钢渣打的接触面,强化了冶金反应,促进了有害杂质和非金属夹杂物的去除。
③自上而下的顺序凝固条件保证了重熔金属锭结晶组织均匀致密。
在电渣重熔过程中电极的熔化和熔融金属的结晶是同时进行的。
钢锭上端始终有液态金属溶池和发热的渣池,既保温又有足够的液态金属填充凝固过程中因收缩而产生的缩孔,可以有效的消除一般钢锭的疏松和缩孔,现时金属液中的气体和夹杂物也易于上浮,所以钢锭的组织致密、均匀。
电渣重熔技术
电渣重熔技术(Electric Arc Remelting,EAR)是一种利用电
弧将金属材料高温熔化并重新凝固的技术。
它常用于生产高纯度和均匀组织的金属材料,特别是钨、钛、钢铁和镍合金等高质量的金属。
电渣重熔技术通常涉及以下步骤:
1. 准备废料或原始金属。
2. 将金属放入电渣炉中,并添加一定量的电极材料作为电弧的起点。
3. 通过电源提供电能,并使电极形成电弧,产生高温。
4. 由于电弧的高温作用,金属开始熔化,并形成一定的熔体池。
5. 在熔体池中,通过搅拌或气体喷吹等方法,促使金属组织的均匀化。
6. 根据需要进行熔炼和精炼的过程,以改善金属材料的质量。
7. 将熔融的金属倒入模具中进行冷却和凝固,形成所需形状的金属材料。
电渣重熔技术具有以下优点:
1. 可以再生利用废弃金属,减少资源浪费。
2. 可以提供高纯度的金属材料,以满足高要求的特殊应用。
3. 可以改善金属材料的均匀性和组织结构,提高其力学性能和耐腐蚀性能。
然而,电渣重熔技术也存在一些缺点:
1. 能耗较高,需要大量的电能供应。
2. 技术要求较高,操作和管理难度较大。
3. 一次熔炼的批量较小,生产效率相对较低。
总体而言,电渣重熔技术是一种重要的金属加工技术,可以产生高质量的金属材料,但其应用仍受到能耗和生产效率的限制。
电渣重熔技术电渣重熔技术是一种常用于金属废料回收的高效方法。
它通过电弧的高温熔化废料,然后利用极性电极和磁力场的作用,将金属从废料中分离出来。
电渣重熔技术具有高效、能耗低、环保等优点,被广泛应用于金属回收行业。
电渣重熔技术的原理主要包括以下几个步骤:首先,将待处理的金属废料放置在重熔炉中,形成一个电解池。
然后,在废料表面施加电弧放电,产生高温、高能的电弧和等离子体。
电弧的高温作用下,废料被熔化成电渣。
接下来,通过重力和离心力的作用,将金属从电渣中分离出来。
重力和离心力可以通过调整重熔炉的设计和操作参数来实现。
通常情况下,废料中的重金属更容易被分离出来,而轻金属则相对较难。
因此,在实际操作中,人们会根据废料中金属的特性来调整操作参数,以达到最佳的分离效果。
在金属分离的过程中,极性电极和磁力场的作用起到了重要的辅助作用。
极性电极会在金属分离过程中产生电场,引导金属离子向特定方向运动。
磁力场则通过施加磁场,改变金属离子的轨迹,加快分离速度。
除了金属分离,电渣重熔技术还可以实现金属精炼。
通过控制操作参数和添加合适的熔剂,可以去除废料中的杂质和气体,提高金属的纯度和质量。
电渣重熔技术的应用非常广泛,特别适用于处理高温金属废料,如废钢铁、废铜、废铝等。
它被广泛应用于钢铁、有色金属、电力等行业。
随着技术的不断发展,电渣重熔技术在金属回收行业的地位越来越重要。
总的来说,电渣重熔技术是一种高效、能耗低、环保的金属回收方法。
它通过电弧的高温作用将金属熔化成电渣,然后利用重力、离心力、极性电极和磁力场的作用将金属从电渣中分离出来。
电渣重熔技术不仅可以实现金属分离,还可以实现金属的精炼,提高金属的纯度和质量。
在金属回收行业中,电渣重熔技术发挥着重要的作用,对资源的循环利用具有积极的意义。
电渣重熔工艺嘿,朋友们!今天咱来聊聊电渣重熔工艺,这可真是个了不起的玩意儿啊!你说这电渣重熔工艺,就像是一位神奇的魔法师,能把普通的金属变得超级厉害!它能把那些有杂质、不完美的金属材料,通过一番神奇的操作,变得纯净又高性能。
这就好比一个灰姑娘,经过魔法的洗礼,摇身一变成了美丽的公主。
电渣重熔工艺的过程其实挺有意思的。
就像是在给金属材料做一次特别的“洗礼”。
把金属放在一个特殊的装置里,然后通上电,就像给它注入了神奇的力量。
在这个过程中,那些杂质就像是见不得光的小老鼠,纷纷被赶跑了,留下的就是精华啦!你想想看,要是没有电渣重熔工艺,那我们好多高质量的金属制品可就没办法生产出来啦!比如那些特别坚固的工具、精密的仪器,没有纯净的金属材料怎么行呢?这电渣重熔工艺不就是它们的大功臣嘛!而且啊,电渣重熔工艺还特别靠谱。
它可不是那种花架子,中看不中用。
它能实实在在地提升金属的性能,让金属变得更硬、更耐磨、更耐腐蚀。
这就像是给金属穿上了一层坚固的铠甲,让它们能在各种恶劣的环境下依然勇往直前。
你说这电渣重熔工艺难不难呢?其实也没那么难啦,只要掌握了诀窍,就像是骑自行车一样,一旦学会了就很容易啦!当然啦,这也需要专业的技术人员来操作,毕竟这可不是小孩子过家家。
电渣重熔工艺在很多领域都有着重要的应用呢!航空航天、汽车制造、机械加工等等,哪里都少不了它的身影。
它就像是一个默默无闻的英雄,在背后为我们的生活提供着坚实的保障。
咱再说说电渣重熔工艺的发展吧。
这可不是一成不变的哦,随着科技的进步,它也在不断地升级和改进呢!就像我们的手机一样,一代比一代厉害。
说不定以后电渣重熔工艺能变得更加高效、更加环保呢!那可真是太棒啦!总之,电渣重熔工艺可真是个好东西啊!它让我们的金属材料变得更优秀,让我们的生活变得更美好。
我们可真得好好感谢那些研究和应用电渣重熔工艺的人们啊!他们就像一群勤劳的园丁,默默地耕耘着,让这朵科技之花绽放得更加绚丽多彩!原创不易,请尊重原创,谢谢!。
钢水直接电渣重熔生产工艺流程
改造前
配料→电弧炉冶炼+LF钢包精炼→VOD真空吹氧精炼→中间包→VC真空浇铸(二期预留)→自耗电极(铸锭)→电极退火→电渣重熔→结晶电渣锭→结晶电渣锭加热→油压机锻造→锻后热处理→钻中心孔→剥皮(或粗车)→探伤、检测→入库→交货
改造后
配料→电弧炉冶炼+LF钢包精炼→VOD真空吹氧精炼→中间包→电渣重熔→结晶电渣锭→结晶电渣锭加热→油压机锻造→锻后热处理→钻中心孔→剥皮(或粗车)→探伤、检测→入库→交货。
工艺流程简述:选用优质废钢、生铁和高Cr合金材料,通过EAF 电弧炉熔炼、转换到专用中间钢包,钢包自带电极连接端,直接电渣重熔,结晶形成电渣锭,经过此工艺改进后每吨可节约600度电左右。
电渣锭由钢锭保温车运入并热装炉,经加热达到锻造温度后的电渣锭由运输起重机吊至锻造油压机工作区,并在锻造操作车、锻造起重机以及套筒等辅助设备或工具的协助下进行锻造,锻坯成型后立即热装炉进行热处理,热处理后的锻坯经精整、剥皮、探伤、检测后入库交货。
其中10000吨冷轧辊毛坯经高温热处理炉、喷淬机和中温炉调质处理后,进行半精车加工,再经预热加热,双频淬火机床深淬处理。
到加工车间进行粗磨、镗铣等工序后,成品经检验合格,包装入库。
图示对比:。
电渣重熔工艺和理论知识ESR techniques and theoretical knowledge* 一、电渣重熔基础理论知识1、概述电渣冶金起源于美国,一九四〇年霍普金斯取得了发明专利。
一九五八年,苏联德聂泊尔特钢厂工业电渣炉建成,现代电渣冶金开始进入工业化进程。
六十年代中期,由于航空、航天、电子、原子能等工业的发展,电渣重熔在苏联、西欧、美国获得较快的发展,生产的品种包括:优质合金钢、高温合金、精密合金、耐蚀合金以及铝、铜、钛、银等有色金属合金。
我国是世界上电渣冶金起步较早的国家之一,一九六〇年,重庆特殊钢厂、大冶特殊钢厂,大连钢厂及上钢五厂的电渣炉先后建成投产。
紧随其后齐齐哈尔钢厂、抚顺钢厂等工业电渣炉相继建成投产。
五十多年来,我国电渣冶金始终保持着旺盛的发展趋势。
随着我国科学技术突飞猛进的发展,航天航海、汽车制造、石油化工、电站建设、核设施、机械制造等诸多行业,以及军工事业的发展、列车提速等许多领域越来越发挥着电渣钢的作用。
目前最大的一座是原上海重型机器厂电渣炉,重熔钢锭重达200t,现在又筹建450t大型电渣炉。
2009年,我国电渣重熔钢生产能力已超过170万t。
50多年来国内外电渣冶金取得了突飞猛进的发展,新工艺、新技术层出不穷,形成了一个跨专业、跨行业的新学科。
2、现代炼钢方法转炉,电弧炉,电渣重熔炉,真空感应炉,真空自耗炉(电弧重熔炉),电子束重熔炉(EBR)等。
电渣重熔是一种炼钢方法,而不是炉外精炼。
炉外精炼方法有LF,VD,VOD,VAD,RH 等。
3、电渣重熔炉类型3.1按工艺特点分:普通电渣重熔炉,电渣熔铸炉,加压电渣炉,保护气氛(可控气氛)电渣炉,连铸式电渣炉,电渣离心浇注炉,电渣热封顶等。
可控气氛电渣重熔技术。
电渣重熔通常在大气下进行,重熔合金中的氧含量,取决于主要脱氧元素的浓度和该脱氧元素的氧化物在渣中的活度。
此外,渣池上的氧分压或多或少也会产生一定的影响。
过去通常采用往渣池中加入脱氧剂的方法对熔渣连续脱氧,但是这会导致熔渣成分的改变。
2 电渣重熔原理2.1 渣池电渣重熔工艺的核心部分是熔池。
金属从熔池上方进入渣池,然后被加热、熔化、精炼和过热,并且承受振动、搅拌和电化学作用。
因此,形成渣池并使其保持在合适的条件下,显然是很重要的。
渣有如下几方面的作用。
(1)发热元件的作用重熔过程中热量通过焦耳效应产生,也就是通常的电阻发热定律。
因此,应该确保渣阻与供给功率的电压、电流之间的正确平衡。
所用的大多数渣的电阻率在熔炼温度下为0.2.0.ssl-cm ,熔炼温度通常比金属熔化温度高200 -- 3001C。
显然,在该温度下,渣既要呈液态,又要稳定,所以重熔电流、电压、渣池深度和渣电阻率之间的关系很复杂。
好的电渣重熔操作必须把它们调到最佳值。
(2)熔渣对于非金属材料来说是熔剂当金属电极进入到渣池中时,电极端部达到其熔化温度,就会形成金属熔化膜。
当熔化金属与熔渣接触时,熔化的金属在汇聚成熔滴的同时,暴露的非金属夹杂将溶解在渣里。
因此,渣的成分必须能溶解杂质而又不影响其性质,为此,在重熔时必须采取连续调整渣成分的步骤。
(3)渣是电渣重熔工艺的精炼剂重熔过程中的化学反应主要部位是电极端部渣/金界面,这里金属膜条件对于快速反应是最理想的。
(4)涟起保护金属免受污染的作用渣对于反应成分来说,起着传递介质的作用。
由于金属在渣下熔化和凝固,被熔化的金属绝不会与大气接触而被直接氧化,而这种氧化在常规工艺中是不可避免的。
另一方面,由于熔渣可以传递反应物质,如氧和水蒸气,所以使用惰性气体做保护气氛非常必要。
(5)位形成结晶器衬由于结晶器壁温度维持在渣熔点以下,那么熔渣和结晶器壁之间必定有凝固渣壳。
这层渣壳起着结晶器衬的作用,金属锭在衬里形成并凝固,至少在稳定操作条件下,渣壳起着上述作用。
在环形结晶器(短模)情况下,锭表面渣皮很少。
可能存在差异。
为了实现上述作用,渣必须具有某些相当明确的性质。
一般情况下,它的熔化温度应在被熔化金属的熔化温度以下。
操作温度显然高于金属熔点,一般约高200 -- 300℃。