第七章 状态空间分析法
- 格式:ppt
- 大小:3.94 MB
- 文档页数:179
状态空间分析方法一、模型的建立则⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--=02110010v F m cm x x m cmR x,,ma f =∑ ()y m ky c y v F =--+0则,即:0cv F ky y c ym +=++ 令y x y x ==21,,则⎪⎩⎪⎨⎧++--===m cv m Fm cx m kx y x x x021221,如对()()u b y a ya y a y n n n n 1111...=++++-- ,令()121,...,-===n n y x y x y x 则11121113221x y u b x a x a x a x x x x x x xn n n n n n =⎪⎪⎪⎩⎪⎪⎪⎨⎧+----====--输出方程:,或[]xy u b x a a ax n n 0010001001000010111=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=-例1:由传递函数来求()()()()()s U s Q s U s Y a s a sa sb s b sb sb s G nn n n mm m m⋅=++++++++=----1111110 ,则 ()()nn n na s a sa s s U s Q ++++=--1111,()()m m mb s b sb s U s Y +++=-10()()[]()s Q a s a sa s U s Q s n n n n++-=--111则⎪⎪⎪⎩⎪⎪⎪⎨⎧----====--n n n n n n x a x a x a u xx x x x x x 121113221,即 []xb b b y u x a a axm m n n 00100010010000100111--=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=例2:()()()()35222112167201742232+++++-=+++++==s s s s s s s s s U s Y s G ,有:⎪⎪⎩⎪⎪⎨⎧+-=+-=+-=+-=321332221152322x x x y u x x u x x x x x 即:[]⎪⎪⎩⎪⎪⎨⎧-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=x y u x x 512110300020012 可见-2为重根,则此为约当标准型。
状态空间分析法的主要特点及其应用1.引言60年代以前,研究自动控制系统的传统方法 主要使用传递函数作为系统的数学描述,研究对象是 SISO 系统,这样建立起来的理论就是现在所说的“古典控制理论”。
随着宇航和生产技术的发展及电子计算机的出现,控制系统日渐复杂(MIMO ,时变,不确定,耦合,大规模),传统的研究方法难以适应新的形势。
在 50s'后期,Bellman 等人提议使用状态变量法,即状态空间法来描述系统,时至今日,这种方法已成为现代控制理论的基本模型和数学工具。
所谓状态空间是指以状态变量n 21X X X ,为轴所构成的n 维向量空间。
这样,系统的任意状态都可以用状态空间中的一个点表示。
利用状态空间的观点分析系统的方法称为状态空间法,状态空间法的实质不过是将系统的运动方程写成一阶微分方程组,这在力学和电工上早已使用,并非什么新方法,但用来研究控制系统时具有如下优点。
1、适用面广:适用于 MIMO 、时变、非线性、随机、采样等各种各样的系统,而经典法主要适用于线性定常的 SISO 系统。
2、 简化描述,便于计算机处理:可将一阶微分方程组写成向量矩阵方程, 因而简化数学符号,方便推导,并很适合于计算机的处理,而古典法是拉氏变换法,用计算机不太好处理。
3、内部描述:不仅清楚表明 I-O 关系,还精确揭示了系统内部有关变量及初始条件同输出的关系。
4、有助于采用现代化的控制方法 :如自适应控制、最优控制等。
上述优点便使现代控制理论获得了广泛应用,尤其在空间技术方面还有极大成功。
状态空间法的缺点:1、不直观,几何、物理意义不明显:不象经典法那样, 能用 Bode 图及根轨迹进行直观的描述。
对于简单问题,显得有点烦琐。
2、对数学模型要求很高:而实际中往往难以获得高精度的模型,这妨碍了它的推广和应用。
2.状态空间分析法在部分系统中的应用2.1状态空间分析法在PWM 系统中的应用状态空间分析法不仅适用于时变系统(例如PWM 系统),而且可以将其简化,同时便于计算机处理。
状态空间分析法的作用与意义Ⅰ.状态空间分析法的提出随着科学技术的发展,单输入单输出系统已不能满足生产需求,在二十世纪五十年代末开始,随着计算机的飞速发展,推动了核能技术、空间技术的发展,从而对出现的多输入多输出系统、非线性系统和时变系统的分析与设计问题的解决。
20世纪60年代,现代控制理论在工业发展驱使下开始发展,由卡尔曼提出的线性控制系统的状态空间分析方法、能控性和能观测性的概念,奠定了现代控制理论的基础,并提出卡尔曼滤波,它在随机控制系统的分析与控制中得到广泛应用;由庞特里亚金等人提出最大值原理,深入地研究了最优控制问题;由贝尔曼提出动态规划,广泛用于各类最优控制问题。
随后的半个多世纪中,虽然现代控制理论得到很大发展,并广泛用于各个领域,但其最重要的基础仍然是前述三个方面;其中状态空间分析法为分析复杂系统不可或缺的数学工具。
Ⅱ.状态空间分析法的浅析所谓状态空间,是以状态变量12,n X X X ⋅⋅⋅⋅⋅⋅为轴所构成的n 维向量空间,该空间中的变量则表示系统内部的状态变量。
这样,系统的任意状态都可以由状态空间中的一个点来表示;选取适当的状态变量来描述系统运动状态的过程,称为状态空间分析法,状态空间分析法的实质只不过将系统的运动方程写成一阶微分方程组,每一个状态变量对应微分方程组的系数,分析系统的过程即为分析微分方程系数矩阵的过程。
状态空间分析法有如下优点:其一.适用面广,适用于线性、时变、非线性、随机、采样等各种各样的系统;其二.简化描述,便于随机处理,可将一阶微分方程写成矩阵微分方程,因而简化数学符号,方便推导,并且很适用于计算机处理;其三.内部描述,不仅表明I-O 关系,通过观察系数矩阵的关系还揭示了系统内部有关变量之间的耦合关系及初始条件同输出的关系;其四.有助于采用现代化的控制方法,例如自适应控制、最优控制等等。
正由于状态空间分析法有以上诸多优点,使得现代控制理论得到了广泛的应用,尤其在空间技术方面获得极大的成功,并且还在不断发展与优化;但是其仍有如下不足:其一.模型不直观,几何意义不明显,不像经典控制理论那样,能用Bode 图及根轨迹进行直观的描述,对于简单的问题显得有点繁琐;其二.对数学模型要求很高,而在实际工程中往往很难获得高精度的模型,这使其存在一定的局限性;但是仍然不能限制其应用,状态空间分析法在工业、化工、建筑、医药等各方面都有着广泛的应用;由于篇幅有限,下面就以在工业应用上的汽车ABS 建模仿真的实例来阐述其应用。
第9章 线性系统的状态空间分析与综合•重点与难点—、基本概念1. 线性系统的状态空间描述 (1)状态空间概念 状态反映系统运动状况,并可用以确定系统未来行为的信息集合。
状态变量确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动状态是必需的,也是充分的。
状态向量 以状态变量为元素构成的向量。
状态空间 以状态变量为坐标所张成的空间。
系统某时刻的状态可用状态空间上的点来表示。
状态方程状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是 关于系统的一阶微分(或差分)方程组。
输出方程输出变量与状态变量、输入变量之间的数学关系。
状态方程与输出方程合称为状态空间描述或状态空间表达式。
线性定常系统状态空 间表达式一般用矩阵形式表示:x y(2) 状态空间表达式的建立。
系统状态空间表达式可以由系统微分方程、 传递函数等其他形式的数学模型导出。
(3) 状态空间表达式的线性变换及规范化。
描述某一系统的状态变量个数(维数) 是确定的,但状态变量的选择并不唯一。
某一状态向量经任意满秩线性变换后,仍可作 为状态向量来描述系统。
状态变量选择不同,状态空间表达式形式也不一样。
利用线性 变换的目的在于使系统矩阵 A 规范化,以便于揭示系统特性,利于分析计算。
满秩线性 变换不改变系统的固有特性。
根据矩阵A 的特征根及相应的独立特征向量情况,可将矩阵 A 化为三种规范形式:对角形、约当形和模式矩阵。
(4) 线性定常系统状态方程解。
状态转移矩阵BuDu(9.1)Ax Cx 结构图、(t )(即矩阵指数e At )及其性质:x(k) 1UkT ))Dkk)G(T)u(k)(9.8)i . (0) Iii . (t) A (t) (t)Aiii . (t 1 t 2 ) (t 1 ) ( t 2) (t 2)(t 1)iv. 1(t) ( t) v.[(t)]k(kt)vi. exp(At) exp(Bt) exp[( A B)t] (AB Bvii .exp(P 1APt) P 1exo( At)P (P 非奇异) 求状态转移矩阵 (t)的常用方法:拉氏变换法(t) L[(slA)1]级数展开法At ,", 1 A 2 2 1"k,k e IAt A tA t k!齐次状态方程求解x(t) (t)x(0)非齐次状态方程式(9.1)求解tx(t) (t)x(0)0 (t )Bu( )d(5) 传递函数矩阵及其实现传递函数矩阵G(s):输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系1G(s) C(sl A) 1B D(9.6)传递函数矩阵的实现:已知传递函数矩阵 G(s),找一个系统{代B,C, D }使式(9.6) 成立,则将系统{A, B,C,D }称为G(s)的一个实现。
控制系统的状态空间分析方法控制系统是指将输入信号进行处理,通过执行特定的控制算法,使系统输出信号满足特定要求的系统。
控制系统有多种形式,例如电子系统、机械系统、化学系统、热系统等等。
控制系统的设计和分析是一个复杂的过程,需要考虑多个因素,包括系统动态响应、稳定性、鲁棒性、控制器的性能指标等等。
控制系统的状态空间表示是一种广泛应用的分析方法。
状态空间表示是将系统的状态和状态方程用矩阵和向量的形式表示出来。
状态方程是一组描述系统动态响应的微分方程或差分方程。
状态空间表示可以描述线性系统和非线性系统。
对于线性系统,状态空间表示为:dx/dt = Ax + Buy = Cx + Du其中,x是状态向量,表示系统的内部状态,u是输入向量,表示外部输入,y是输出向量,表示系统响应,A、B、C、D是矩阵,分别表示状态方程中的系数。
状态空间表示的优点在于它可以提供系统的完整信息,包括系统的结构和动态特性。
通过状态空间表示可以计算系统的传递函数、频率响应、控制器设计等等。
状态空间表示的另一个优点在于它可以用于多变量控制和非线性控制。
在多变量控制中,状态空间表示可以直接描述多变量系统的动态特性和相互关系。
在非线性控制中,状态空间表示可以近似描述非线性系统的动态行为,从而进行控制器设计。
状态空间分析方法是指基于状态空间表示进行系统分析的方法。
常见的状态空间分析方法包括状态转移矩阵法、观测矩阵法、极点配置法、模型匹配法等等。
状态转移矩阵法是指根据系统的状态方程,计算系统状态随时间的演变。
状态转移矩阵可以用于计算系统的传递函数、频率响应等等。
观测矩阵法是指根据系统的状态方程和输出方程,计算系统的状态和输出之间的关系。
观测矩阵可以用于设计状态反馈控制器和观测器。
极点配置法是指根据系统的状态方程和性能指标,设计状态反馈控制器,使系统的极点满足指定的要求。
极点配置法可以用于设计稳定控制器和提高系统的性能指标。
模型匹配法是指通过拟合实验数据或理论模型,确定系统的状态方程和性能指标。
状态空间分析法的主要特点及其应用1.引言60年代以前,研究自动控制系统的传统方法 主要使用传递函数作为系统的数学描述,研究对象是 SISO 系统,这样建立起来的理论就是现在所说的“古典控制理论”。
随着宇航和生产技术的发展及电子计算机的出现,控制系统日渐复杂(MIMO ,时变,不确定,耦合,大规模),传统的研究方法难以适应新的形势。
在 50s'后期,Bellman 等人提议使用状态变量法,即状态空间法来描述系统,时至今日,这种方法已成为现代控制理论的基本模型和数学工具。
所谓状态空间是指以状态变量n 21X X X ,为轴所构成的n 维向量空间。
这样,系统的任意状态都可以用状态空间中的一个点表示。
利用状态空间的观点分析系统的方法称为状态空间法,状态空间法的实质不过是将系统的运动方程写成一阶微分方程组,这在力学和电工上早已使用,并非什么新方法,但用来研究控制系统时具有如下优点。
1、适用面广:适用于 MIMO 、时变、非线性、随机、采样等各种各样的系统,而经典法主要适用于线性定常的 SISO 系统。
2、 简化描述,便于计算机处理:可将一阶微分方程组写成向量矩阵方程, 因而简化数学符号,方便推导,并很适合于计算机的处理,而古典法是拉氏变换法,用计算机不太好处理。
3、内部描述:不仅清楚表明 I-O 关系,还精确揭示了系统内部有关变量及初始条件同输出的关系。
4、有助于采用现代化的控制方法 :如自适应控制、最优控制等。
上述优点便使现代控制理论获得了广泛应用,尤其在空间技术方面还有极大成功。
状态空间法的缺点:1、不直观,几何、物理意义不明显:不象经典法那样, 能用 Bode 图及根轨迹进行直观的描述。
对于简单问题,显得有点烦琐。
2、对数学模型要求很高:而实际中往往难以获得高精度的模型,这妨碍了它的推广和应用。
2.状态空间分析法在部分系统中的应用2.1状态空间分析法在PWM 系统中的应用状态空间分析法不仅适用于时变系统(例如PWM 系统),而且可以将其简化,同时便于计算机处理。
状态空间分析法一、内容概要《状态空间分析法》是一篇介绍状态空间理论及其应用的分析文章。
本文首先简要概述状态空间分析法的概念及其相关领域的研究背景。
接着阐述状态空间分析法的理论基础,包括其基本原理、数学工具以及相关技术的理论基础。
然后介绍状态空间分析法在不同领域中的应用实例,包括物理系统、控制系统、信号处理、通信系统等领域的应用情况。
文章还将探讨状态空间分析法的优势与局限性,以及未来可能的发展方向和潜在应用。
对全文进行总结,强调状态空间分析法在科学研究、工程实践等领域的重要性和价值。
1. 介绍状态空间分析法的概念及其在工程、科学、经济等领域的应用状态空间分析法是一种强大的数学工具,广泛应用于工程、科学和经济等多个领域。
本文将详细介绍状态空间分析法的概念及其在各个领域的应用。
状态空间分析法是一种以系统状态为研究对象的数学分析方法。
它以系统的状态变量为核心,通过对状态变量的描述和分析,揭示系统的行为模式和内在规律。
状态空间分析法通过构建状态空间模型,将复杂的系统问题转化为数学模型,便于进行理论分析和数值计算。
在状态空间中,系统的状态可以通过一系列的状态变量来描述,这些状态变量随时间变化,反映了系统的动态行为。
工程领域:在控制工程、信号处理等领域中,状态空间分析法被广泛应用于分析和设计动态系统。
通过构建系统的状态空间模型,可以方便地分析系统的稳定性、响应特性和控制性能。
此外状态空间分析法还可以用于故障诊断和系统识别等领域。
科学领域:在物理学、生物学和医学等自然科学领域,状态空间分析法同样发挥着重要作用。
例如在量子力学和电路分析中,系统的状态可以通过状态空间模型来描述,从而揭示系统的内在规律和特性。
此外在生物医学信号处理中,状态空间分析法也被广泛应用于生物电信号的分析和处理。
经济领域:在经济和金融领域,状态空间分析法被用于分析和预测经济系统的动态行为。
通过构建经济模型的状态空间表示,可以分析经济增长、市场波动和金融风险等问题,为经济决策提供支持。
状态空间分析法的主要特点及其应用课程:现代控制工程教师:学生:班级:机电研班学号:状态空间分析法的主要特点及其应用机电研班摘要:现代控制理论是建立在状态空间法基础上的一种控制理论,是自动控制理论的一个主要组成部分。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时域分析方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,包括线性系统和非线性系统,定常系统和时变系统,单变量系统和多变量系统。
现代控制理论还为设计和构造具有指定的性能指标的最优控制系统提供了可能性。
本文通过分析比较经典控制理论在多输入多输出方面存在的不足,阐述了现代控制理论中的一种方法——状态空间分析法。
本文以线性系统的状态空间表达式为基础对状态空间分析法的特点和应用方面作了一些阐述和论证,并结合现实生活中的一些实际工程问题的分析,论证了此种方法的实用性和先进性。
关键词:现代控制;状态空间分析法;汽轮机;调节系统;动态分析1引言经典控制理论主要以传递函数为基础,采用复域分析方法,由此建立起来的频率特性和根轨迹等图解解析设计法,对于单输入——单输出系统极为有效,至今仍在广泛成功地使用。
但传递函数只能描述线性定常系统的外部特征,并不能反映其全部内部变量变化情况,且忽略了初始条件的影响,其控制系统的设计建立在试探的基础之上,通常得不到最优控制。
复域分析法对于控制过程来说是间接的。
现代控制理论由于可利用数字计算机进行分析设计和实时控制,因此可处理时变、非线性、多输入——多输出系统的问题。
现代控制理论主要以状态空间法为基础,采用时域分析方法,对于控制过程来说是直接的。
它一方面能使设计者针对给定的性能指标设计出最优控制系统;另一方面还可以用更一般的输入函数代替特殊的所谓“典型输入函数”来实现最优控制系统设计。
随着控制系统的高性能发展,最优控制、最佳滤波、系统辨识,自适应控制等理论都是这一领域研究的主要课题。
状态空间法分析及其应用的特点摘要基于为寻求便于分析系统的性能的相应状态变量以及探究状态空间变量线性变换对系统性能的影响,来阐述状态空间分析法的特点。
通过应用状态空间法到绞线一叠层橡胶复合支座隔震结构进行数值模拟分析中来进一步阐述其特点,将结构控制理论中的结构状态空间法应用到该复合支座隔震结构的数值模拟分析中。
建立了普通框架、安装叠层橡胶支座和安装绞线一叠层橡胶复合支座框架的结构状态方程,应用MATLAB/SIMULINK工具箱建立结构仿真模型,得出不同条件下框架结构的时程反应曲线。
通过对比分析可以看出绞线一叠层橡胶复合支座能很好地改变结构的隔震效果,应用状态空间法进行绞线一叠层橡胶复合支座隔震结构的数值模拟分析简单准确。
关键词:系统、传递函数、线性变换、状态空间变量一、引言状态空间分析从实质上说并不是什么新颖的东西,其关键思想起源予19世纪到拉格朗日、哈密顿等人在研究经典力学时提出的广义坐标与变分法。
当然,由高斯等人奠定的古典概率、估计理论以及线性代数等也具有同样的重要性。
上世纪40年代以来,布利斯、庞德里亚金和别尔曼关于极大值原理,卡尔曼、布西与巴丁等人提出的卡尔曼滤波理论,以及许许多多的学者完成的并不具有里程碑意义的研究成果,积累起来却对算法及分析结果产生了决定性意义的贡献。
这些便是状态空间方法发展的历史概况。
状态空间分析是对线性代数、微分方程、数值方法、变分法、随机过程以及控制理论等应用数学各学科的综台。
对动态系统的性能分析,特别是对扰动的响应、稳定性的特性、估计与误差分析以及对控制律的设计及性能评估,这些便构成状态空间分析的内容。
这主要表现在利用向量、矩阵等一整套数学符合,把大量资料加以整理与综合,形成了观念上统一的体系——60年代中期之后出现了现代控制理论。
状态空间分析随着动力学与控制问题维数的增加(其中包括坐标、敏感器、执行机构以及其它装置的数量)而越发显得重要。
另一方面亦由于计算机软件的不断完善,特别在可靠性及用户接口方面的改善与进展,使得计算工作比以前任何时候都易于进行,使状态空间分析越发显得有生命力。