2020届高中数学分册同步讲义(必修4) 第3章 微专题突破五
- 格式:docx
- 大小:23.70 KB
- 文档页数:2
章末复习一、复数的有关概念例1 当实数a 为何值时,z =a 2-2a +(a 2-3a +2)i :(1)为实数;(2)为纯虚数;(3)对应的点在第一象限内;(4)复数z 对应的点在直线x -y =0上. 解 (1)由z ∈R ,得a 2-3a +2=0,解得a =1或a =2.(2)若z 为纯虚数,则⎩⎪⎨⎪⎧ a 2-2a =0,a 2-3a +2≠0,即⎩⎪⎨⎪⎧a =0或a =2,a ≠1,且a ≠2.故a =0. (3)若z 对应的点在第一象限,则⎩⎪⎨⎪⎧a 2-2a >0,a 2-3a +2>0,∴⎩⎪⎨⎪⎧a <0或a >2,a <1或a >2,∴a <0或a >2. ∴a 的取值范围是(-∞,0)∪(2,+∞). (4)依题得(a 2-2a )-(a 2-3a +2)=0,∴a =2.反思感悟 (1)复数的概念主要包括复数的代数形式、复数的分类、复数相等、共轭复数及复数的模等知识点,其中,复数的分类及复数的相等是热点,复数分类中“纯虚数”的条件是难点和易错点.(2)复数的分类及对应点的位置问题都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部、虚部满足的方程(不等式)即可.跟踪训练1 复数z =log 3(x 2-3x -3)+ilog 2(x -3),当x 为何实数时:(1)z ∈R ;(2)z 为虚数. 解 (1)因为一个复数是实数的充要条件是虚部为0, 所以⎩⎪⎨⎪⎧x 2-3x -3>0,log 2(x -3)=0,x -3>0,解得x =4,所以当x =4时,z ∈R .(2)因为一个复数是虚数的充要条件是虚部不为0, 所以⎩⎪⎨⎪⎧x 2-3x -3>0,log 2(x -3)≠0,x -3>0,解得x >3+212且x ≠4.所以当x >3+212且x ≠4时,z 为虚数.二、复数及复数加减法的几何意义例2 已知z 是复数,z +2i ,z2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面上对应的点在第一象限,求实数a 的取值范围. 解 设z =x +y i(x ,y ∈R ),∵z +2i =x +(y +2)i 为实数,∴y =-2. ∵z 2-i =x -2i 2-i =15(x -2i)(2+i)=15(2x +2)+15(x -4)i 为实数,∴x =4.∴z =4-2i.∵(z +a i)2=(12+4a -a 2)+8(a -2)i ,根据条件,可知⎩⎪⎨⎪⎧12+4a -a 2>0,8(a -2)>0,解得2<a <6,∴实数a 的取值范围是(2,6).反思感悟 (1)复数z =a +b i(a ,b ∈R )同复平面上的点Z (a ,b )是一一对应的,同向量OZ →是一一对应的.(2)复数z =a +b i(a ,b ∈R )的模|z |=|a +b i|=a 2+b 2表示点Z (a ,b )到原点的距离,亦即向量OZ →的模|OZ →|.由此可知|z |=r 表示以原点为圆心,以r 为半径的圆.(3)复数加减法的几何意义实质上是向量加减法的三角形法则和平行四边形法则,由减法的几何意义可知|z 1-z 2|表示复平面上两点Z 1,Z 2之间的距离.跟踪训练2 已知复平面内平行四边形ABCD ,A 点对应的复数为2+i ,向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i. (1)求点C ,D 对应的复数; (2)求平行四边形ABCD 的面积.解 (1)∵向量BA →对应的复数为1+2i ,向量BC →对应的复数为3-i ,AC →=BC →-BA →, ∴向量AC →对应的复数为(3-i)-(1+2i)=2-3i. 又OC →=OA →+AC →,∴点C 对应的复数为(2+i)+(2-3i)=4-2i. ∵AD →=BC →,∴向量AD →对应的复数为3-i , 即AD →=(3,-1).设D (x ,y ),则AD →=(x -2,y -1)=(3,-1),∴⎩⎪⎨⎪⎧ x -2=3,y -1=-1,解得⎩⎪⎨⎪⎧x =5,y =0.∴点D 对应的复数为5. (2)∵BA →·BC →=|BA →||BC →|cos B ,∴cos B =BA →·BC →|BA →||BC →|=3-25×10=152=210.∴sin B =7210.∵S =|BA →||BC →|sin B =5×10×7210=7,故平行四边形ABCD 的面积为7. 三、复数的四则运算例3 (1)计算:-23+i 1+23i +⎝ ⎛⎭⎪⎫21+i 2 018+(4-8i )2-(-4+8i )211-7i ; (2)已知z =1+i ,求z 2-3z +6z +1的模.解 (1)原式=i (1+23i )1+23i +⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫21+i 2 1 009+(4-8i +8i -4)(4-8i +4-8i )11-7i =i +(-i)1 009+0=0. (2)z 2-3z +6z +1=(1+i )2-3(1+i )+62+i =3-i2+i =1-i ,∵|1-i|=2,∴z 2-3z +6z +1的模为 2.反思感悟 (1)复数的除法运算是复数运算中的难点,如果遇到(a +b i)÷(c +d i)的形式,首先应该写成分式的形式,然后再分母实数化. (2)虚数单位i 的周期性①i 4n +1=i ,i 4n +2=-1,i 4n +3=-i ,i 4n =1(n ∈N *); ②i n +i n +1+i n +2+i n +3=0(n ∈N *). 跟踪训练3 (1)已知z1+i =2+i ,则复数z 等于( )A .-1+3iB .1-3iC .3+iD .3-i 答案 B解析 ∵z1+i=2+i ,∴z =(1+i)(2+i)=2+3i -1=1+3i ,∴z =1-3i.(2)已知i 是虚数单位,若复数z 满足z i =1+i 则z 2等于( ) A .-2i B .2i C .-2 D. 2 答案 A解析 ∵z i =1+i ,∴z =1+i i =(1+i )i i 2=i -1-1=1-i ,∴z 2=(1-i)2=1-2i -1=-2i.1.设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|等于( ) A .1 B. 2 C. 3 D .2 答案 B解析 由已知得x +x i =1+y i ,根据两复数相等的条件可得x =y =1, 所以|x +y i|=|1+i|= 2.2.若z =1+2i ,则4iz z -1等于( )A .1B .-1C .iD .-i 答案 C 解析4iz z -1=4i12+22-1=i.3.复数z =2+a i1+i (a ∈R )在复平面内对应的点在虚轴上,则a 等于( )A .2B .-1C .1D .-2 答案 D解析 z =2+a i 1+i =(2+a i )(1-i )(1+i )(1-i )=(2+a )+(a -2)i2在复平面内对应的点的坐标为⎝⎛⎭⎫2+a 2,a -22且在虚轴上,所以2+a =0,即a =-2.4.若复数z 满足|z |-z =101-2i ,则z =________.答案 3+4i解析 设z =a +b i(a ,b ∈R ),则z =a -b i , ∵|z |-z =101-2i ,∴|z |-z =2+4i ,则a 2+b 2-a +b i =2+4i ,∴⎩⎨⎧a 2+b 2-a =2,b =4,解得⎩⎪⎨⎪⎧a =3,b =4,∴z =3+4i.5.设z =1-i(i 是虚数单位),则在复平面内z 2+2z 对应的点位于第________象限.答案 四解析 由z =1-i 得,z 2+2z =(1-i)2+21-i =-2i +2(1+i )2=-2i +1+i =1-i ,对应的点位于第四象限.。
范文2020年高中数学必修4全册基础知识点总结汇编1/ 7(全册)2020 年高中数学必修 4 全册基础知识点总结汇编(全册)第一章:三角函数§1.1.1、任意角 1、正角、负角、零角、象限角的概念. 2、与角? 终边相同的角的集合: ?? ? ? ? ? 2k?,k ? Z?. §1.1.2、弧度制 1、把长度等于半径长的弧所对的圆心角叫做 1 弧度的角. 2、 ? ? l . r 3、弧长公式: l ? n?R ? ? R . 180 4、扇形面积公式: S ? n?R2 ? 1 lR . 360 2 §1.2.1、任意角的三角函数 1、设? 是一个任意角,它的终边与单位圆交于点 P?x, y?,那么: sin? ? y, cos? ? x, tan? ? y x 2、设点 A?x , y ? 为角? 终边上任意一点,那么:(设 r ? x2 ? y2 ) sin? ? y , cos? ? x , tan? ? y , cot? ? x r r x y 3、 sin? , cos? , y T P tan? 在四个象限的符号和三角函数线的画法. 正弦线:MP; O M Ax 余弦线:OM; 正切线:AT 5、特殊角0°,30°,45°,60°,90°,180°,270 等的三角函数值.0 ? 2? 3? ? 3? 2? 2 3 4 2 ? ?? ? 6 4 3 sin ? cos ? tan ? §1.2.2、同角三角函数的基本关系式 1、平方关系:sin 2 ? ? cos2 ? ? 1. 2、商数关系: tan? ? sin? . cos? 3、倒数关系: tan? cot? ?1 §1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限” k ? Z ) 1、诱导公式一: sin?? ? 2k? ? ? sin?, cos?? ? 2k? ? ? cos?, (其中: k ? Z ) tan?? ? 2k? ? ? tan?. 2、诱导公式二: sin?? ? ? ? ? ?sin?, cos?? ? ? ? ? ? cos?, tan?? ? ? ? ? tan?. 3、诱导公式三: sin?? ? ? ? ?sin?, cos?? ? ? ? cos?, tan?? ? ? ? ? tan?. 4、诱导公式四: sin?? ? ? ? ? sin?, cos?? ? ? ? ? ? cos?, tan?? ? ? ? ? ? tan?. 5、诱导公式五:3/ 7sin?? ? ? ? ?? ? cos? , ?2 ? cos?? ? ? ? ?? ? sin ?. ?2 ? 6、诱导公式六: sin?? ? ? ? ?? ? cos? , ?2 ? cos?? ? ? ? ?? ? ? sin ?. ?2 ? §1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: y=sinx y -4? -7? -3? 2 -5? 2 -2? -3? -?2 ? -2 1 o -1 ? 2 ? 3? 2 7? 2 2? 5? 3? 2 4? x y=cosx y -5? -3? 2 -? -4? -7? -2? -3? 2 2 ? -2 1 o? -1 2 ? 3? 2 2? 3? 5? 2 7? 2 4? x 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图. y ? sin x 在 x ?[0, 2? ] 上的五个关键点为:(0,0)(,? ,1)(,?,0)(,3? ,-1)(,2?,0). 2 2 §1.4.3、正切函数的图象与性质 y y=tanx 1、记住正切函数的图象: 3? -2 -? ? -2 o? 2 ? 3? x 22、记住余切函数的图象: y y=cotx -? ? -2 o? 2 ? 3? 2? x 23、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性. 周期函数定义:对于函数 f ?x? ,如果存在一个非零常数 T,使得当 x 取定义域内的每一个值时,都有 f ?x ? T ? ? f ?x?,那么函数 f ?x? 就叫做周期函数,非零常数 T 叫做这个函数的周期. 图表归纳:正弦、余弦、正切函数的图像及其性质 y ? sin x y ? cosx y ? tan x 图象定义域值域 R [-1,1] R [-1,1] 最值 x ? 2k? ? ? , k ? Z时,y ? 1 2 max x ? 2k? ? ? , k ? Z时,y ? ?1 2 min x ? 2k? , k ? Z 时,y ? 1 max x ? 2k? ? ? , k ? Z时,y ? ?1 min 周期性奇偶 T ? 2? 奇 T ? 2? 偶 {x | x ? ? ? k? , k ? Z} 2 R 无 T ?? 奇5/ 7性单调性 k?Z 在 [2k? ? ? , 2k? ? ? ] 上单调 2 2 递增在 [2k? ? ? , 2k? ? 3? ] 上单调 2 2 递减在 [2k? ?? , 2k? ] 上单调递增在 [2k? , 2k? ?? ] 上单调递减在(k? ? ? , k? ? ? ) 上单调 2 2 递增对称性 k?Z 对称轴方程: x ? k? ? ? 2 对称中心 (k? , 0) 对称轴方程: x ? k? 对称中心 (k? ? ? , 0) 2 无对称轴对称中心 ( k? , 0) 2§1.5、函数 y ? Asin??x ? ??7/ 7。
一不等式第1课时不等式的基本性质学习目标1.理解不等式的性质,会用不等式的性质比较大小.2.能运用不等式的性质证明简单的不等式、解决不等式的简单问题.知识点不等式的基本性质1.两个实数a,b的大小关系2.不等式的基本性质(1)对称性:a>b⇔b<a.(2)传递性:a>b,b>c⇒a>c.(3)可加性:a>b⇔a+c>b+c.(4)可乘性:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)乘方:如果a>b>0,那么a n>b n(n∈N,n≥2).(6)开方:如果a>b>0n∈N,n≥2).思考作差比较大小的方法步骤有哪些?答案(1)作差;(2)变形;(3)判断差的符号;(4)得出结论.一、作差比较大小例1 (1)已知a >b >0,比较a b 与a +1b +1的大小; (2)已知x >1,比较x 3-1与2x 2-2x 的大小.解 (1)a b -a +1b +1=a (b +1)-b (a +1)b (b +1)=a -b b (b +1). 因为a >b >0,所以a -b >0,b (b +1)>0,所以a -b b (b +1)>0, 所以a b >a +1b +1. (2)x 3-1-(2x 2-2x )=x 3-2x 2+2x -1=(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2=(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34, 因为x >1,所以x -1>0.又因为⎝⎛⎭⎫x -122+34>0, 所以(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34>0, 所以x 3-1>2x 2-2x .反思感悟 比较两个数(式子)的大小,一般用作差法,其步骤是:作差—变形—判断差的符号—得出结论,其中“变形”是关键,常用的方法是分解因式、配方等.跟踪训练1 已知x ,y 均为正数,设m =1x +1y, n =4x +y,试比较m 和n 的大小. 解 m -n =1x +1y -4x +y =x +y xy -4x +y=(x +y )2-4xy xy (x +y )=(x -y )2xy (x +y ), ∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0.∴m -n ≥0,即m ≥n .(当x =y 时,等号成立)二、不等式基本性质的应用命题角度1 判断不等式是否成立例2 判断下列命题是否正确,并说明理由.(1)若a >b >0,则1a <1b; (2)若c >a >b >0,则a c -a >b c -b; (3)若a c >b d,则ad >bc ; (4)设a ,b 为正实数,若a -1a <b -1b,则a <b . 解 (1)正确.因为a >b >0,所以ab >0.两边同乘以1ab, 得a ·1ab >b ·1ab ,得1b >1a. (2)正确.因为c -a >0,c -b >0,且c -a <c -b ,所以1c -a >1c -b>0. 又a >b >0,所以a c -a >b c -b. (3)不正确.因为a c >b d ,所以a c -b d>0, 即ad -bc cd>0, 所以⎩⎪⎨⎪⎧ ad -bc >0,cd >0或⎩⎪⎨⎪⎧ad -bc <0,cd <0, 即ad >bc 且cd >0或ad <bc 且cd <0.(4)正确.因为a -1a <b -1b,且a >0,b >0, 所以a 2b -b <ab 2-a ⇒a 2b -ab 2-b +a <0⇒ab (a -b )+(a -b )<0⇒(a -b )(ab +1)<0, 所以a -b <0,即a <b .反思感悟 (1)利用不等式的性质判断命题真假的技巧①要判断一个命题为真命题,必须严格证明;②要判断一个命题为假命题,或者举反例,或者由题中条件推出与结论相反的结果.其中,举反例在解选择题时用处很大.(2)运用不等式的性质判断命题真假的三点注意事项①倒数法则要求两数同号;②两边同乘以一个数,不等号方向是否改变要视此数的正负而定;③同向不等式可以相加,异向不等式可以相减.跟踪训练2 下列命题中正确的是________.(填序号)①若a >b >0,c >d >0,那么a d <b c; ②若a ,b ∈R ,则a 2+b 2+5≥2(2a -b );③若a ,b ∈R ,a >b ,则a 2>b 2;④若a ,b ∈R ,a >b ,则a c 2+1>b c 2+1. 答案 ②④解析 对于①,∵c >d >0,∴1d >1c>0, 又∵a >b >0, ∴a d >b c >0,∴a d >b c,∴①不对; 对于②,a 2+b 2+5-(4a -2b )=a 2-4a +b 2+2b +5=(a -2)2+(b +1)2≥0,∴a 2+b 2+5≥2(2a -b ),∴②对;对于③,由于a >b 不能保证a ,b 同时大于0,∴a 2>b 2不成立,∴③不对;对于④,∵c 2+1>0,∴由a >b ,可得a c 2+1>b c 2+1,∴④对. 命题角度2 证明不等式成立例3 已知a >b >0,c <d <0,求证:b a -c <a b -d. 证明 ∵c <d <0,∴-c >-d >0.又a >b >0,∴a -c >b -d >0,∴0<1a -c <1b -d . 又0<b <a ,∴b a -c <a b -d .引申探究1.若本例条件不变,求证:3a d <3b c. 证明 ∵c <d <0,∴-c >-d >0,∴0<1-c <1-d.又a >b >0, ∴a -d >b -c>0, ∴3a -d >3b -c ,即-3a d >-3b c , ∴3a d <3b c. 2.若本例条件不变,求证:ac a -c <bd b -d . 证明 ∵a >b >0,∴1b >1a>0. 又∵c <d <0,∴-c >-d >0,∴1-d >1-c >0. ∴1b +1-d >1a +1-c >0,即d -b bd >c -a ac>0, ∴ac c -a >bd d -b >0,∴ac a -c <bd b -d. 反思感悟 进行简单的不等式的证明,一定要建立在记准、熟记不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.跟踪训练3 已知a >0,b >0,c >0,d >0,且a b >c d ,求证:a +c b +d >c d. 证明 因为a >0,b >0,c >0,d >0且a b >c d,所以ad >bc ,所以ad +cd >bc +cd ,即d (a +c )>c (b +d ),所以a +c b +d >c d.1.若a <b <0,则下列结论不正确的是( )A.a 2<b 2B.ab <a 2C.b a +a b>2 D.|a |-|b |=|a -b | 答案 A解析 ∵a <b <0,∴-a >-b >0,即(-a )2>(-b )2,∴a 2>b 2.2.若a <0,-1<b <0,则有( )A.a >ab >ab 2B.ab 2>ab >aC.ab >a >ab 2D.ab >ab 2>a 答案 D解析 ∵-1<b <0,∴b <b 2<1.∵a <0,∴ab >ab 2>a .3.下列说法中,正确的个数是________.①若a >b ,则ac 2>bc 2;②若a ≥b ,则ac 2≥bc 2;③若a c >b c ,则ac >bc ;④若a c ≥b c,则ac ≥bc ; ⑤若⎩⎪⎨⎪⎧ a >b ,ac >bc ,则c >0;⑥若⎩⎪⎨⎪⎧a ≥b ,ac ≥bc ,则c ≥0. 答案 4解析 当c 2=0时,①不正确;②正确;③正确;④正确;⑤正确;当a =b 时,⑥不正确.4.已知0<a <1,则a ,1a,a 2的大小关系是________. 答案 a 2<a <1a解析 因为a -1a =(a +1)(a -1)a <0,所以a <1a. 又a -a 2=a (1-a )>0.所以a >a 2,所以a 2<a <1a. 5.已知12<a <60,10<b <20,求b a的取值范围. 解 由12<a <60,得160<1a <112,又10<b <20, 所以根据不等式的性质可得16<b a <53.1.作差法比较大小的基本步骤:作差——变形——与0比较——总结.其关键是将“差”式变成“积”式,方便与0比较.2.不等式的基本性质是不等式变形的依据,每一步变形都要做到有根有据,严格按照不等式的性质进行.3.不等式的证明实质就是根据性质将不等式进行恰当变形,在变形过程中一定要注意不等式成立的条件.一、选择题1.已知a >0>b ,c <d <0,给出下列不等式:(1)ad >bc ;(2)a -c >b -d ;(3)a (d -c )>b (d -c ).其中成立的个数是( )A.0B.1C.2D.3答案 C解析 因为a >0,b <0,c <d <0,所以ad <0,bc >0,故(1)不成立;因为a >b ,c <d <0,所以-c >-d ,所以a -c >b -d ,故(2)成立;由c <d <0,知d -c >0,又a >0>b ,所以a (d -c )>b (d -c ),故(3)成立.2.若a ,b 为非零实数,且a <b ,则下列不等式成立的是( )A.1a >1bB.a 2<b 2C.a 2b <ab 2 D.(a -1)3<(b -1)3 答案 D解析 对于选项A ,如a =-3,b =1时,1a >1b显然不成立,故不正确;对于选项B ,如a =-3,b =-1,显然a 2<b 2不成立,故不正确;对于选项C ,如a =-3,b =1,显然a 2b <ab 2不成立,故不正确;对于选项D ,因为a <b ,所以a -1<b -1,因为函数y =x 3在R 上是增函数,故(a -1)3<(b -1)3成立,故选D.3.设a ,b ∈(-∞,0),则“a >b ”是“a -1a >b -1b”成立的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 C解析 a ,b ∈(-∞,0),∵a >b ,∴1a <1b ,即-1a >-1b ,∴a -1a >b -1b, ∴“a >b ”是“a -1a >b -1b”成立的充分条件. 又由a -1a >b -1b ⇒a -b +1b -1a>0 ⇒(a -b )+a -b ab >0⇒(a -b )·ab +1ab>0 ⇒a -b >0⇒a >b .∴“a >b ”又是“a -1a >b -1b”成立的必要条件. 故“a >b ”是“a -1a >b -1b”成立的充要条件. 4.已知a ,b ,c ∈(0,+∞),若c a +b <a b +c <b c +a,则( ) A.c <a <bB.b <c <aC.a <b <cD.c <b <a 答案 A解析 由c a +b <a b +c <b c +a ,可得c a +b +1<a b +c +1<b c +a+1, 即a +b +c a +b <a +b +c b +c <a +b +c c +a.又a ,b ,c ∈(0,+∞), 所以a +b >b +c >c +a .由a +b >b +c ,可得a >c ;由b +c >c +a ,可得b >a ,于是有c <a <b .5.设a >1>b >-1,则下列不等式恒成立的是( )A.1a <1bB.1a >1bC.a >b 2D.a 2>2b答案 C解析 ∵-1<b <1,∴b 2<1<a .6.设角α,β满足-π2<α<β<π2,则α-β的取值范围是( ) A.-π<α-β<0B.-π<α-β<πC.-π2<α-β<0 D.-π2<α-β<π2 答案 A解析 ∵-π2<α<β<π2, ∴-π2<-β<π2且α-β<0,∴-π<α-β<0. 二、填空题7.已知a ,b ,c 是实数,则a 2+b 2+c 2与ab +bc +ca 的大小关系是__________.答案 a 2+b 2+c 2≥ab +bc +ca解析 ∵a 2+b 2+c 2-ab -bc -ca =12(2a 2+2b 2+2c 2-2ab -2bc -2ca )=12[(a -b )2+(b -c )2+(c -a )2]≥0,当a =b =c 时,等号成立,∴a 2+b 2+c 2≥ab +bc +ca .8.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b,则M ,N 的大小关系是________. 答案 M >N解析 M -N =1-a 1+a +1-b 1+b =2(1-ab )(1+a )(1+b ). ∵0<a <1b,∴ab <1,即1-ab >0, ∴M -N >0,∴M >N .9.若a ,b ∈R ,且a >b ,下列不等式:①b a >b -1a -1;②(a +b )2>(b +1)2;③(a -1)2>(b -1)2. 其中不成立的是________.(填序号)答案 ①②③解析 ①中,b a -b -1a -1=ab -b -ab +a a (a -1)=a -b a (a -1). 因为a -b >0,a (a -1)的符号不确定,①不成立;②中,取a =2,b =-2,则(a +b )2=0,(b +1)2>0,②不成立;③中,取a =2,b =-2,则(a -1)2=1,(b -1)2=9,③不成立.10.已知三个不等式:①ab >0;②c a >d b;③bc >ad .以其中两个作为条件,余下一个作为结论,则可组成________个正确命题.答案 3解析 若ab >0,bc >ad 成立,不等式bc >ad 两边同除以ab ,得c a >d b, 即ab >0,bc >ad ⇒c a >d b; 若ab >0,c a >d b 成立,c a >d b两边同乘以ab , 得bc >ad ,即ab >0,c a >d b⇒bc >ad ; 若c a >d b,bc >ad 成立, 由于c a -d b =bc -ad ab>0, 又bc -ad >0,故ab >0,所以c a >d b,bc >ad ⇒ab >0. 综上,任两个作为条件都可推出第三个成立,故可组成3个正确命题.三、解答题11.已知a ,b ,x ,y 都是正数,且1a >1b,x >y . 求证:x x +a >y y +b. 证明 因为a ,b ,x ,y 都是正数且1a >1b,x >y , 所以x a >y b ,故a x <b y,则a x +1<b y +1,即a +x x <b +y y. 所以x x +a >y b +y. 12.已知m ,n 是正数,证明:m 3n +n 3m≥m 2+n 2. 证明 因为m 3n +n 3m -m 2-n 2=m 3-n 3n +n 3-m 3m=(m 3-n 3)(m -n )mn=(m -n )2(m 2+mn +n 2)mn. 又m ,n 均为正实数,所以(m -n )2(m 2+mn +n 2)mn≥0, 所以m 3n +n 3m≥m 2+n 2. 13.已知a >0,b >0,试比较a b +b a 与a +b 的大小. 解 ⎝⎛⎭⎫a b+b a -(a +b ) =a a +b b -ab (a +b )ab =a a +b b -a b -b a ab =a (a -b )-b (a -b )ab =(a -b )(a -b )ab =(a +b )(a -b )2ab. 因为a >0,b >0,所以a +b >0,ab >0,又因为(a -b )2≥0(当a =b 时等号成立),所以(a +b )(a -b )2ab ≥0,即a b +b a≥a +b (当a =b 时等号成立).14.若x >y >0,则 y 2+1x 2+1与y x的大小关系是________. 答案 y 2+1x 2+1>y x 解析 y 2+1x 2+1-y 2x 2=x 2(y 2+1)-y 2(x 2+1)x 2(x 2+1)=x 2-y 2x 2(x 2+1)=(x -y )(x +y )x 2(x 2+1). 因为x >y >0,所以x -y >0,x +y >0,x 2>0,x 2+1>1,所以(x -y )(x +y )x 2(x 2+1)>0. 所以y 2+1x 2+1>y 2x2>0. 故 y 2+1x 2+1>y x. 15.已知-1≤a +b ≤1,1≤a -2b ≤3,求a +3b 的取值范围. 解 设a +3b =λ1(a +b )+λ2(a -2b )=(λ1+λ2)a +(λ1-2λ2)b ,∴⎩⎪⎨⎪⎧λ1+λ2=1,λ1-2λ2=3, 解得λ1=53,λ2=-23. 又-53≤53(a +b )≤53,-2≤-23(a -2b )≤-23,∴-113≤a +3b ≤1,即a +3b 的取值范围为⎣⎡⎦⎤-113,1.。
模块复习课一、三角函数1.任意角三角函数的定义在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:(1)y叫做α的正弦,记作sin_α,即sin_α=y;(2)x叫做α的余弦,记作cos_α,即cos_α=x;(3)错误!未定义书签。
叫做α的正切,记作tan_α,即tan α=\f(y,x)(x≠0).2.同角三角函数的基本关系式(1)平方关系:sin2α+cos2α=1.(2)商数关系:tan α=错误!错误!未定义书签。
3.诱导公式六组诱导公式可以统一概括为“k·错误!±α(k∈Z)”的诱导公式.当k为偶数时,函数名不改变;当k为奇数时,函数名改变,然后前面加一个把α视为锐角时原函数值的符号.记忆口诀为“奇变偶不变,符号看象限”.4.正弦函数、余弦函数和正切函数的性质错误!未定1.向量的运算:设a=(x1,y1),b=(x2,y2).三角形法则平行四边形法则减法法则(1)|λa|=|λ||a|;(1)平面向量基本定理①定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e2.②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. (2)向量共线定理向量a(a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a,b 为非零向量,设a=(x 1,y 1),b=(x 2,y 2),(1)若a =(x ,y),则|a |=\r (a·a (2)若A (x 1,y 1),B (x 2,y 2), 则|错误!|=错误!。
(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则c os θ=a·b|a||b |=错误!.5.向量的投影向量a 在b 方向上的投影为|a |cos θ=错误!。
高中数学必修4-必修4第三章教材分析必修4第三章教材分析(一) 编写特色1( 用向量证明和角公式,引导学生用向量研究和差化积公式。
2( 建立和角公式与旋转变换之间的联系。
3( 融入算法,引导学生找出求正弦函数值的算法。
4( 引导学生独立的由和角公式推导出倍角公式与和差化积、积化和差公式。
5( 和角公式在三角恒等变换及三角计算中的应用。
(二) 内容结构1(内容编排本章的主要内容是和角公式、倍角公式和半角公式、三角函数的积化和差公式与和差化积公式,为了引起学生学习本章的兴趣,同时为了加强三角变换的实际应用,本章的开篇从一个实际问题出发,通过数学化,得到一个必须通过三角变换才能解决的数学问题,从而激发学生对本章内容的学习兴趣和求知欲。
全章共分三大节。
第一大节,首先利用向量的方法证明了两角差的余弦公式,接着导出两角和的余弦公式,再利用诱导公式推出两角和、差的正弦公式,又利用同角三角函数关系式推出两角和、差的正切公式;第二大节,推导出倍角公式和半角公式。
第三大节,推导出积化和差与和差化积公式,并通过例题讲解以上各公式的应用。
2,地位与作用变换是数学的重要工具,也是数学学习的主要对象之一。
代数变换是学生熟悉的,与代数变换一样,三角变换也是只变其形不变其质,它可以揭示那些外形不同但实质相同的三角函数式之间的内在联系。
在本册第一章,学生接触了同角三角函数式的变换。
在本章,学生将运用向量方法推导两角差的余弦公式,由此出发导出其他的三角恒等变换公式,并运用这些公式进行简单的三角恒等变换,通过本章学习,学生的推理能力和运算能力将得到进一步提高。
三角恒等变换在数学及应用科学中应用广泛,同时有利于发展学生的推理能力和计算能力,本章将通过三角恒等变形揭示一些问题的数学本质。
3(重点与难点本章的重点是掌握和角公式的推导过程;难点是理解和角公式的几何意义。
4(本章知识结构SS2a a-bSTa+bTa-ba+b向量的数量积Ca-b及其坐标运算Ca+b积化和差C2a T2aaT,aa和差化积CS222(三)课时分配本章教学时间约8课时,具体分配如下: 3(1 和角公式3(1(1 两角和与差的余弦 2课时3(1(2 两角和与差的正弦 1课时3(1(3 两角和与差的正切 1课时 3(2 倍角公式和半角公式3(2(1 倍角公式 1课时3(2(2 半角的正弦、余弦和正切 1课时 3(3 三角函数的积化和差与和差化积1课时本章小结 1课时3(1(1两角和与差的余弦(一) 课题(一)教学目标:知识目标:理解并掌握两角和、差的余弦公式及其推导过程,理解公式的使用条件;会用公式求值能力目标:培养学生观察分析、类比、联想能力;推理能力及交流探讨能力。
1 三角恒等变换中角的变换的技巧三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角例1 已知cos ⎝⎛⎭⎫π6+α=33,求cos ⎝⎛⎭⎫5π6-α的值. 分析 将π6+α看作一个整体,观察π6+α与5π6-α的关系.解 ∵⎝⎛⎭⎫π6+α+⎝⎛⎭⎫5π6-α=π, ∴5π6-α=π-⎝⎛⎭⎫π6+α. ∴cos ⎝⎛⎭⎫5π6-α=cos ⎣⎡⎦⎤π-⎝⎛⎭⎫π6+α =-cos ⎝⎛⎭⎫π6+α=-33, 即cos ⎝⎛⎭⎫5π6-α=-33. 二、利用目标中的角表示条件中的角例2 设α为第四象限的角,若sin 3αsin α=135,则tan 2α=_______________________.分析 要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=135,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan 2α. 解析 由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin αsin α=2cos 2α+cos 2α=135.∵2cos 2α+cos 2α=1+2cos 2α=135.∴cos 2α=45.∵α为第四象限的角, ∴2k π+3π2<α<2k π+2π(k ∈Z ),∴4k π+3π<2α<4k π+4π(k ∈Z ),∴2α可能在第三、四象限,又∵cos 2α=45,∴2α在第四象限, ∴sin 2α=-35,tan 2α=-34.答案 -34三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin ⎝⎛⎭⎫π4-x =513,0<x <π4,求cos 2x cos ⎝⎛⎭⎫π4+x 的值. 分析 转化为已知角⎝⎛⎭⎫π4-x 的三角函数值,求这个角的其余三角函数值.这样可以将所求式子化简,使其出现⎝⎛⎭⎫π4-x 这个角的三角函数. 解 原式=sin ⎝⎛⎭⎫π2+2x cos ⎝⎛⎭⎫π4+x =2sin ⎝⎛⎭⎫π4+x ·cos ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x=2sin ⎝⎛⎭⎫π4+x =2cos ⎝⎛⎭⎫π4-x , ∵sin ⎝⎛⎭⎫π4-x =513,且0<x <π4, ∴π4-x ∈⎝⎛⎭⎫0,π4. ∴cos ⎝⎛⎭⎫π4-x =1-sin 2⎝⎛⎭⎫π4-x =1213,∴原式=2×1213=2413.四、观察式子结构特征,灵活凑出特殊角例4 求函数f (x )=1-32sin(x -20°)-cos(x +40°)的最大值.分析 观察角(x +40°)-(x -20°)=60°,可以把x +40°看成(x -20°)+60°后运用公式展开,再合并化简函数f (x ).解 f (x )=1-32sin(x -20°)-cos [(x -20°)+60°]=12sin(x -20°)-32sin(x -20°)-cos(x -20°)cos 60°+sin(x -20°)sin 60° =12[sin(x -20°)-cos(x -20°)]=22sin(x -65°), 当x -65°=k ·360°+90°,即x =k ·360°+155°(k ∈Z )时,f (x )有最大值22.2 三角函数化简求值的“主角”三角函数化简求值是学习三角的一个重要内容,而“变角”是化简的重要形式,是化简求值这场大戏中的主角,它的表演套路主要有以下几招: 第一招 单角化复角例1 已知sin α=12,α是第二象限的角,且tan(α+β)=-3,则tan β的值为________.解析 因为sin α=12,α为第二象限的角,所以cos α=-32,所以tan α=-33. 所以tan β=tan [(α+β)-α]=-3-(-33)1+(-3)×(-33)=-2332=-33.答案 -33点评 将单角用已知复角表示时,需要将复角进行适当的组合、拆分,常见的拆分组合形式如:α=(α+β)-β、α=β-(β-α),α=(2α-β)-(α-β),α=12[(α+β)+(α-β)],α=12[(β+α)-(β-α)]等. 第二招 复角化单角例2 化简:sin (2α+β)sin α-2cos(α+β).解 原式=sin (2α+β)-2cos (α+β)sin αsin α=sin[α+(α+β)]-2cos (α+β)sin αsin α=sin (α+β)cos α-cos (α+β)sin αsin α=sin (α+β-α)sin α=sin βsin α.点评 由于该式含有2α+β和α+β,这两个角都是复角,而化简的要求为最终结果皆为单角,所以化简的思路就是利用两角和的正弦或余弦公式展开即可. 第三招 复角化复角例3 已知π4<α<34π,0<β<π4,cos(π4+α)=-35,sin(34π+β)=513,求sin(α+β)的值.解 因为π4<α<34π,π2<π4+α<π,所以sin(π4+α)=1-cos 2(π4+α)=45.又因为0<β<π4,34π<34π+β<π,所以cos(34π+β)= -1-sin 2(34π+β)=-1213,所以sin(α+β)=-sin(π+α+β) =-sin[(π4+α)+(34π+β)]=-[sin(π4+α)cos(34π+β)+cos(π4+α)sin(34π+β)]=-[45×(-1213)+(-35)×513]=6365.点评 由已知条件求出sin α或cos α过程较烦琐,故需要找到α+β与π4+α和34π+β的关系,即是将所求复角化为已知复角,再结合题目中等式关系和角的范围限制具体求解.3 三角恒等变换的几个技巧三角题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助. 一、灵活降幂 例13-sin 70°2-cos 210°=________.解析3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2=2.答案 2点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12sin 22θ,等等.二、化平方式 例2 化简求值: 12-1212+12cos 2α(α∈(3π2,2π)). 解 因为α∈(3π2,2π),所以α2∈(3π4,π),所以cos α>0,sin α2>0,故原式= 12-121+cos 2α2=12-12cos α= sin 2α2=sin α2. 点评 一般地,在化简求值时,遇到1+cos 2α、1-cos 2α、1+sin 2α、1-sin 2α常常化为平方式:2cos 2α、2sin 2α、(sin α+cos α)2、(sin α-cos α)2. 三、灵活变角例3 已知sin(π6-α)=13,则cos(2π3+2α)=________.解析 cos(2π3+2α)=2cos 2(π3+α)-1=2sin 2(π6-α)-1=2×(13)2-1=-79.答案 -79点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3+2α”,善于发现:前者和后者的一半互余. 四、构造齐次弦式比,由切求弦例4 已知tan θ=-12,则cos 2θ1+sin 2θ的值是________.解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ=1-tan 2θ1+tan 2θ+2tan θ =1-141+14+2×(-12)=3414=3.答案 3点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ”化为关于sin θ和cos θ的二次齐次弦式比. 五、分子、分母同乘以2n sin α求cos αcos 2αcos 4αcos 8α…cos 2n -1α的值例5 求值:sin 10°sin 30°sin 50°sin 70°. 解 原式=12cos 20°cos 40°cos 80°=4sin 20°cos 20°cos 40°cos 80°8sin 20°=2sin 40°cos 40°cos 80°8sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116.点评 这类问题的解决方法是分子、分母同乘以最小角的正弦的倍数即可.4 聚焦三角函数最值的求解策略一、化为y =A sin(ωx +φ)+B 的形式求解例1 求函数f (x )=sin 4x +cos 4x +sin 2x cos 2x 2-sin 2x的最值.解 原函数变形得:f (x )=(sin 2x +cos 2x )2-sin 2x cos 2x2-sin 2x=1-14sin 22x 2-sin 2x =⎝⎛⎭⎫1+12sin 2x ⎝⎛⎭⎫1-12sin 2x 2⎝⎛⎭⎫1-12sin 2x=14sin 2x +12.∴f (x )max =34,f (x )min =14. 例2 求函数y =sin 2x +2sin x cos x +3cos 2x 的最小值,并写出y 取最小值时x 的集合. 解 原函数化简得:y =sin 2x +cos 2x +2 =2sin ⎝⎛⎭⎫2x +π4+2. 当2x +π4=2k π+32π,k ∈Z ,即x =k π+58π,k ∈Z 时,y min =2- 2.此时x 的集合为{x |x =k π+58π,k ∈Z }.点评 形如y =a sin 2ωx +b sin ωx cos ωx +c cos 2ωx +d (a ,b ,c ,d 为常数)的式子,都能转化成y =A sin(2ωx +φ)+B 的形式求最值. 二、利用正、余弦函数的有界性求解 例3 求函数y =2sin x +12sin x -1的值域.解 原函数整理得:sin x =y +12(y -1).∵|sin x |≤1,∴⎪⎪⎪⎪⎪⎪y +12(y -1)≤1,解出y ≤13或y ≥3.例4 求函数y =sin x +3cos x -4的值域.解 原函数整理得:sin x -y cos x =-4y -3, ∴y 2+1sin(x +φ)=-4y -3,∴sin(x +φ)=-4y -31+y2.∵|sin(x +φ)|≤1,解不等式⎪⎪⎪⎪⎪⎪⎪⎪-4y -31+y 2≤1得:-12-2615≤y ≤-12+2615. 点评 对于形如y =a sin x +b c sin x +d 或y =a sin x +b c cos x +d 的这类函数,均可利用三角函数中弦函数的有界性去求最值.三、转化为一元二次函数在某确定区间上求最值例5 设关于x 的函数y =cos 2x -2a cos x -2a 的最小值为f (a ),写出f (a )的表达式.解 y =cos 2x -2a cos x -2a =2cos 2x -2a cos x -(2a +1)=2⎝⎛⎭⎫cos x -a 22-⎝⎛⎭⎫a 22+2a +1.当a2<-1,即a <-2时,f (a )=y min =1, 此时cos x =-1.当-1≤a 2≤1,即-2≤a ≤2时,f (a )=y min =-a 22-2a -1,此时cos x =a2.当a2>1,即a >2时,f (a )=y min =1-4a ,此时cos x =1. 综上所述,f (a )=⎩⎪⎨⎪⎧1(a <-2),-12a 2-2a -1(-2≤a ≤2),1-4a (a >2).点评 形如y =a sin 2x +b sin x +c 的三角函数可转化为二次函数y =at 2+bt +c 在区间[-1,1]上的最值问题解决.例6 试求函数y =sin x +cos x +2sin x cos x +2的最值.解 设sin x +cos x =t ,t ∈[-2,2 ],则2sin x cos x =t 2-1,原函数变为y =t 2+t +1,t ∈[-2, 2 ],当t =-12时,y min =34;当t =2时,y max =3+ 2.点评 一般地,既含sin x +cos x (或sin x -cos x )又含sin x cos x 的三角函数采用换元法可以转化为t 的二次函数解最值.注意以下结论的运用,设sin x +cos x =t ,则sin x cos x =12(t 2-1);sin x -cos x =t ,则sin x cos x =12(1-t 2).四、利用函数的单调性求解例7 求函数y =(1+sin x )(3+sin x )2+sin x的最值.解 y =sin 2x +4sin x +3sin x +2=(sin x +2)2-1sin x +2=(sin x +2)-1(sin x +2),令t =sin x +2,则t ∈[1,3],y =t -1t.利用函数单调性的定义易证函数y =t -1t 在[1,3]上为增函数.故当t =1即sin x =-1时,y min =0; 当t =3即sin x =1时,y max =83.例8 在Rt △ABC 内有一内接正方形,它的一条边在斜边BC 上,设AB =a ,∠ABC =θ,△ABC 的面积为P ,正方形面积为Q .求PQ的最小值.解 AC =a tan θ,P =12AB ·AC =12a 2tan θ.设正方形边长为x ,AG =x cos θ,BC =acos θ.BC 边上的高h =a sin θ,∵AG AB =h -x h ,即x cos θa =a sin θ-xa sin θ, ∴x =a sin θ1+sin θcos θ,∴Q =x 2=a 2sin 2θ(1+sin θcos θ)2. 从而P Q =sin θ2cos θ·(1+sin θcos θ)2sin 2θ=(2+sin 2θ)24sin 2θ=1+⎝⎛⎭⎫sin 2θ4+1sin 2θ. 易知函数y =1t +t4在区间(0,1]上单调递减,从而,当sin 2θ=1时,⎝⎛⎭⎫P Q min =94.点评 一些复杂的三角函数最值问题,通过适当换元转化为简单的代数函数后,可利用函数单调性巧妙解决.5 行百里者半九十——《三角恒等变换》一章易错问题盘点一、求角时选择三角函数类型不当而致错 例1 已知sin α=55,sin β=1010,α和β都是锐角,求α+β的值. [错解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010, sin(α+β)=sin αcos β+cos αsin β=55×31010+255×1010=22.因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π). 所以α+β=π4或3π4.[剖析] 由sin α=55,sin β=1010,α和β都是锐角,可以知道α和β都是定值,因此α+β也是定值,因此上述解法出现两个答案,其中就有一个是错误的.这是因为sin(α+β)在第一、第二象限没有区分度,应选择计算cos(α+β)的值. [正解] 因为α和β都是锐角,且sin α=55,sin β=1010,所以cos α=255,cos β=31010,cos(α+β)=cos αcos β-sin αsin β=255×31010-55×1010=22.因为α,β∈⎝⎛⎭⎫0,π2,则α+β∈(0,π), 所以α+β=π4.温馨点评 根据条件求角,主要有两步:(1)求角的某种三角函数值;(2)确定角的范围,从而确定所求角的值.完成第一步一般要选择相对角的范围区分度比较大的三角函数,且确定范围要尽量缩小.二、忽视条件中隐含的角的范围而致错例2 已知tan 2α+6tan α+7=0,tan 2β+6tan β+7=0,α、β∈(0,π),且α≠β,求α+β的值.[错解] 由题意知tan α、tan β是方程x 2+6x +7=0的两根,由根与系数的关系得:⎩⎪⎨⎪⎧tan α+tan β=-6 ①tan αtan β=7 ②∴tan(α+β)=tan α+tan β1-tan αtan β=-61-7=1.∵0<α<π,0<β<π,∴0<α+β<2π, ∴α+β=π4或α+β=54π.[剖析] 由①②知tan α<0,tan β<0.角α、β都是钝角.上述解法忽视了这一隐含条件.[正解] 由⎩⎪⎨⎪⎧tan α+tan β=-6,tan αtan β=7易知tan α<0,tan β<0.∵α、β∈(0,π), ∴π2<α<π,π2<β<π.∴π<α+β<2π. 又∵tan(α+β)=1,∴α+β=54π.温馨点评 在给值求角或给式求角时,由于三角函数知识间及与其它知识间都有较为密切的联系,一些隐含的制约条件不易被发现,容易导致角的范围扩大.解答此类问题时一定要仔细挖掘题目中的隐含条件才能有效地避免失误. 三、忽略三角形内角间的关系而致错例3 在△ABC 中,已知sin A =35,cos B =513,求cos C .[错解] 由sin A =35,得cos A =±45,由cos B =513,得sin B =1213,当cos A =45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.当cos A =-45时,cos C =-cos(A +B )=sin A sin B -cos A cos B =5665.[剖析] 在△ABC 中,三个内角A 、B 、C 的和为π,解题时要充分利用这一定理.本题得到cos A =±45后,没有对cos A =-45这一结果是否合理进行检验,从而导致结论不正确.[正解] 由cos B =513>0,∴B ∈⎝⎛⎭⎫0,π2,且sin B =1213. 由sin A =35,得cos A =±45,当cos A =-45时,cos A <-12.∴A >2π3.∵sin B =1213>32,B ∈⎝⎛⎭⎫0,π2,∴B >π3. 故当cos A =-45时,A +B >π,与A 、B 是△ABC 的内角矛盾.∴cos A =45,cos C =-cos(A +B )=sin A sin B -cos A cos B =1665.温馨点评 涉及三角形中的内角问题时,一定要注意内角和A +B +C =180°这一隐含条件.尤其是由内角正弦值确定角的大小时,要防止增解出现. 四、忽略三角函数的定义域而致错例4 判断函数f (x )=1+sin x -cos x 1+sin x +cos x 的奇偶性.[错解] f (x )=1+sin x -cos x1+sin x +cos x=1+2sin x 2cos x2-⎝⎛⎭⎫1-2sin 2x 21+2sin x 2cos x 2+⎝⎛⎭⎫2cos 2x2-1=2sin x2⎝⎛⎭⎫cos x 2+sin x 22cos x2⎝⎛⎭⎫sin x 2+cos x 2=tan x2,由此得f (-x )=tan ⎝⎛⎭⎫-x 2=-tan x2=-f (x ), 因此函数f (x )为奇函数.[剖析] 运用公式后所得函数f (x )=tan x2的定义域为{}x |x ∈R ,x ≠2k π+π,k ∈Z .两函数的定义域不同,变形后的函数定义域扩大致错. [正解] 事实上,由1+sin x +cos x ≠0可得 sin x +cos x ≠-1,即2sin ⎝⎛⎭⎫x +π4≠-1, 从而sin ⎝⎛⎭⎫x +π4≠-22, 所以x +π4≠2k π+5π4且x +π4≠2k π+7π4(k ∈Z ),故函数f (x )的定义域是⎩⎨⎧⎭⎬⎫x |x ≠2k π+π且x ≠2k π+3π2,k ∈Z ,显然该定义域不关于原点对称. 因此,函数f (x )为非奇非偶函数.温馨点评 判断函数的奇偶性,首先要看定义域,若定义域不关于原点对称,则函数一定是非奇非偶函数.上述解法正是由于忽视了对函数定义域这一隐含条件的考虑致错. 五、误用公式a sin x +b cos x =a 2+b 2sin(x +φ)而致错例5 若函数f (x )=sin(x +θ)+cos(x -θ),x ∈R 是偶函数,求θ的值. [错解] ∵f (x )=sin(x +θ)+cos(x -θ), ∴f (0)=sin θ+cos θ=2sin ⎝⎛⎭⎫θ+π4. ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴|f (0)|=f (x )max = 2. ∴f (0)=2sin ⎝⎛⎭⎫θ+π4=±2, ∴sin ⎝⎛⎭⎫θ+π4=±1, ∴θ+π4=k π+π2,k ∈Z .即θ=k π+π4,k ∈Z .[剖析] ∵x +θ与x -θ是不同的角.∴函数f (x )的最大值不是2,上述解答把f (x )的最大值误当作2来处理. [正解] ∵f (x )=sin(x +θ)+cos(x -θ)是偶函数. ∴f (x )=f (-x )对一切x ∈R 恒成立.即sin(x +θ)+cos(x -θ)=sin(-x +θ)+cos(-x -θ)恒成立. ∴[sin(x +θ)+sin(x -θ)]+[cos(x -θ)-cos(x +θ)]=0. ∴2sin x cos θ+2sin x sin θ=0恒成立. 即2sin x (cos θ+sin θ)=0恒成立. ∴cos θ+sin θ=0.∵cos θ+sin θ=2sin ⎝⎛⎭⎫θ+π4=0. ∴θ+π4=k π,即θ=k π-π4,k ∈Z .温馨点评 注意公式a sin x +b cos x =\r(a 2+b 2)·sin (x +φ)的左端是同角x .当三角函数式不符合这一特征时,不能使用该公式.,例如:函数f (x )=sin (x +θ)+\r(3)cos (x -θ)(x ∈R )的最大值不是2.6 平面向量与三角函数的交汇题型大全平面向量与三角函数的交汇是当今高考命题的一个热点,这是因为此类试题既新颖而精巧,又符合在知识的“交汇处”构题的命题思想.这类试题解答的关键是利用向量的平行、垂直、夹角、模、数量积公式将问题转化为三角问题,然后联想相关的三角函数知识求解. 一、平面向量平行与三角函数交汇例1 已知a =(2cos x +23sin x,1),b =(y ,cos x ),且a ∥b .若f (x )是y 关于x 的函数,则f (x )的最小正周期为________.解析 由a ∥b 得2cos 2x +23sin x cos x -y =0, 即y =2cos 2x +23sin x cos x =cos 2x +3sin 2x +1 =2sin(2x +π6)+1,所以f (x )=2sin(2x +π6)+1,所以函数f (x )的最小正周期T =2π2=π.答案 π点评 解答平面向量平行与三角函数的交汇试题一般先用平面向量平行的条件求涉及到三角函数的解析式或某角的函数值,然后再利用三角知识求解.二、平面向量垂直与三角函数交汇例2 已知向量a =(4,5cos α),b =(3,-4tan α),α∈(0,π2),若a ⊥b ,则cos(2α+π4)=________.解析 因为a ⊥b ,所以4×3+5cos α×(-4tan α)=0, 解得sin α=35.又因为α∈(0,π2),所以cos α=45.cos 2α=1-2sin 2α=725,sin 2α=2sin αcos α=2425,于是cos(2α+π4)=cos 2αcos π4-sin 2αsin π4=-17250.答案 -17250点评 解答平面向量垂直与三角函数的交汇试题通常先利用平面向量垂直的条件将向量问题转化为三角函数问题,再利用三角函数的知识进行处理. 三、平面向量夹角与三角函数交汇例3 已知向量m =(sin θ,1-cos θ)(0<θ<π)与向量n =(2,0)的夹角为π3,则θ=________.解析 由条件得 |m |=sin 2θ+(1-cos θ)2=2-2cos θ,|n |=2,m ·n =2sin θ,于是由平面向量的夹角公式得cos π3=m ·n|m ||n |=2sin θ22-2cos θ=12,整理得2cos 2 θ-cos θ-1=0,解得cos θ=-12或cos θ=1(舍去).因为0<θ<π,所以θ=2π3.答案2π3点评 解答平面向量的夹角与三角函数的交汇试题主要利用平面向量的夹角公式建立某角的三角函数的方程或不等式,然后由三角函数的知识求解. 四、平面向量的模与三角函数交汇例4 若向量a =(cos θ,sin θ),b =(3,-1),则|2a -b |的最大值为________.解析 由条件可得|a |=1,|b |=2,a ·b =3cos θ-sin θ, 则|2a -b |= |2a -b |2=4a 2+b 2-4a ·b=8-4(3cos θ-sin θ)=8-8cos (θ+π6)≤4,所以|2a -b |的最大值为4. 答案 4点评 解答平面向量的模与三角函数交汇一般要用到向量的模的性质|a |2=a 2.如果是求模的大小,则一般可直接求解;如果是求模的最值,则常常先建立模关于某角的三角函数,然后利用三角函数的有界性求解. 五、平面向量数量积与三角函数交汇例5 若函数f (x )=2sin(π6x +π3)(-2<x <10)的图象与x 轴交于点A ,过点A 的直线l 与函数的图象交于B 、C 两点,则(OB →+OC →)·OA →等于( ) A.-32 B.-16 C.16 D.32解析 由f (x )=0,解得x =4,即A (4,0),过点A 的直线l 与函数的图象交于B 、C 两点,根据对称性可知,A 是BC 的中点,所以OB →+OC →=2OA →,所以(OB →+OC →)·OA →=2OA →·OA →=2|OA →|2=2×42=32,答案 D点评 平面向量数量积与三角函数的综合主要体现为两类:(1)利用三角函数给出向量的坐标形式,然后求数量积,解答时利用数量积公式可直接解决;(2)给出三角函数图象,求图象上相关点构成的向量之间的数量积,解答时关键是求涉及到的向量的模、以及它们的夹角.7 单位圆与三角恒等变换巧结缘单位圆与三角函数有着密切联系,下面我们通过例题来看看单位圆与三角恒等变换是如何结缘的.一、借助单位圆解决问题例1 已知sin α+sin β=14,cos α+cos β=13,求tan α+β2.(提示:已知A (x 1,y 1),B (x 2,y 2),则AB 中点的坐标为⎝⎛⎭⎫x 1+x 22,⎝⎛⎭⎫y 1+y 22)解 设A (cos α,sin α),B (cos β,sin β)均在单位圆上,如图,则以OA 、OB 为终边的角分别为α、β,由已知,sin α+sin β=14,cos α+cos β=13,用题设所给的中点坐标公式,得AB 的中点C ⎝⎛⎭⎫16,18,如图,由平面几何知识知,以OC 为终边的角为β-α2+α=α+β2,且过点C ⎝⎛⎭⎫16,18,由三角函数的坐标定义,知tan α+β2=1816=34.点评 借助单位圆使问题简单化,这种思维方法贯穿整个三角函数问题的始 终,特别在求值中更能显出它的价值. 二、单位圆与恒等变换的交会例2 已知圆x 2+y 2=R 2与直线y =2x +m 相交于A 、B 两点,以x 轴的正方向为始边,OA 为终边(O 是坐标原点)的角为α,OB 为终边的角为β,则tan(α+β)的值为________. 解 如图,过O 作OM ⊥AB 于M ,不妨设α、β∈[0,2π], 则∠AOM =∠BOM =12∠AOB =12(β-α),又∠xOM =α+∠AOM =α+β2,所以tan α+β2=k OM =-1k AB =-12,故tan(α+β)=2tanα+β21-tan2α+β2=-43.点评 若是采用先求A 、B 两点的坐标,再求α、β的正切值这一思路就很繁锁甚至做不下去,可见用不同的解决方法繁简程度不同.例3 如图,A ,B 是单位圆O 上的点,OA 为角α的终边,OB 为角β的终边,M 为AB 的中点,连接OM 并延长交圆O 于点C.(1)若α=π6,β=π3,求点M 的坐标;(2)设α=θ(θ∈⎣⎡⎦⎤0,π3),β=π3,C (m ,n ),求y =m +n 的最小值,并求使函数取得最小值时θ的取值.解 (1)由三角函数定义可知,A ⎝⎛⎭⎫32,12,B ⎝⎛⎭⎫12,32, 由中点坐标公式可得M ⎝⎛⎭⎪⎫3+14,3+14.(2)由已知得∠xOC =12(α+β)=12(θ+π3),即C ⎝⎛⎭⎫cos ⎝⎛⎭⎫12θ+π6,sin ⎝⎛⎭⎫12θ+π6, 故m =cos ⎝⎛⎭⎫12θ+π6,n =sin ⎝⎛⎭⎫12θ+π6, 所以y =cos ⎝⎛⎭⎫12θ+π6+sin ⎝⎛⎭⎫12θ+π6 =2sin ⎝⎛⎭⎫12θ+5π12,又θ∈⎣⎡⎦⎤0,π3,故5π12≤12θ+5π12≤7π12, 当θ=0或π3时,函数取得最小值y min =2sin 5π12=3+12.点评 借助单位圆和点的坐标,数形结合,利用平面几何知识和三角函数的定义使问题简单化.8 教你用好辅助角公式在三角函数中,辅助角公式a sin θ+b cos θ=a 2+b 2sin(θ+φ),其中角φ所在的象限由a ,b 的符号确定,φ的值由tan φ=ba 确定,它在三角函数中应用比较广泛,下面举例说明,以供同学们参考. 一、求最值例1 求函数y =2sin x (sin x -cos x )的最小值. 解 y =2sin x (sin x -cos x ) =2sin 2x -2sin x cos x =1-cos2x -sin 2x=1-2⎝⎛⎭⎫sin 2x ·12+cos 2x ·12 =1-2⎝⎛⎭⎫sin 2x ·cos π4+cos 2x ·sin π4 =1-2sin ⎝⎛⎭⎫2x +π4, 所以函数y 的最小值为1- 2. 二、求单调区间例2 求函数y =12cos 2x +32sin x cos x +1的单调区间.解 y =12cos 2x +32sin x cos x +1=14(1+cos 2x )+34sin 2x +1 =34sin 2x +14cos 2x +54=12⎝⎛⎭⎫32sin 2x +12cos 2x +54 =12sin ⎝⎛⎭⎫2x +π6+54. 由2k π-π2≤2x +π6≤2k π+π2(k ∈Z ),得k π-π3≤x ≤k π+π6(k ∈Z ).由2k π+π2≤2x +π6≤2k π+3π2(k ∈Z ),得k π+π6≤x ≤k π+2π3(k ∈Z ).所以函数的单调增区间是[k π-π3,k π+π6](k ∈Z );函数的单调减区间是[k π+π6,k π+2π3](k ∈Z ).三、求周期例3 函数y =cos 22x +4cos 2x sin 2x 的最小正周期是( ) A.2π B.π C.π2 D.π4答案 C解析 y =cos 22x +4cos 2x sin 2x =12cos 4x +2sin 4x +12=172sin(4x +φ)+12(其中sin φ=1717,cos φ=41717),函数的最小正周期T =2π4=π2.故选C.四、求参数的值例4 如果函数y =sin 2x +a cos 2x 的图象关于直线x =-π8对称,则实数a 的值为( )A. 2B.- 2C.1D.-1答案 D 解析 y =1+a 2sin(2x +φ)(其中tan φ=a ). 因为x =-π8是对称轴,所以直线x =-π8过函数图象的最高点或最低点.即x =-π8时,y =1+a 2或y =-1+a 2.所以sin ⎝⎛⎭⎫-π4+a cos ⎝⎛⎭⎫-π4=±1+a 2. 即22(a -1)=±1+a 2. 所以a =-1.故选D.9 二倍角公式用法揭秘从两角和的三角公式推出二倍角的正弦、余弦和正切公式,是化归思想的体现,倍角公式的内涵是:揭示具有倍数关系的两个角的三角函数的运算规律.下面对此公式的应用作以梳理,供同学们参考.一、二倍角公式的正用例1 已知sin α+cos α=13,且0<α<π,求sin 2α,cos 2α,tan 2α的值. 分析 可先将已知式平方,再利用二倍角公式求sin 2α、cos 2α,进而利用商数关系求出tan 2α的值.解 因为sin α+cos α=13, 所以(sin α+cos α)2=19, 即1+2sin αcos α=19, 所以sin 2α=-89. 因为0<α<π,所以sin α>0,又sin αcos α=-49<0,所以cos α<0, 从而sin α-cos α>0,所以sin α-cos α=(sin α-cos α)2 =1-sin 2α=173. 故cos 2α=cos 2α-sin 2α=(sin α+cos α)(cos α-sin α) =13×⎝⎛⎭⎫-173=-179. tan 2α=sin 2αcos 2α=81717. 评注 一般情况下,求sin 2α、cos 2α时需先求出sin α、cos α的值,往往需用到平方关系和方程或方程组,解题过程中需注意角α的范围的判定,即cos α符号的判定.二、二倍角公式的逆用例2 已知sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x =16,x ∈⎝⎛⎭⎫π2,π,求sin 4x 的值. 分析 由题设注意到π4+x +π4-x =π2,因此需变换之后再用公式求解. 解 因为sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x=sin ⎝⎛⎭⎫π4+x cos ⎣⎡⎦⎤π2-⎝⎛⎭⎫π4-x =sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x=12sin ⎝⎛⎭⎫π2+2x =12cos 2x , 所以12cos 2x =16,即cos 2x =13. 因为x ∈⎝⎛⎭⎫π2,π,所以2x ∈(π,2π),所以sin 2x =-223. 故sin 4x =2sin 2x cos 2x =-429. 评注 一般说来,在题目中有单角、倍角时,应将倍角化为单角,同时应注意2α、2α-π2、α-π4等角之间关系的应用. 三、二倍角公式的变形应用例3 求tan 67°30′-tan 22°30′的值.分析 考虑到67°30′×2=135°,22°30′×2=45°,且67°30′+22°30′=90°,故可用二倍角的正切公式来求解.解 原式=tan 67°30′-sin22°30′cos 22°30′=tan 67°30′-cos 67°30′sin 67°30′=-2×1-tan 267°30′2tan 67°30′=-22tan 67°30′1-tan 267°30′=-2tan 135°=2. 评注 本题是二倍角正切公式的变用,强调的是在具体的运算过程中对公式的灵活变换.二倍角公式灵活多样,应用广泛,如升幂、降幂等,在具体应用中要根据具体的题目要求,合理选用公式进行相关运算.四、二倍角公式的构造例4 求sin 10°sin 30°sin 50°sin 70°的值.分析 可利用二倍角的正弦公式的变形公式sin α=sin 2α2cos α进行运算;也可利用诱导公式先将正弦全部化为余弦,再逆用二倍角公式求解;也可以构造对偶式列方程求解.解 方法一 因为sin 2α=2sin αcos α,所以sin α=sin 2α2cos α, 故原式=sin 20°2cos 10°×12×sin 100°2cos 50°×sin 140°2cos 70°=sin 20°2sin 80°×12×sin 80°2sin 40°×sin 40°2sin 20°=116. 方法二 原式=cos 80°×12×cos 40°×cos 20° =2sin 20°cos 20°cos 40°cos 80°4sin 20° =sin 40°cos 40°cos 80°4sin 20°=sin 80°cos 80°8sin 20° =sin 160°16sin 20°=116. 方法三 令x =sin 10°sin 50°sin 70°,y =cos 10°cos 50°cos 70°,则xy =sin 10°cos 10°sin 50°cos 50°sin 70°cos 70°=12sin 20°×12sin 100°×12sin 140° =18sin 20°sin 80°sin 40° =18cos 10°cos 50°cos 70°=18y , 因为y ≠0,所以x =18, 从而有sin 10°sin 30°sin 50°sin 70°=116. 评注 本题是二倍角公式应用的经典题型,方法一和方法二通过观察角度的关系,发现其特征(二倍角形式)逆用二倍角的正弦公式,使得问题出现连用二倍角正弦公式的形式.方法三利用构造对偶式解题具有一般性,事实上,有些数学问题,可根据本身的特点,相应地构造相“匹配”的另一整体,然后由其相依相伴的关系进行求解,这种思想我们称之为“配对”,本题中是一种积式的对偶,三角函数中的sin α、cos α就是一种常见的对偶关系.。
微专题突破五 应对三角恒等变换的几个小技巧
三角函数题是高考的热点,素以“小而活”著称.除了掌握基础知识之外,还要注意灵活运用几个常用的技巧.下面通过例题进行解析,希望对同学们有所帮助.
一、灵活降幂
例1 3-sin 70°2-cos 210°
=________. 考点 利用简单的三角恒等变换化简求值
题点 利用降幂公式化简求值
答案 2
解析 3-sin 70°2-cos 210°=3-sin 70°2-1+cos 20°2=3-cos 20°3-cos 20°2
=2. 点评 常用的降幂技巧还有:因式分解降幂、用平方关系sin 2θ+cos 2θ=1进行降幂:如cos 4θ
+sin 4θ=(cos 2θ+sin 2θ)2-2cos 2θsin 2θ=1-12
sin 22θ等. 二、化平方式
例2 化简求值: 12-12 12+12
cos 2α⎝⎛⎭⎫α∈⎝⎛⎭⎫3π2,2π. 考点 利用简单的三角恒等变换化简求值
题点 利用半角公式化简求值
解 因为α∈⎝⎛⎭⎫3π2,2π,所以α2∈⎝⎛⎭⎫3π4,π,所以cos α>0,sin α2
>0, 故原式=12-12 1+cos 2α2=12-12cos α=sin 2α2=sin α2
. 点评 一般地,在化简求值时,遇到1+cos 2α,1-cos 2α,1+sin 2α,1-sin 2α常常化为平方式:2cos 2α,2sin 2α,(sin α+cos α)2,(sin α-cos α)2.
三、灵活变角 例3 已知sin ⎝⎛⎭⎫π6-α=13,则cos ⎝⎛⎭
⎫2π3+2α=________. 考点 利用简单的三角恒等变换化简求值
题点 综合运用三角恒等变换公式化简求值
答案 -79
解析 cos ⎝⎛⎭⎫2π3+2α=2cos 2⎝⎛⎭
⎫π3+α-1 =2sin 2⎝⎛⎭⎫π6-α-1=2×⎝⎛⎭⎫132-1=-79
. 点评 正确快速求解本题的关键是灵活运用已知角“π6-α”表示待求角“2π3
+2α”,善于发现前者和后者的一半互余.
四、构造齐次弦式比,由切求弦
例4 已知tan θ=-12,则cos 2θ1+sin 2θ
的值是________. 考点 利用简单的三角恒等变换化简求值
题点 利用弦化切对齐次分式化简求值
答案 3
解析 cos 2θ1+sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ+2sin θcos θ
=1-tan 2θ1+tan 2θ+2tan θ=1-14
1+14
+2×⎝⎛⎭⎫-12=3414=3. 点评 解本题的关键是先由二倍角公式和平方关系把“cos 2θ1+sin 2θ
”化为关于sin θ和cos θ的二次齐次弦式比.
五、分子、分母同乘以2n sin α求cos αcos 2αcos 4α·cos 8α…cos 2n -1·α的值
例5 求cos π11cos 2π11cos 3π11cos 4π11cos 5π11的值. 考点 利用简单的三角恒等变换化简求值
题点 综合运用三角恒等变换公式化简求值
解 原式=-cos π11cos 2π11cos 4π11cos 8π11cos 5π11
=-24sin π11cos π11cos 2π11cos 4π11cos 8π11cos 5π1124sin π11
=-sin 16π11cos 5π1124sin π11=sin 5π11cos 5π1124sin π11=12·sin 10π1124sin π11
=sin π1125sin π11
=132. 点评 这类问题的解决方法是分子、分母同乘以最小角的正弦值的倍数即可.。