方法准确度和精密度的计算公式
- 格式:doc
- 大小:12.00 KB
- 文档页数:1
液相色谱精密度测定公式
液相色谱精密度测定公式是确定液相色谱峰面积的一种方法。
该公式基于峰高度和峰宽度,可以计算出峰面积。
精密度测定公式常用于液相色谱的质量控制和方法验证中,可用于评估实验的可重复性和准确性。
液相色谱精密度测定公式如下:
峰面积=0.5*峰高度*峰宽度
其中,峰高度为峰顶的高度,峰宽度为峰底两个点之间的距离。
当峰宽度被测量时,通常使用全宽度半峰宽(FWHM)。
峰面积的单位通常为毫伏秒(mV·s)或微伏秒(μV·s)。
需要注意的是,液相色谱峰面积的精确测定需要考虑多种因素,如流速、检测器响应等。
因此,为了保证测量的准确性和可重复性,应该在实验之前进行合适的标准化和校准。
- 1 -。
前言如何评价分析测试数据的质量,或者说明其测定数据在多大程度上是可靠的,一直是分析工作者和管理者关心和希望解决的问题。
在日常分析测试工作中,测量误差、测量不确定度、精密度、准确度、偏差、方差等是经常运用的术语,它直接关系到测量结果的可靠程度和量值的准确一致。
传统的方法多是用精密度和准确度来衡量。
但是,通常说的准确度和误差只是一个定性的、理想化的概念,因为实际样品的真值是不知道的。
而精密度只是表示最终测定数据的重复性,不能真正衡量其测定的可靠程度。
作为一名分析测试人员,这些术语是应该搞清楚的概念,但这些概念互相联系又有区别,也常常使人不知所云。
下面小编就带大家看一下它们的区别在哪里。
测量误差测量误差表示测量结果偏离真值的程度。
真值是一个理想的概念,严格意义上的真值通过实际测量是不能得到的,因此误差也就不能够准确得到。
在实际误差评定过程中,常常以约定真值作为真值来使用,约定真值本身有可能存在误差,因而得到的只能是误差的估计值。
此外,误差本身的概念在实际应用过程中容易出现混乱和错误理解。
按照误差的定义,误差应是一个差值。
当测量结果大于真值时,误差为正,反之亦然。
误差在数轴上应该是一个点,但实际上不少情况下对测量结果的误差都是以一个区间来表示(从一定程度上也反映了误差定义的不合理),这实际上更像不确定度的范围,不符合误差的定义。
在实际工作中,产生误差的原因很多,如方法、仪器、试剂产生的误差,恒定的个人误差,恒定的环境误差,过失误差,不可控制或未加控制的因素变动等。
由于系统误差和随机误差是两个性质不同的量,前者用标准偏差或其倍数表示,后者用可能产生的最大误差表示。
数学上无法解决两个不同性质的量之间的合成问题。
因此,长期以来误差的合成方法上一直无法统一。
这使得不同的测量结果之间缺乏可比性。
不确定度测量不确定度为“表征合理地赋予被测量之值的分散性,与测量结果想联系的参数”。
定义中的参数可能是标准偏差或置信区间宽度。
准确度与精密度一 准确度与误差1、准确度:是指测得值与真实值之间相符合的程度。
准确度的高低常以误差的大小来衡量,即误差越小,准确度越高,误差越大,准确度越低。
2、真实度:物质中各组分的真实含量。
它是客观存在的,但不可能准确知道,只有在消除系统误差之后,并且测定次数趋于无穷大时,所得算术平均值才代表真实值。
市售标准物质,它给出的标准值可视为真实值,可用它来校正仪器和评价分析方法等。
3、误差的表示方法——绝对误差和相对误差 绝对误差=测得值(X )- 真实值(T ) 绝对误差(E )=测得值(X )- 真实值(T )相对误差(RE )由于测定值可能大于真实值,也可能小于真实值,所以绝对、相对误差有正负之分。
二 精密度与偏差1、精密度:指在相同条件下N 次重复测定结果彼此相符合的程度。
精密度大小=绝对误差 ×100%真实值(T )用偏差表示,偏差越小,精密度越高。
2、绝对偏差和相对偏差:它只能用来衡量单项测定结果对平均值偏离程度。
绝对偏差:只单次测定值与平均值的偏差。
绝对偏差(d )=X i -X相对偏差=绝对偏差和相对偏差都有正负之分,单次测定的偏差之和等于零。
3、算术平均偏差:指单次值与平均值的偏差(绝对值)之和,除以测定次数。
它表示多次测定数据整体的精密度。
代表任一数值的偏差。
算术平均偏差(d )相对平均偏差=算术平均偏差和相对平均偏差不计正负。
4、标准偏差:它是更可靠的精密度表示法,可将单次测量的较大偏差和测量次数对精密度的影响反映出来。
X i -X×100%X(i=1.2.3······n )nd×100% X标准偏差S=例:分析铁矿中铁含量,得如下数据:37.45% ,37.50% ,37.30% ,37.25%计算此结果的平均值、平均偏差和标准偏差。
解:X=各次测量偏差分别是:d1=+0.11% ,d2=-0.14% ,d3=+0.16% ,d4=-0.04% ,d5=0.09%d= =S= =三 准确度与精密度的关系37.45%+37.20%+37.50%+37.30%+37.25%= 37.34%5(0.11+0.14+0.04+0.16+0.09)% = 0.11%5(0.11)2+(0.14)2+(0.04)2+(0.16)2+(0.09)2% = 0.13%5-1第一组测定结果:精密度很高,但平均值与标准值相差很大。
误差\准确度\精密度和不确定度的定义以及它们之间的关系在产品质量检验的实际工作中,时常会遇到误差值、准确度、精确度和不确定度问题。
特别是一次性的检验活动中,如食品、酒类样品的分析;建筑材料(水泥、砖、钢筋)的检验;轻纺产品的检测等等,都离不开这些定义的运用与归纳。
因此,作为检验、检测的技术机构应充分掌握和理解它们之间的关系,并在实际检验工作中运用好准确度与误差值、精密度和不确定度之间的关系。
对正确判定检验结论有很大的帮助。
1误差的定义误差是指测定的数值或其他近似值与真值的差。
例如:以0. 33代替1/3,其绝对误差就是1/300;相对误差就是l%。
2准确度的定义准确度是指测量值与真实值之间相符合的程度。
准确度的高低常以误差的大小来衡量。
即误差越小,准确度越高;误差越大,准确度越低。
为了说明一些仪器测量的准确度,常用绝对误差来表示。
如:分析天平的称量误差是±0.0002g;常量滴定管的读数误差是±0. 01ml等等。
3精密度的定义精密度是指在相同条件下,n次重复测量结果彼此相符合的程度。
精密度的大小,常用偏差表示,偏差越小,说明精密度越高。
为能准确衡量精密度,一般用标准偏差来表示。
其数学公式为:样本标准偏差S= [∑(Xi - X)2/(n-1)] 。
4不确定度的定义在《国际计量学基本和通用术语词汇表》中不确定度的定义为:表征合理地赋予被测量之值的分散性与测量结果相联系的参数。
在实际工作中,结果的不确定度,可能有很多来源。
如定义不完整,取样、基体效应和干扰,环境条件,质量和容量仪器的不确定度,参考值,测量方法和程序中的估计和假定以及随机变化等。
例如,对二等铂铑10 ——铂热电偶标准装置不确定度的评定,当在800℃点时,校准证书上表明,修正值为0.6℃,测得的平均值是800. 2℃,则实际结果为:t= 800.2℃+0. 6℃=800.80℃,其中不确定度U95=1.5℃(置信概率95%时,则KP =2)。
★准确度与精密度,误差与偏差准确度:测定值与真实值符合的程度绝对误差:测量值(或多次测定的平均值)与真(实)值之差称为绝对误差,用δ表示。
相对误差:绝对误差与真值的比值称为相对误差。
常用百分数表示。
绝对误差可正可负,可以表明测量仪器的准确度,但不能反映误差在测量值中所占比例,相对误差反映测量误差在测量结果中所占的比例,衡量相对误差更有意义。
例:用刻度0.5cm的尺测量长度,可以读准到0.1cm,该尺测量的绝对误差为0.1cm;用刻度1mm的尺测量长度,可以读准到0.1mm,该尺测量的绝对误差为0.1mm。
例:分析天平称量误差为0.1mg, 减重法需称2次,可能的最大误差为0.2mg, 为使称量相对误差小于0.1%,至少应称量多少样品?答:称量样品量应不小于0.2g。
真值(μ):真值是客观存在的,但任何测量都存在误差,故真值只能逼近而不可测知,实际工作中,往往用“标准值”代替“真值”。
标准值:采用多种可靠的分析方法、由具有丰富经验的分析人员经过反复多次测定得出的结果平均值。
精密度:几次平行测定结果相互接近的程度。
各次测定结果越接近,精密度越高,用偏差衡量精密度。
偏差:单次测量值与样本平均值之差:平均偏差:各次测量偏差绝对值的平均值。
相对平均偏差:平均偏差与平均值的比值。
标准偏差:各次测量偏差的平方和平均值再开方,比平均偏差更灵敏的反映较大偏差的存在,在统计学上更有意义。
相对标准偏差(变异系数)例:分析铁矿石中铁的质量分数,得到如下数据:37.45,37.20,37.50,37.30,37.25(%),计算测结果的平均值、平均偏差、相对平均偏差、标准偏差、变异系数。
准确度与精密度的关系:1)精密度是保证准确度的先决条件:精密度不符合要求,表示所测结果不可靠,失去衡量准确度的前提。
2)精密度高不能保证准确度高。
换言之,准确的实验一定是精密的,精密的实验不一定是准确的。
标准差是方差开方后的结果(即方差的算术平方根)假设这组数据的平均值是m方差公式s^2=1/n[(x1-m)^2+(x2-m)^2+...+(xn-m)^2]方差方差和标准差:样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。
压力仪表精密度、精确度与准确度和误差之间的关系西仪压力仪表测量中精密度、精确度与准确度和误差之间的关系1、误差的产生误差分为随机误差与系统误差。
误差可表示为:误差=测量结果-真值=随机误差+系统误差。
因此任意一个误差均可分解为系统误差和随机误差:由于测量工具(或测量仪器)本身固有误差、测量原理或测量方法本身理论的缺陷、实验操作及实验人员本身心理生理条件的制约而带来的测量误差称为系统误差。
系统误差的特点是在相同测量条件下、重复测量所得测量结果总是偏大或偏小,且误差数值一定或按一定规律变化.减小系统误差的方法通常可以改变测量工具或测量方法,还可以对测量结果考虑修正值。
随机误差:随机误差又叫偶然误差,即使在完全消除系统误差这种理想情况下,多次重复测量同一测量对象,仍会由于各种偶然的、无法预测的不确定因素干扰而产生测量误差,称为随机误差.随机误差的特点是对同一测量对象多次重复测量,所得测量结果的误差呈现无规则涨落,既可能为正(测量结果偏大),也可能为负(测量结果偏小),且误差绝对值起伏无规则.但误差的分布服从统计规律,表现出以下三个特点:单峰性,即误差小的多于误差大的;对称性,即正误差与负误差概率相等;有界性,即误差很大的概率几乎为零。
从随机误差分布规律可知,增加测量次数,并按统计理论对测量结果进行处理可以减小随机误差。
2、精密度、精确度与准确度用同一测量工具与方法在同一条件下多次测量,如果测量值随机误差小,即每次测量结果涨落小,说明测量重复性好,称为测量精密度好也称稳定度好,因此,测量偶然误差的大小反映了测量的精密度。
根据误差理论可知,当测量次数无限增多的情况下,可以使随机误差趋于零,而获得的测量结果与真值偏离程度——测量准确度,将从根本上取决于系统误差的大小,因而系统误差大小反映了测量可能达到的准确程度。
精确度是测量的准确度与精密度的总称,在实际测量中,影响精确度的可能主要是系统误差,也可能主要是随机误差,当然也可能两者对测量精确度影响都不可忽略.在某些测量仪器中,常用精度这一概念,实际上包括了系统误差与随机误差两个方面,例如常用的仪表就常以精度划分仪表等级.仪表精确度简称精度,又称准确度。
方法准确度和精密度的计算公式
方法准确度和精密度是衡量分析方法可靠性的重要指标,准确度指分析结果与真实值的接近程度,精密度指分析结果的重复性。
计算方法如下:
准确度计算公式:
准确度(%)=(实验值的平均值-标准值)/标准值×100%
其中,实验值的平均值是多次实验结果的平均值,标准值是标准物质的真实值。
精密度计算公式:
相对标准偏差(%)=标准偏差/实验值平均值×100%
其中,标准偏差是多次实验结果的标准偏差。
可以通过多次实验得到实验值的平均值和标准偏差,然后根据上述公式计算出方法的准确度和精密度。
这些指标可以帮助评价分析方法的可靠性,指导实验操作,并优化实验流程。
- 1 -。