误差理论与数据处理
- 格式:pdf
- 大小:733.99 KB
- 文档页数:19
1.1.1 研究误差的意义为:1)正确认识误差的性质,分析误差产生的愿意,以消除或者减小误差2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据3)正确组织实验过程,合理设计仪器或者选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
1.2.1 误差的定义:误差是测得值与被测量的真值之间的差。
1.2.2 绝对误差:某量值的测得值之差。
1.2.3 相对误差:绝对误差与被测量的真值之比值。
1.2.4 引用误差:以仪器仪表某一刻度点的示值误差为份子,以测量范围上限值或者全量程为分母,所得比值为引用误差。
1.2.5 误差来源: 1)测量装置误差 2)环境误差 3)方法误差 4)人员误差1.2.6 误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。
1.2.7 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或者在条件改变时,按一定规律变化的误差为系统误差。
1.2.8 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。
1.2.9 粗大误差:超出在规定条件下预期的误差称为粗大误差。
1.3.1 精度:反映测量结果与真值接近程度的量,成为精度。
1.3.2 精度可分为:1)准确度:反映测量结果中系统误差的影响程度2)精密度:反映测量结果中随机误差的影响程度3) 精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。
1.4.1 有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那末从这个近似数左方起的第一个非零的数字,称为第一位有效数字。
从第一位有效数字起到最末一位数字止的所有数字,不管是零或者非零的数字,都叫有效数字。
1.4.2 测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。
1.4.3 数字舍入规则:保留的有效数字最末一位数字应按下面的舍入规则进行凑整:1)若舍去部份的数值,大于保留部份的末位的半个单位,则末位加一2)若舍去部份的数值,小于保留部份的末位的半个单位,则末位不变3)若舍去部份的数值,等于保留部份的末位的半个单位,则末位凑成偶数。
误差理论与数据处理1. 绪论1.1 数据测量的基本概念1.1.1 基本概念(1)物理量物理量是反映物理现象的状态及其过程特征的数值量。
一般物理量都是有因次的量,即它们都有相应的单位,数值为1的物理量称为单位物理量,或称为单位;同一物理量可以用不同的物理单位来描述,如能量可以用焦耳、千瓦小时等不同单位来表述。
(2)量值一般由一个数乘以测量单位所表示的特定量的大小。
无量纲的SI单位是“1”。
(3)测量以确定量值为目的的一组操作,操作的结果可以得到真值,即得到数据,这组操作称为测量。
例如:用米尺测得桌子的长度为1.2米。
(4)测量结果测量结果就是根据已有的信息和条件对被测物理量进行的最佳估计,即是物理量真值的最佳估计。
在测量结果的完整表述中,应包括测量误差,必要时还应给出自由度及置信概率。
测量结果还具有重复性和重现性。
重复性是指在相同的测量条件下,对同一被测物理量进行连续多次测量所得结果之间的一致性。
相同的测量条件即称之为“重复性条件”,主要包括:相同的测量程序、相同的测量仪器、相同的观测者、相同的地点、在短期内的重复测量、相同的测量环境。
若每次的测量条件都相同,则在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量服从同一分布。
重现性是指在改变测量条件下,对被测物理量进行多次测量时,每一次测量结果之间的一致性,即在一定的误差范围内,每一次测量结果的可靠性是相同的,这些测量值服从同一分布。
(4)测量方法测量方法是指根据给定的测量原理,在测量中所用的并按类别描述的一组操作逻辑次序和划分方法,常见的有替代法、微差法、零位法、异号法等。
总之,数据测量就是用单位物理量去描述或表示某一未知的同类物理量的大小。
1.1.2 数据测量的分类数据测量的方法很多,下面介绍常见的三种分类方法,即按计量的性质、测量的目的和测量值的获得方法分类。
(1)按计量的性质分可分为:检定、检测和校准。
检定:由法定计量部门(或其他法定授权组织),为确定和证实计量器是否完全满足检定规程的要求而进行的全部工作。
1)误差的定义及其表示法。
(1) 绝对误差:绝对误差=测得值-真值;(2) 相对误差:相对误差=绝对误差/真值≈绝对误差/测得值;(3) 引用误差:引用误差=示值误差/测量范围上限;2)误差的基本概念。
所谓误差就是测得值与被测量的真值之间的差。
误差=测得值-真值3)误差的来源。
(1) 测量装置误差; (2) 环境误差; (3) 方法误差; (4)人员误差; (5)被测量对象变化误差;4)误差分类:(1) 系统误差:在相同条件下,多次测量同一量值时,该误差的绝对值和符号保持不变,或者在条件改变时,按某一确定规律变化的误差。
(2) 随机误差:在相同测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差。
(3) 粗大误差:指明显超出统计规律预期值的误差。
又称为疏忽误差、过失误差或简称粗差。
5)测量的精度。
① 准确度:表征测量结果接近真值的程度。
系统误差大小的反映②精密度:反映测量结果的分散程度(针对重复测量而言)。
表示随机误差的大小③ 精确度:表征测量结果与真值之间的一致程度。
系统误差和随机误差的综合反映6)有效数字答: (1)有效数字:含有误差的任何近似数,若其绝对误差界是最末位数的半个单位,则从这个近似数左方起的第一个非零数字称为第一位有效数字。
且从第一位有效数字起到最末一位数止的所有数字,无论是零还是非零的数字,都叫有效数字。
论是零还是非零的数字,都叫有效数字1 .若舍去部分的数值大于保留末位的 0.5,则末位加 1 , (大于 5 进) ;2 .若舍去部分的数值小于保留末位的 0.5 ,则末位不变, (小于 5 舍) ;3 .若舍去部分的数值恰等于保留末位的 0.5,此时:①若末位是偶数;则末位不变,②若末位是奇数,则末位加 1 , (等于 5 奇进偶不进) 。
1 -1 研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差。
误差理论与数据处理第七版简介《误差理论与数据处理第七版》是由Taylor J.R.所著,是一本针对误差理论和数据处理方法的经典教材。
本书的内容主要围绕了测量和数据处理中的误差分析、不确定度评定以及数据处理方法。
通过本书的学习,读者可以掌握正确的实验设计与数据处理方法,从而提高测量数据的精度和可靠性。
目录1.误差分析基本概念2.误差传播3.误差偏差4.误差控制方法5.不确定度评定6.数据处理方法7.统计处理方法8.随机误差处理9.系统误差处理10.实验设计与方差分析11.实例与案例分析1. 误差分析基本概念本章介绍了误差分析的基本概念,包括误差的定义、分类以及误差的来源和影响因素。
误差分析是任何测量或实验的基础,通过对误差的分析,可以了解测量结果的可靠性和精度。
2. 误差传播本章讨论了误差传播的原理和方法。
误差传播是指在多个测量量进行组合时,误差如何传递到最终结果中。
通过了解误差传播的方法,可以更准确地评估多个测量结果的不确定度,并进行合理的处理。
3. 误差偏差本章主要介绍了误差偏差的概念和处理方法。
误差偏差是指测量结果相对于真实值的系统性偏离,它可以由各种因素引起,如仪器误差、环境条件等。
了解误差偏差的影响和处理方法对于提高测量结果的准确性至关重要。
4. 误差控制方法本章介绍了误差控制的方法和技巧。
误差控制是通过合理的设计和操作,减小和控制各种误差来源,从而提高测量结果的可靠性和精度。
通过本章的学习,读者可以了解到一些常用的误差控制方法和实践经验。
5. 不确定度评定本章主要介绍了不确定度评定的理论和方法。
不确定度是对测量结果的范围进行估计,用于描述测量结果的可信度。
本章重点介绍了不确定度的计算方法和评定准则,使读者能够正确评估测量结果的不确定度,并进行合理的处理和判断。
6. 数据处理方法本章介绍了常用的数据处理方法,包括数据平滑、拟合和插值等。
通过对数据的处理,可以使数据更加平滑、易于分析和解释。
误差理论与数据处理总结三、误差分类三、数据运算规则在有效数据后多保留一位参考(安全)数字。
第一章绪论 (1)近似加减运算。
结果应与小数位数最少的数据小数位数按误差的特点和性质,误差可分为系统误差、随机误差(也相同。
称偶然误差)和粗大误差三类。
第一节研究误差的意义 (2)近似乘除运算。
运算以有效位最少的数据位数多取一 (一)系统误差一、研究误差的意义位,结果位数相同。
在相同条件下,多次测量同一量值时,该误差的绝对值和符号保 1、正确认识误差的性质,分析误差产生的原因,以消除或减少(3)近似平方或开方运算。
按乘除运算处理。
持不变,或者在条件改变时,按某一确定规律变化的误差—系统误差。
(4)对数运算。
n位有效数字的数据该用n 位对数表,或误差。
如标准量值不准、一起刻度不准确引起的误差。
2、正确处理测量和实验数据,合理计算所得结果,以便在一定—曲线上拐点A的横坐标—曲线右半部面积重,(n+1)位对数表。
, 系统误差又可按下列分类: ''''''''条件下得到更接近于真值的数据。
(5)三角函数。
角度误差 10.10.01101、按对误差掌握的程度分心B的横坐标 3、正确组织实验过程,合理设计仪器或选用仪器和测量方法,(1)已定系统误差:指误差的绝对值和符号已确定函数值位数 5 6 78 ,—右半部面积的平分线的横坐标。
以便在最经济条件下,得到最理想结果。
(2)未定系统误差:指误差的绝对值和符号未确定,但可的出4、研究误差可促进理论发展。
(如雷莱研究:化学方法、空气误差范围。
第二章误差的基本性质与处理三、算术平均值分离方法。
制氮气时,密度不同,导致后人发现惰性气体。
) 2、按误差出现规律分(1)不变系统误差:(指绝对值和符号一定)相当于以定系统误第一节随机误差第二节误差基本概念 ,,,lLL1、公理:一系列等精度测量,则。
—真值差。
ii00nnn(2)变化系统误差:(指绝对值和符号为变化)相当于未定系统随机误差的代数和 ,,,,,lLlnL,,,,,iii00定义:在相同条件下多次重复测量同一量时,以不可预定的一、误差定义及表示方法误差,但变化规律可知,如线性、周期性等。
误差理论与数据处理简答题及答案基本概念题1. 误差的定义是什么?它有什么性质?为什么测量误差不可避免?答: 误差=测得值-真值。
误差的性质有:(1)误差永远不等于零;(2)误差具有随机性;(3)误差具有不确定性;(4)误差是未知的。
由于实验方法和实验设备的不完善, 周围环境的影响, 受人们认识能力所限, 测量或实验所得数据和被测量真值之间不可避免地存在差异, 因此误差是不可避免的。
2. 什么叫真值?什么叫修正值?修正后能否得到真值?为什么?答: 真值: 在观测一个量时, 该量本身所具有的真实大小。
修正值: 为消除系统误差用代数法加到测量结果上的值, 它等于负的误差值。
修正后一般情况下难以得到真值。
因为修正值本身也有误差, 修正后只能得到较测得值更为准确的结果。
3. 测量误差有几种常见的表示方法?它们各用于何种场合?答: 绝对误差、相对误差、引用误差绝对误差——对于相同的被测量, 用绝对误差评定其测量精度的高低。
相对误差——对于不同的被测俩量以及不同的物理量, 采用相对误差来评定其测量精度的高低。
引用误差——简化和实用的仪器仪表示值的相对误差(常用在多档和连续分度的仪表中)。
4. 测量误差分哪几类?它们各有什么特点?答: 随机误差、系统误差、粗大误差随机误差: 在同一测量条件下, 多次测量同一量值时, 绝对值和符号以不可预定方式变化着的误差。
系统误差: 在同一条件下, 多次测量同一量值时, 绝对值和符号保持不变, 或在条件改变时, 按一定规律变化的误差。
粗大误差:超出在规定条件下预期的误差。
误差值较大, 明显歪曲测量结果。
5. 准确度、精密度、精确度的涵义分别是什么?它们分别反映了什么?答: 准确度: 反映测量结果中系统误差的影响程度。
精密度: 反映测量结果中随机误差的影响程度。
精确度: 反映测量结果中系统误差和随机误差综合的影响程度。
准确度反映测量结果中系统误差的影响程度。
精密度反映测量结果中随机误差的影响程度。
误差理论与数据处理-实验报告本实验旨在研究误差理论与数据处理方法。
通过实验可了解如何在实验中处理数据以及如何评定实验误差。
本次实验的主要内容为分别在天平、游标卡尺、万能表等实验仪器上取数,计算出测量数值的平均值与标准偏差,并分析误差来源。
1. 实验步骤1.1 天平测量将一块铁片置于天平盘上,进行三次称量,记录每次的质量值。
将数据带入Excel进行平均值、标准偏差等计算。
1.2 游标卡尺测量1.3 万能表测量2. 实验结果及分析对于天平测量、游标卡尺测量和万能表测量所得的测量值进行平均值、标准偏差的计算,结果如下:表1. 测量数据统计表| 项目 | 测量数据1 | 测量数据2 | 测量数据3 | 平均值 | 标准偏差 || :---: | :---: | :---: | :---: | :---: | :---: || 天平质量测量 | 9.90g | 9.89g | 9.92g | 9.90g | 0.015g || 游标卡尺测厚度 | 1cm | 1cm | 1cm | 1.00cm | 0.002cm || 万能表测电阻| 575Ω | 577Ω | 578Ω | 577Ω | 1.00Ω |从数据统计表中可以看出,三次实验所得数据相近,平均数与标准偏差较为准确。
天平测量的数据波动较小,标准偏差仅为0.015g,说明该仪器测量精确度较高;游标卡尺测量的数据也相比较准确,标准偏差仅为0.002cm,说明该仪器测量稳定性较好;万能表测量的数据较为不稳定,标准偏差较大,为1.00Ω,可能是由于接线不良,寄生电容等误差较大造成。
3. 实验结论通过本次实验,学生可掌握误差理论与数据处理方法,对实验数据进行统计、分析,得出各项指标,如标准偏差、最大值、最小值等。
在实际实验中,应注重数据精度和测量误差的评估,保证实验数据的准确性和可靠性。
除此之外,应加强对实验仪器的了解,并合理利用其特性,提高实验的成功率和准确性。
误差理论与数据处理
1误差理论
误差(error)理论是科学测量中一项重要的理论,它描述了测量结
果与理论结果之间的差异,以及这种差异的大小和方向。
当一项测量
结果与理论相符时,这种差异就会减少到一定的程度,从而减少测量
不确定性,使测量结果更精确和准确。
误差分析也是一种重要的测量方法,它主要是根据实际测量结果
来估算实际测量数据与理论测量数据之间的差异,从而决定测量后的
数据处理方式[1]。
通过分析误差,可以有效估算测量数据的有效位数,进而使测量结果更加准确。
2数据处理
数据处理是控制实验测量的一个重要步骤,它可以改善实验测量
的精确程度。
通过数据处理,可以提供准确可靠的实验结果,这对于
建立精确的模型以及验证理论,都有着重要的意义。
数据处理有很多种方法,但最重要的一点是要确定准确的误差结果。
通常可以采用统计方法,如均值、标准差和变异系数,对实验数
据进行精确的数据分析,从而估算实验数据的有效位数和有效位数之
间的差值。
一旦变值较大,就可以采取一定的措施进行纠偏,使实验
数据趋于稳定,从而提高实验数据的准确性。
数据处理本身也可以用于处理和优化测量误差,从而提高测量精度。
这一过程通常包括:编辑测量误差数据,对某些超出预想范围的测量数据进行排除处理,将误差分布情况用图表展示出来,并从中分析出结论性结果。
综上所述,误差理论和数据处理在科学测量中起着非常重要的作用,准确的误差分析可以令实验结果更加有效可靠,而精确的数据处理也可以改善测量精度,可以提供准确的实验数据,为理论的验证和模型的建立提供有力支撑。
第三章测量误差的传递在间接测量中,待求量通过间接测量的方程式y = f (x 1,x 2^ , x n )获得。
通过测量获得量X i ,X 2,…,X n 的数值后,即可由上面的函数关系计算出待求量y 的数值。
那么测量数据的误差怎样作用于间接量y ,即给定测量数据X i ,X 2,…,X n 的测量误差,怎样求出所得间接量y 的误差值?对于更一般的情形,测量结果的误差是测量方法各环节的诸误差因素共同作用的结 果。
这些误差因素通过一定的关系作用于测量结果。
现研究怎样确定这一传递关系,即怎样由诸误差因素分量计算出测量的总误差。
研究测量误差的传递规律有重要意义,它不仅可直接用于已知系统误差的传递计算, 并且是建立不确定度合成规则的依据,因而是精度分析的基础①。
3.1 按定义计算测量误差现在按测量误差的定义给出测量结果的误差,这是研究误差传递关系的基本出发点。
若对量Y 用某种方法测得结果 y ,则按测量误差的定义,该数据的测量误差应为、y =y -Y (3-1) 设有如下测量方程y = f (X 1,X 2,X n )式中y ――间接测量结果;X i ,X 2, , X n ——分别为各直接测得值。
直接量的测量数据 X 1,X 2/ ,X n 的测量误差分别为式中,X 1 , %,•••, X n 分别为相应量的实际值(真值)。
则间接测量结果的误差可写为y 二 y -丫 二 f X 1,X 2,,召 一 f X 1,X 2, ,X .二 f X 1X 1,X 2 %, ,X n X n - f X"?, X (3-2)上式给出了由测量数据的误差计算间接量 y 的误差的传递关系式,这一误差关系是 准确无误的。
直接按定义计算测量结果误差的方法在误差传递计算中经常使用,特别是在单独分 析某项误差因素对测量结果的影响时,若这一影响关系不便或不能化成简单的线性关系, 则这一方法更常使用。
因此直接按定义作误差传递计算的方法不能完全用下面所述的线二 X n - X nV =性化的误差传递方法代替。
误差理论与数据处理期末报告范文一、引言在科学实验和数据处理中,误差是一个不可避免的因素。
误差的存在会影响到数据的准确性和可靠性,因此正确理解误差是非常重要的。
误差理论作为一门独立的学科,主要研究在实验测量和数据处理中各种类型误差的产生、传递和处理的方法。
在本次报告中,我们将对误差理论的基本概念和数据处理方法进行介绍和分析。
二、误差理论的基本概念1. 误差的分类在实验测量和数据处理中,误差可以分为系统误差和随机误差两种基本类型。
系统误差是由某种固定原因引起的,通常具有一定的方向性和大小;而随机误差是由众多偶然因素造成的,其大小和方向是随机的,无法准确预测。
另外,在实际应用中还会遇到仪器误差、人为误差等其他类型的误差。
2. 误差的传递在实验测量过程中,误差会随着测量数据的传递而累积。
例如,测量仪器的精度、环境条件、操作者技术等因素都会对最终结果产生影响。
因此,在数据处理过程中需要考虑到误差的传递规律,采取相应的措施来减小误差的影响。
3. 误差的表示与估计误差通常通过误差限、标准差、置信度等指标来表示和估计。
误差限表示了测量结果的准确性,标准差表示了数据的离散程度,置信度则表示了对测量结果的信赖程度。
这些指标可以帮助我们更准确地评估测量数据的质量,从而做出科学合理的判断。
三、数据处理方法1. 数据整理在实验测量过程中,可能会出现各种原始数据,需要对其进行整理和筛选。
通常可以采用平均值、中值、众数等方法来处理数据,消除异常值和噪声。
2. 数据分析数据分析是对收集到的数据进行统计和推断的过程。
通过统计方法,可以得出数据的分布特征、相关性和趋势等信息,从而进行科学分析和判断。
3. 数据模型数据模型是描述数据之间关系和规律的数学模型。
通过建立数据模型,可以预测未来趋势、探索潜在规律、优化决策等。
常见的数据模型包括线性回归、非线性回归、时间序列分析等。
四、实例分析为了更好地理解误差理论与数据处理的原理和方法,我们通过一个实例来进行分析。
《误差理论与数据处理》第一章 绪论1—1.研究误差的意义是什么?简述误差理论的主要内容.答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等. 1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。
1—3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了",只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少. (2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1—6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0。
001mm ,测件的真实长度L0=L -△L =50-0。
001=49.999(mm )1—7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100。