电渣重熔
- 格式:docx
- 大小:31.50 KB
- 文档页数:5
电渣重熔技术
电渣重熔技术(Electric Arc Remelting,EAR)是一种利用电
弧将金属材料高温熔化并重新凝固的技术。
它常用于生产高纯度和均匀组织的金属材料,特别是钨、钛、钢铁和镍合金等高质量的金属。
电渣重熔技术通常涉及以下步骤:
1. 准备废料或原始金属。
2. 将金属放入电渣炉中,并添加一定量的电极材料作为电弧的起点。
3. 通过电源提供电能,并使电极形成电弧,产生高温。
4. 由于电弧的高温作用,金属开始熔化,并形成一定的熔体池。
5. 在熔体池中,通过搅拌或气体喷吹等方法,促使金属组织的均匀化。
6. 根据需要进行熔炼和精炼的过程,以改善金属材料的质量。
7. 将熔融的金属倒入模具中进行冷却和凝固,形成所需形状的金属材料。
电渣重熔技术具有以下优点:
1. 可以再生利用废弃金属,减少资源浪费。
2. 可以提供高纯度的金属材料,以满足高要求的特殊应用。
3. 可以改善金属材料的均匀性和组织结构,提高其力学性能和耐腐蚀性能。
然而,电渣重熔技术也存在一些缺点:
1. 能耗较高,需要大量的电能供应。
2. 技术要求较高,操作和管理难度较大。
3. 一次熔炼的批量较小,生产效率相对较低。
总体而言,电渣重熔技术是一种重要的金属加工技术,可以产生高质量的金属材料,但其应用仍受到能耗和生产效率的限制。
电渣重熔技术电渣重熔技术是一种常用于金属废料回收的高效方法。
它通过电弧的高温熔化废料,然后利用极性电极和磁力场的作用,将金属从废料中分离出来。
电渣重熔技术具有高效、能耗低、环保等优点,被广泛应用于金属回收行业。
电渣重熔技术的原理主要包括以下几个步骤:首先,将待处理的金属废料放置在重熔炉中,形成一个电解池。
然后,在废料表面施加电弧放电,产生高温、高能的电弧和等离子体。
电弧的高温作用下,废料被熔化成电渣。
接下来,通过重力和离心力的作用,将金属从电渣中分离出来。
重力和离心力可以通过调整重熔炉的设计和操作参数来实现。
通常情况下,废料中的重金属更容易被分离出来,而轻金属则相对较难。
因此,在实际操作中,人们会根据废料中金属的特性来调整操作参数,以达到最佳的分离效果。
在金属分离的过程中,极性电极和磁力场的作用起到了重要的辅助作用。
极性电极会在金属分离过程中产生电场,引导金属离子向特定方向运动。
磁力场则通过施加磁场,改变金属离子的轨迹,加快分离速度。
除了金属分离,电渣重熔技术还可以实现金属精炼。
通过控制操作参数和添加合适的熔剂,可以去除废料中的杂质和气体,提高金属的纯度和质量。
电渣重熔技术的应用非常广泛,特别适用于处理高温金属废料,如废钢铁、废铜、废铝等。
它被广泛应用于钢铁、有色金属、电力等行业。
随着技术的不断发展,电渣重熔技术在金属回收行业的地位越来越重要。
总的来说,电渣重熔技术是一种高效、能耗低、环保的金属回收方法。
它通过电弧的高温作用将金属熔化成电渣,然后利用重力、离心力、极性电极和磁力场的作用将金属从电渣中分离出来。
电渣重熔技术不仅可以实现金属分离,还可以实现金属的精炼,提高金属的纯度和质量。
在金属回收行业中,电渣重熔技术发挥着重要的作用,对资源的循环利用具有积极的意义。
电渣重熔冶炼技术
1 引言
电渣重熔冶炼技术是熔化废旧金属的一种方法,能够有效地回收金属资源,减轻资源的消耗和环境污染。
本文将从技术原理、设备结构、优点和发展趋势等方面介绍该技术。
2 技术原理
电渣重熔冶炼技术是通过电极向熔体中通入一定的电流和电压,使废旧金属在高温下熔化。
同时,添加一定量的草酸盐或碳化物,将金属污染物转化为易于脱除的渣滓。
熔融时,废旧金属中的杂质被转化为渣滓,可通过重力作用自然分层,而金属熔体则通过不同的喷吐器进行分离。
3 设备结构
电渣重熔冶炼设备主要由炉爐鼓风系统、电极导电系统、草酸盐或碳化物投加系统、喷吐与收渣系统等部分组成。
其中,炉爐主要由铁墙、保温层和炉底构成,电极通常采用水冷型,以防止焦化。
而草酸盐或碳化物的加入量和时间、喷吐器的数量和位置、加热方式等参数会影响电渣重熔冶炼的效果和质量。
4 优点
电渣重熔冶炼技术的主要优点是可以高效、环保地回收废旧金属,减少对地球资源的消耗和环境的污染。
此外,该技术还可以生产高纯
度的金属材料,广泛应用于工业生产。
5 发展趋势
电渣重熔冶炼技术已经成为国际铸造行业中广泛使用的一种高效、环保的回收技术。
未来,随着金属回收利用的重要性不断提升,电渣
重熔冶炼技术将在材料回收领域中扮演更为重要的角色。
同时,技术
革新和设备升级还将进一步提高电渣重熔冶炼技术的效率和质量。
6 结论
无论是从环保角度,还是从资源利用率的角度来看,电渣重熔冶
炼技术都是一种十分重要的回收技术。
未来,我们应该进一步加强对
该技术的研究和探索,为推动环境保护和可持续发展做出贡献。
电渣重熔技术电渣重熔技术是一种应用于冶金和材料工程领域的高效能熔炼技术。
它通过在电弧和电流的作用下,将废旧金属或合金加热熔化,并在熔池中形成一个良好环境,以去除杂质并达到纯净的金属再利用的目的。
本文将介绍电渣重熔技术的工作原理、应用领域、优点和限制。
电渣重熔技术的工作原理是利用电弧在废旧金属表面产生的高温和高能量来使金属熔化。
在电弧作用下,金属表面产生高温和高压,将废金属熔化,并形成一个被称为熔池的液态金属池。
通过调整电弧和电流的参数,可以达到所需的熔化温度和熔化速度。
在熔池中,杂质会上浮到熔池的上部,并通过电磁力和重力分离出来。
纯净的金属会沉积在熔池底部,并通过预先安装的排放设备收集。
电渣重熔技术广泛应用于冶金和材料工程领域。
它可以有效地回收和利用废旧金属和合金,包括钢铁、铜、铝、镍、锡等。
此外,它还被用于处理冶炼过程中的废渣和副产品,如钢渣、镍渣、铝渣等。
电渣重熔技术在金属回收和资源再利用方面具有重要意义,可以减少对原材料的需求,降低能源消耗和环境污染。
电渣重熔技术的优点主要包括以下几个方面。
首先,它可以有效地去除金属中的杂质,提高金属的纯度和质量。
其次,它可以将废旧金属和合金完全熔化,降低了废旧材料的体积和重量,便于运输和储存。
此外,电渣重熔技术还具有较高的自动化程度和生产效率,可以实现连续操作和大批量处理。
然而,电渣重熔技术也存在一些限制。
首先,电渣重熔设备的投资成本较高,对传统的熔炼设备有一定的替代性。
其次,电渣重熔技术对金属废料的要求较高,需要较干净、无污染的废物以保证金属质量。
此外,电渣重熔技术对电能和冷却水的需求较大,对能源的消耗和环境影响也需要考虑。
综上所述,电渣重熔技术是一种应用广泛且效果显著的熔炼技术。
它可以对金属废旧材料进行高效利用和资源再生,具有重要的经济和环境效益。
未来,随着科技的不断进步和应用的推广,电渣重熔技术有望在金属回收和资源循环利用领域发挥更大的作用。
简述电渣重熔的基本原理电渣重熔(Electric Arc Furnace, EAF)是一种利用电弧加热金属材料进行冶炼和熔化的冶金设备。
它主要用于炼钢、炼铁和回收废钢。
电渣重熔的基本原理是利用电弧高温加热金属材料,通过熔化和冶炼的过程得到所需的金属产品。
电渣重熔设备由炉体、电极系统、电弧延伸设备和渣口等主要部件组成。
在电渣重熔过程中,首先将被冶炼的金属材料装入炉体中,并注入包含硅、锰、铝等合金元素的冶炼剂。
然后将电极引入炉体,并与电源连接以形成电弧。
电力经电极入炉,经金属材料和冶炼剂导电,产生高温的电弧。
这个过程产生的电弧温度可以高达3000-6000,非常适合金属材料的熔化和冶炼。
电弧在金属材料中产生的热量加热金属材料,使其逐渐熔化。
与此同时,冶炼剂中的合金元素也被溶解并与金属材料混合。
通过搅拌装置和氩气吹扫,可以促进合金元素均匀分布和冶炼剂的氧化还原反应,以提高炉内温度和冶炼效果。
在电渣炉内部,金属和渣液被分离开来。
金属被收集并用于后续的制品生产。
而冶炼剂、非金属杂质和氧化物等形成的渣液则从渣口排出。
电渣重熔具有以下优点:1. 灵活性高:电渣炉可以适应不同种类的金属材料,包括低碳钢、合金钢、不锈钢等。
并且可以很容易地改变生产批量。
2. 节能环保:电力源不仅高效而且环保,可以大大减少废气和废水的排放。
同时由于占用面积相对较小,可降低土地和能源消耗。
3. 废钢回收:电渣重熔是废钢回收的关键技术。
通过电弧高温加热,废钢可以被迅速熔化并用于再生钢的生产。
这有助于减少对原始铁矿石的需求,降低能源消耗和环境污染。
4. 冶炼效果好:电渣重熔可以通过控制电弧温度、时间和熔炼剂的加入来控制冶炼过程,从而得到较高品质的金属产品。
并且电弧的强烈搅拌作用可以使金属熔体更加均匀,去除气体和非金属杂质。
然而,电渣重熔也存在一些局限性:1. 能耗较高:由于电渣重熔需要大量的电力供应,因此消耗的能源相对较高。
这也制约了电渣重熔的发展。
电渣重熔新技术的研究现状及发展趋势电渣重熔技术是一种重要的金属再生利用技术,可以有效地回收废旧金属,并在节能减排、资源循环利用方面发挥重要作用。
随着新技术的不断涌现,电渣重熔技术也在不断发展。
本文将从研究现状和未来发展趋势两个方面进行讨论。
一、电渣重熔技术的研究现状1. 传统电渣重熔技术传统电渣重熔技术是指利用电熔炉将金属渣进行加热熔化,使其成为液态金属,然后进行分离纯化的工艺流程。
这种技术在废旧金属回收利用领域已经有着长期的应用历史,主要适用于较为简单的金属合金回收。
传统电渣重熔技术在对复杂金属渣的处理方面存在效率不高、能耗较大、操作成本高等问题。
2. 新型电渣重熔技术随着科技的发展,新型电渣重熔技术不断涌现。
以高温等离子体技术为代表的新型电渣重熔技术,可以通过强电场和高温等离子体作用,实现金属渣的高效分解和还原,从而提高了金属回收率,减少了能耗和废气排放。
利用先进的智能控制系统和传感器技术,结合人工智能和大数据分析等手段,对电渣重熔过程进行精准监控和优化调控,也成为了当前的研究热点。
二、电渣重熔技术的发展趋势1. 资源综合利用未来电渣重熔技术将更加注重资源综合利用,不仅仅局限于金属的回收,还将考虑非金属元素的回收利用。
采用高效分离技术,将金属和非金属进行有效分离,实现资源的最大化回收。
2. 精准智能化控制未来电渣重熔技术将朝着智能化和自动化方向发展,通过引入先进的传感器和智能控制系统,实现对电渣重熔过程的精准监控和模型预测,确保生产过程的稳定性和产品质量的一致性。
3. 节能减排未来电渣重熔技术将致力于进一步降低能耗和减少环境污染。
采用新型高效电熔炉、恒温技术和废气处理技术,减少电渣重熔过程中的能源消耗和废气排放,实现绿色环保生产。
随着科技的不断进步和创新,电渣重熔技术必将迎来更加辉煌的发展。
通过持续深入的研究和不断改进技术手段,电渣重熔技术将为金属再生利用领域注入新的活力,为推动资源循环利用和实现绿色可持续发展做出更大的贡献。
电渣重熔技术电渣重熔技术是一种常见的金属回收技术,它通过将废旧金属放置在电炉中加热,使其熔化并通过电场力的作用将金属液体分离出来。
电渣重熔技术在环境保护和资源循环利用等方面具有重要的意义。
首先,电渣重熔技术能够有效地回收和利用废旧金属。
废旧金属广泛存在于工业和生活中,其中包括废旧铁、废旧铝、废旧铜等。
利用传统的熔炼方法进行回收存在一定的技术和环境限制,而电渣重熔技术可以在较低的温度下将金属熔化,减少能源的消耗,且无需添加任何助熔剂,从而提高了金属的回收率和利用率。
其次,电渣重熔技术具有较好的环保效益。
相比于传统的熔炼方法,电渣重熔技术不需要燃烧燃料,因此减少了烟尘和有害气体的排放,减轻了对环境的污染。
此外,电渣重熔技术还能够减少废渣的产生,废渣中的杂质通常会对环境造成一定的危害,通过电渣重熔技术可以使废渣中的杂质减少到最低程度。
再次,电渣重熔技术能够改善金属的品质。
电渣重熔技术可以将金属熔化后,通过电场力的作用使金属液体中的杂质被挤压到金属的表面,并成为一层熔渣,从而使金属的纯度得到提高。
电渣重熔技术还能够有效地去除金属中的气体、硫、氮等杂质,提高金属的机械性能和化学性能,使金属得到进一步的提升。
最后,电渣重熔技术具有较高的经济效益。
电渣重熔技术可以有效地降低金属的生产成本,提高金属回收和利用的经济效益。
电渣重熔技术对能耗的要求较传统的熔炼方法要低,通过合理的电源利用可以使生产的成本大幅降低。
综上所述,电渣重熔技术是一种具有重要意义的金属回收技术。
它通过减少能源消耗、提高金属回收率和利用率,改善金属品质,减少废渣的产生以及降低生产成本,在环境保护和资源循环利用等方面发挥重要作用。
同时,在电渣重熔技术的应用过程中,还需要关注相关的设备技术和操作规范,确保其安全高效运行,为可持续发展做出贡献。
电渣重熔免费编辑添加义项名
材料
电渣重熔钢(electroslag remelting)是利用电流通过熔渣时产生的电阻热作为热源进行熔炼的方法。
中文名称
电渣重熔
外文名称
electroslag remelting
主要目的
提纯金属
热源
主要目的
其主要目的是提纯金属并获得洁净组织均匀致密的钢
锭。
经电渣重熔的钢,纯度高、含硫低、非金属夹杂物少、
钢锭表面光滑、洁净均匀致密、金相组织和化学成分均匀。
电渣钢的铸态机械性能可达到或超过同钢种锻件的指标。
电
渣钢锭的质量取决于合理的电渣重熔工艺和保证电渣工艺
的设备条件。
主要产品
电渣重熔的产品品种多,应用范围广。
其钢种有:碳素钢、合金结构钢、轴承钢、模具钢、高速钢、不锈钢、耐热钢、超高强度钢、高温合金、精密合金、耐蚀合金、电热合金等400多个钢种。
此外,可用电渣法直接熔铸异形铸件,可以铸代锻,简化生产工序,提高金属的利用率。
主要作用
电渣熔铸工艺从根本上解决了一般铸造工艺的主要矛盾,它综合了电渣重溶-获得高冶金质量的金属和铸造-浇铸异型零件精化毛坯的长处,并具有与普通冶炼的变形金属相近的致密组织以及无各向异性的特点。
与普通锻件相比,电渣熔铸件的各项性能指标完全达到同钢种的变型金属指标,甚至还避免了锻件的一些不足之处。
应用成果
近些年来,电渣熔铸新工艺逐渐引起了国内外工程技术界的重视,许多工业部门在加紧研究和使用电渣熔铸产品。
在发展这项新工艺方面,原苏联、日本和美国的研究成果较多,其次是西德、捷克斯洛伐克、英国、瑞典和法国。
东北大学电冶金研究室在发展电渣熔铸新工艺以及研制使用它的异型件方面取得了以下成果:?
电渣熔铸冷轧辊、阀体、三通管、厚壁中空管、石油裂解炉管、齿轮毛坯、各种模具(包括冲压模具)和柴油机曲轴等。
目前,国外著名的电渣炉制造厂家,如美国的CONSARC、德国的ALD和奥地利的INTECO等公司均采用基于PLC和工控机的2级计算机控制系统,能实现整个重熔过程的设备和工艺的全自动控制。
东北大学从20世纪90年代开始研制以液压传动或滚珠丝杠传动为核心的新型机械设备,以工控机和PLC为硬件,以专家控制为软件的智能化计算控制系统的新一代电渣炉,目前已有近20台设备成功应用于国内的工业生产中,使用效果良好。
把平炉、转炉、电弧炉或感应炉冶炼的钢铸造或锻压成为电极,通过熔渣电阻热进行二次重熔的精炼工艺,英文简称ESR。
美国霍普金斯(R.K.Hopkins)于20世纪40年代首先提出这种精炼方法的原理。
其后苏联和美国相继建立工业生产用的电渣炉。
60年代中期由于航空、航天、电子、原子能等工业的发展,电渣重熔在苏联、西欧、美国获得较快的发展。
生产的品种包括:优质合金钢、高温合金、精密合金、耐蚀合金以及铝、铜、钛、银等有色金属的合金。
1980年世界电渣重熔钢生产能力已超过120万吨。
中国1960年建成第一座电渣炉,其后得到很大发展。
最大的是上海重型机器厂电渣炉,钢锭重达200吨.大连远东工具的电渣重熔钢生产能力已经进入国内领先水平。
电渣重熔技术在军事上早有应用,坦克炮的寿命是衡量一个国家坦克制造水平的重要标志。
以前俄罗斯及中国制造的坦克炮的寿命一般只有100-500发,而西方国家比如说德国的坦克炮采用了电渣重熔、内膛镀铬技术,使其寿命达到了800-1000发,大大提高了军事装备的水平。
当然通过近年来的不断的科技投入,中国的坦克炮技术与西方国家的技术差距已相差不大。
基本过程
在铜制水冷结晶器内盛有熔融的炉渣,自耗电极一端插入熔渣内。
自耗电极、渣池、金属熔池、钢锭、底水箱通过短网导线和变压器形成回路。
在通电过程中,渣池放出焦耳热,将自耗电极端头逐渐熔化,熔融金属汇聚成液滴,穿过渣池,落入结晶器,形成金属熔池,受水冷作用,迅速凝固形成钢锭。
在电极端头液滴形成阶段,以及液滴穿过渣池滴落阶段,钢-渣充分接触,钢中非金属夹杂物为炉渣所吸收。
钢中有害元素(硫、铅、锑、铋、锡)通过钢-渣反应和高温气化比较有效地去除。
液态金属在渣池覆盖下,基本上避免了再氧化。
因为是在铜制水冷结晶器内熔化、精炼、凝固的,这就杜绝了耐火材料对钢的污染。
钢锭凝固前,在它的上端有金属熔池和渣池,起保温和补缩作用,保证钢锭的致密性。
上升的渣池在结晶器内壁上形成一层薄渣壳,不仅使钢锭表面光洁,还起绝缘和隔热作用,使更多的热量向下部传导,有利于钢锭自下而上的定向结晶。
由于以上原因,电渣重熔生产的钢锭的质量和性能得到改进,合金钢的低温、室温和高温下的塑性和冲击韧性增强,钢材使用寿命延长。
技术利弊
电渣重熔的缺点是电耗较高,目前通用的渣料含CaF□较多,在重熔过程中,污染环境,必须设除尘和去氟装置。
主要设备
电渣重熔炉
1980年4月,一台200吨级的大型电渣重熔炉在上海重型机器厂试制成功。
它是中国最大,也是世界上最大的一台电渣重熔炉。
大型电渣炉建设是一项重大工程。
整个工程由副总工程师林宗棠负责领导和组织,北京钢铁学院朱觉教授任顾问,上海重型机器厂和北京钢铁学院共同开发研制。
重熔工艺和车间设计由刘椿林负责;电渣重熔设备由皇甫埏负责设计;高压和低压电气由苏烨和谈家宝负责
设计;土建和公用部分由上海机电设计研究院设计。
从1972年11月起到1974年12月止,刘椿林和北京钢院教师刘海洪带领试验小组在上重厂和有关工厂先后进行了多项试验,以确定电渣炉设备的设计参数、重熔和抽锭工艺参数。
这台三相三摇臂双极串联式的大型电渣炉由三个小机架呈等边三角形布置构成。
每个小机架有一根18米高的立柱。
三根立柱的底部固定在地基上,中部和顶部用曲梁连结,构成电渣炉本体。
在中部曲梁上安放直径2.8米的铜衬钢壳水冷结晶器。
每根立柱的上部通过传动装置装有可以上下运动又能左右旋转的摇臂。
摇臂的一端装有电极夹持机构,可以夹持相互绝缘而串联的两根电极。
三个摇臂共悬挂六根电极。
每两根电极由一台单相变压器供电。
这样六根电极便组成三相双极串联回路。
电极直径为500毫米,每根重约5吨。
结晶器下部有一台带水冷却底板的电动平车,平车载重可达300吨。
平车放在能沿三根立柱上下运动的活动平台上。
重熔开始前,活动平台上升使水冷底板将结晶器下部封住,然后在结晶器内造渣和重熔电极。
六根钢电极同时进行重熔,经过一定时间电极重熔将尽,三个摇臂轮流地换上新的电极,以便熔炼出一个大的电渣锭。
随着钢电极的重熔,结晶器的渣液面便不断上升,达到一定高度后便进行抽锭操作,即在渣液面上涨的同时不断将水冷底板向下缓慢降落,以得到有一定长度和所需吨位的大型电渣锭。
钢锭炼成后,平台下降,钢锭便从结晶器内抽出,电动平车载着钢锭沿着轨道开出炉外。
这台电渣炉有以下特点:双极串联供电,可以减少回路感应,提高电功率因数;采用三相电源,有利于外网络电压平衡;三摇臂轮换电极,用小截面电极重熔大钢锭,有利于控制电极成分偏析;采用抽锭操作,能用短结晶器重熔长的钢锭。
用它重熔钢锭制成的锻件,1982年通过国家鉴定,同意用这台电渣炉为中国第一台核电站--秦山30万千瓦核电站生产安全一级压力容器用钢锭。
接着为核电站的蒸发器和稳压器提供了所需的全部大型电渣锭。
其中最大的两只电渣锭单重分别为205吨和207吨。
后还用这台电渣炉重熔了火电锻件和化工容器用的大型电渣锭。
它生产的大型电渣锭经过国家鉴定,表明电渣钢纯度高,成份均匀,性能良好,韧性特别优良。
从而为中国优质大型锻件的制造开辟了一条新的途径。
什么是电渣重熔?
电渣重熔钢是利用电流通过熔渣时产生的电阻热作为热源进行熔炼的方法。
其主要目的是提纯金属并获得洁净组织均匀致密的钢锭。
经电渣重熔的钢,纯度高、含硫低、非金属夹杂物少、钢锭表面光滑、洁净均匀致密、金相组织和化学成分均匀。
电渣钢的铸态机械性能可达到或超过同钢种锻件的指标。
电渣钢锭的质量取决于合理的电渣重熔工艺和保证电渣工艺的设备条件。
基本过程:
在铜制水冷结晶器内盛有熔融的炉渣,自耗电极一端插入熔渣内。
自耗电极、渣池、金属熔池、钢锭、底水箱通过短网导线和变压器形成回路。
在通电过程中,渣池放出焦耳热,将自耗电极端头逐渐熔化,熔融金属汇聚成液滴,穿过渣池,落入结晶器,形成金属熔池,受水冷作用,迅速凝固形成钢锭。
在电极端头液滴形成阶段,以及液滴穿过渣池滴落阶段,钢-渣充分接触,钢中非金属夹杂物为炉渣所吸收。
钢中有害元素(硫、铅、锑、铋、锡)通过钢-渣反应和高温气化比较有效地去除。
液态金属在渣池覆盖下,基本上避免了再氧化。
因为是在铜制水冷结晶器内熔化、精炼、凝固的,这就杜绝了耐火材料对钢的污染。
钢锭凝固前,在它的上端有金属熔池和渣池,起保温和补缩作用,保证钢锭的致密性。
上升的渣池在结晶器内壁上形成一层薄渣壳,不仅使钢锭表面光洁,还起绝缘和隔热作用,使更多的热量向下部传导,有利于钢锭自下而上的定向结晶。
由于以上原因,电渣重熔生产的钢锭的质量和性能得到改进,合金钢的低温、室温和高温下的塑性和冲击韧性增强,钢材使用寿命延长。