变频磁场中金属密闭壳体磁信号穿透性研究
- 格式:pdf
- 大小:1.02 MB
- 文档页数:3
传感器原理及应用习题答案习题1 (2)习题2 (4)习题3 (8)习题4 (10)习题5 (12)习题6 (14)习题7 (17)习题8 (20)习题9 (23)习题10 (25)习题11 (26)习题12 (28)习题13 (32)习题11-1 什么叫传感器?它由哪几部分组成?并说出各部分的作用及其相互间的关系。
答:传感器是能感受规定的被测量并按照一定的规律将其转换成可用输出信号的器件或装置。
通常传感器由敏感元件和转换元件组成。
敏感元件是指传感器中能直接感受或响应被测量的部分,转换元件是指传感器中将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分。
由于传感器的输出信号一般都很微弱, 因此需要有信号调节与转换电路对其进行放大、运算调制等。
随着半导体器件与集成技术在传感器中的应用,传感器的信号调节与转换电路可能安装在传感器的壳体里或与敏感元件一起集成在同一芯片上。
此外,信号调节转换电路以及传感器工作必须有辅助的电源,因此信号调节转换电路以及所需的电源都应作为传感器组成的一部分。
1-2 简述传感器的作用和地位及其传感器技术的发展方向。
答:传感器位于信息采集系统之首,属于感知、获取及检测信息的窗口,并提供给系统赖以进行处理和决策所必须的原始信息。
没有传感技术,整个信息技术的发展就成了一句空话。
科学技术越发达,自动化程度越高,信息控制技术对传感器的依赖性就越大。
发展方向:开发新材料,采用微细加工技术,多功能集成传感器的研究,智能传感器研究,航天传感器的研究,仿生传感器的研究等。
1-3 传感器的静态特性指什么?衡量它的性能指标主要有哪些?答:传感器的静态特性是指被测量的值处于稳定状态时的输出—输入关系。
与时间无关。
主要性能指标有:线性度、灵敏度、迟滞和重复性等。
1-4 传感器的动态特性指什么?常用的分析方法有哪几种?答:传感器的动态特性是指其输出与随时间变化的输入量之间的响应特性。
常用的分析方法有时域分析和频域分析。
第10章电磁屏蔽技术本章主要介绍电磁屏蔽的基本原理、屏蔽体屏蔽效能的计算方法、屏蔽体的不完整性对屏蔽性能的影响,以及屏蔽体的设计方法。
另外也介绍了接缝的屏蔽保证技术,以及屏蔽体上开孔的处理方法。
1 电磁屏蔽的基本概念1.1 电磁屏蔽的概念及分类屏蔽是电磁干扰防护控制的最基本方法之一。
电磁屏蔽是指对电磁波产生衰减作用。
其目的有两个方面:一是控制内部辐射区的电磁场,不使越出某一区域;二是防止外来的辐射进入某一区域,如图3.10-1所示。
因此,屏蔽的方法也是电磁干扰的空域控制方法。
屏蔽可以大如一个安装有整体金属材料的建筑物(如大型测试场所或实验场所),小到柔软的电缆金属编织带。
常见的屏蔽如仪器设备的金属外壳。
(a) 外部电磁场的屏蔽(b) 内部电磁场的屏蔽图3.10-1 电磁屏蔽的目的通常采用金属导体作为屏蔽体材料,但屏蔽体材料及结构的选择,则取决于屏蔽性质的类别及要求。
屏蔽性质的分类,从要屏蔽的电磁场的性质来划分,有电场屏蔽(静电场屏蔽及交变电场屏蔽)、磁场屏蔽(静磁场屏蔽及交变磁场屏蔽)及电磁场屏蔽(同时存在电场及磁场的辐射电磁场的屏蔽)等。
从屏蔽体的结构分类,可以分为完整屏蔽体屏蔽(屏蔽室或屏蔽盒等〕、非完整屏蔽体屏蔽(带有孔洞、金属网、波导管及蜂窝结构等)以及编织带屏蔽(电缆等)。
1.2 电磁屏蔽效能采用屏蔽体的目的是要削弱干扰电磁场。
屏蔽体的电磁屏蔽效能一般可有如下几种表示方法。
第一,采用屏蔽系数s η表示。
屏蔽系数指被干扰的导体(或电路)在加屏蔽后感应的电压S V 与未加屏蔽时感应电压0V 的比,即(无屏蔽)有屏蔽0)(V V S s =η (3.10-1) s η越小,表示屏蔽效果越好。
第二,采用传输系数T 表示。
传输系数T 系指加屏蔽后某一测点的场强(E s ,H s )与同一测点未加屏蔽时的场强(E 0,H 0)的比,即:(无屏蔽)有屏蔽0)(E E T s = (对于电场) (3.10-2) (无屏蔽)有屏蔽0)(H H T s = (对于磁场) (3.10-3) T 愈小,表示屏蔽效果愈好。
电场和磁场的电磁波的干扰和穿透1. 引言电磁波是一种在真空和介质中传播的电场和磁场的波动。
电场和磁场的变化会产生电磁波,电磁波的传播又会产生电场和磁场。
电磁波广泛应用于通信、广播、医疗、雷达等领域。
然而,电磁波的干扰和穿透却是电子设备设计和使用中需要考虑的重要问题。
本文将详细讨论电场和磁场的电磁波的干扰和穿透。
2. 电磁波的干扰电磁波的干扰是指电磁波对电子设备正常工作的影响。
电磁波的干扰主要来源于两个方面:外部干扰和内部干扰。
2.1 外部干扰外部干扰主要是指来自外部的电磁波对电子设备的干扰。
外部干扰的来源很多,如无线电发射设备、电视发射设备、雷达发射设备等。
外部干扰的电磁波可以通过空间传播到达电子设备,干扰电子设备的正常工作。
2.2 内部干扰内部干扰是指电子设备内部产生的电磁波对自身或其他部分的干扰。
内部干扰的来源主要有以下几个方面:(1)电子器件的工作产生的电磁波。
如晶体管、二极管、集成电路等电子器件在工作时会产生电磁波。
(2)电源产生的电磁波。
电源中的变压器、电感、电容等元件在工作时会产生电磁波。
(3)线路产生的电磁波。
电子设备中的线路在工作时会产生电磁波,如信号线、电源线等。
3. 电磁波的穿透电磁波的穿透是指电磁波穿过介质的能力。
电磁波的穿透能力与电磁波的频率、介质的性质、电磁波的强度等因素有关。
3.1 电磁波的频率电磁波的频率越高,穿透能力越强。
这是因为高频电磁波的波长较短,能量较高,容易穿过介质。
例如,无线电波的频率较高,可以穿透建筑物、大气等介质;而微波的频率更高,可以穿透墙壁、纸张等介质。
3.2 介质的性质介质的性质会影响电磁波的穿透能力。
介质的类型、密度、厚度、湿度等因素都会影响电磁波的穿透能力。
例如,金属对电磁波的阻挡作用较强,电磁波难以穿透金属介质;而空气、水等介质对电磁波的阻挡作用较弱,电磁波容易穿透这些介质。
3.3 电磁波的强度电磁波的强度也会影响其穿透能力。
电磁波的强度越高,穿透能力越强。
史上最全的磁导航传感器知识(上)磁导航传感器的使用范围很广泛,用于各种玩具、文教用具、展示架、标识牌、工艺品、淋浴房、文教用具、纱门纱窗、广告等领域。
磁导航传感器是铁氧体磁材系列中的一种,由粘结铁氧体料粉与合成橡胶复合,经压延成型等工艺制成的,具有柔软性、弹性及可扭曲的条状磁体。
下面由agv生产厂家深圳市米克力美科技有限公司给大家分享史上最全的磁导航传感器知识。
1.磁导航传感器在设计原理:磁导航传感器技术利用集磁道钉的磁场特性研究磁信号检测、车辆与磁道钉之间相对运动于一体的试验平台。
在此平台上模拟实地的车辆磁道钉导航自动驾驶设计车辆的直线运动、S形运动以及加速等运动模式,并编写软件程序实现功能需求。
通过大量的现场试验测量在不同材质、不同形状磁道钉的磁感应强度,并通过改变磁传感器与磁道钉表面的垂直距离,观察磁信号的变化。
通过对数据的分析来研究磁道钉对磁传感器设计的影响磁导航传感器作为磁导航自动驾驶系统中信号检测的重要设备,在这个系统中具有至关重要的作用。
2.磁导航传感器的运用磁导航传感器一般配合磁条、磁道钉或者电缆使用,不管是磁条、磁道钉还是电缆,都是为了预先铺设AGV等自主导航设备的行进路线、工位或者其它动作区域。
工厂在车间铺设磁条,规定了AGV的行进路线、工位等。
磁导航传感器具有一到多组微型磁场检测传感器,在磁导航传感器上,每个磁场检测传感器对应一个探测点。
磁条、磁道钉、通电的电缆会产生磁场。
我们以磁条为例,当磁导航传感器位于磁条上方时,每个探测点上的磁场传感器能够将其所在位置的磁带强度转变为电信号,并传输给磁导航传感器的控制芯片,控制芯片通过数据转换就能够测出每个探测点所在位置的磁场强度。
根据磁条的磁场特性和传感器采集到的磁场强度信息,AGV就能够确定磁条相对磁导航传感器的位置。
3.选择磁导航传感器标准磁导航传感器是检测弱磁装置的一种传感器,主要应用于磁条引导的AGV无人搬运车。
那么在选择磁导航传感器有什么标准呢?1、稳定性。
超低频波形信号源保护用电流互感器励磁特性试验方法刘涛;梁仕斌【摘要】目前保护用电流互感器励磁特性试验的工频试验方法和低频正弦波试验方法都存在着一定不足之处,主要针对目前存在的问题,参考Lucas模型建立了一种超低频任意波形信号源对保护用电流互感器进行励磁特性试验的分析计算方法.该方法把电流互感器的励磁电流分离为涡流损耗电流和磁滞损耗电流两个部分,测量相关的诸如互感器铁心损耗、基本磁化曲线和极限磁滞回线等参数,充分考虑直流电阻上产生电压降的影响,通过计算得出工频下励磁特性数据.本文打破传统运用工频和低频正弦波进行励磁特性试验的约束,充分考虑电流互感器的铁心饱和、磁滞和直阻等因素影响,建立一种任意波形、超低频率信号励磁的模型和计算方法,并通过大量试验对比验证说明此方法是准确和可靠的.【期刊名称】《云南电力技术》【年(卷),期】2019(047)001【总页数】4页(P122-125)【关键词】电流互感器;任意波形;超低频;励磁特性;铁心损耗;压缩法;瞬时值【作者】刘涛;梁仕斌【作者单位】云南电力技术有限责任公司,昆明650217;云南电力试验研究院(集团)有限公司,昆明650217【正文语种】中文【中图分类】TM740 前言电流互感器作为电力系统的主设备之一,互感器性能不满足要求则可能引起保护装置的勿动或拒动,造成重大电网安全事故,进行互感器励磁特性试验是判断互感器性能的重要手段之一。
如今随着电网的快速发展,大量新型的(比如TP类)保护用电流互感器拐点电压高达一两万伏,该电压远远超出电流互感器二次绕组匝间绝缘的耐受能力,传统的工频试验方法已经不能满足现场试验的需求,而超低频正弦波电源存在硬件设计困难、测试结果不理想的问题。
超低频的方波、三角波等电源则设计简单,容易实现,因此研究基于超低频任意波形信号源进行励磁特性试验方法具有重大意义。
1 Lucas数学分析模型建立高拐点的电流互感器用常规工频试验方法已经不能满足励磁特性试验要求,而我国相关规程也提出低频原理进行测试的方法,比如JB/T5356-2002《电流互感器试验导则》,但其中规定将二次绕组等效为线性电感,仅仅按频率关系折算,这种方法存在很大的误差,无论从理论分析和实测数据比对均证明了这一点。
金属材料低频磁场屏蔽效能研究吴逸汀;盛卫星;韩玉兵;马晓峰;张仁李【摘要】通过分析低频电磁波的屏蔽效能公式,综合考虑材料电磁、物理等特性,选取了五种金属作为屏蔽机箱的材料.分别测试了材料的电导率和相对磁导率,通过屏蔽公式和仿真软件比较了它们的低频磁场屏蔽效能.选用三种金属加工成屏蔽机箱,进行低频磁场屏蔽效能.测试机箱的低频磁场屏蔽效能实测结果与仿真结果基本一致.结果表明:坡莫合金对低频磁场的屏蔽效能最好,0Cr13不锈钢屏蔽效能比坡莫合金稍差,但比其他材料要好,而且其性价比高,可以用于一些需要一定低频磁场屏蔽的场合.【期刊名称】《电波科学学报》【年(卷),期】2015(030)004【总页数】6页(P673-678)【关键词】电磁屏蔽;低频;0Cr13;屏蔽效能;屏蔽机箱【作者】吴逸汀;盛卫星;韩玉兵;马晓峰;张仁李【作者单位】南京理工大学电子工程与光电技术学院,江苏南京210094;南京理工大学电子工程与光电技术学院,江苏南京210094;南京理工大学电子工程与光电技术学院,江苏南京210094;南京理工大学电子工程与光电技术学院,江苏南京210094;南京理工大学电子工程与光电技术学院,江苏南京210094【正文语种】中文【中图分类】TN4Key words electromagnetic shielding; low frequency; 0Cr13; shielding effectiveness; shielding box资助项目: 国家自然科学基金(No.61471196;No.11273017)联系人:盛卫星E-mail:*****************.cn近些年,电磁防护逐渐成为了电磁兼容领域的研究热点.一方面,研究发现,在工业生产中,低频磁场(<100 kHz)的干扰会使得周围电子电路设备无法正常使用[1-2].特别是大电流低频干扰,会在周边产生强大的电磁场;医学研究也发现,低频强磁场对人体肌肉组织的影响很大[3],长期在低频磁场辐射环境中生产休息的人体,发生各种肿瘤癌变、白血病等多种疾病的概率是正常人的4~6倍,高强度持续的低频磁场辐射会危害人体的健康;另一方面,雷电脉冲、高功率微波武器产生的电磁脉冲也会影响电子设备的正常使用,甚至会损害高灵敏的电子设备.因此,研究低频磁场的电磁屏蔽对民用和军用领域都是非常有必要的.不同于高频磁场屏蔽,低频磁场的屏蔽是一项艰巨的任务[4].在工程中,电子电路设备暴露在复杂电磁环境下,这会对其正常工作造成很大的干扰,设计低频磁场屏蔽机箱是必要的.学者们在低频磁场的屏蔽研究中发现,机箱材料的选取对屏蔽效能的影响有着非常大的影响[5],铁磁性物质(铁,钢等)由于材料强度、结构特性、耐腐蚀性和价格因素等是低频磁场屏蔽的一类很好的材料.综合考虑上述因素,本文对选取五种金属(坡莫合金、0Cr13不锈钢、45号钢、1Cr18Ni19Ti不锈钢和铁)的低频磁场特性做了理论公式计算、CST仿真和实验测试.经过比较,发现0Cr13不锈铁具有明显优于其他三种材料的低频磁场屏蔽性能.虽然其低频磁场屏蔽性能稍逊于坡莫合金,但0Cr13作为常用不锈钢具有价格低廉的特点,性价比较高.1.1 屏蔽效能电磁屏蔽表示同时对电场和磁场进行屏蔽,通常我们用屏蔽效能(Shielding Effectiveness)来表示.屏蔽效能定义为:存在屏蔽的情况下,电场(或磁场)在某点的绝对值,与无屏蔽状态下电场(或磁场)在该点的绝对值之比[5].常用分贝(dB)表示.当电磁波入射到一块无限大屏蔽平板时,一部分能量被平板所反射,称之为反射损耗( Rm);另一部分能量透射入平板内,在透射过程中一部分能量被吸收掉,称之为吸收损耗(A);当剩下的能量透射到平板另一侧时,又发生反射(小部分能量透射入屏蔽平板的后面).被反射回屏蔽平板的能量再经过吸收和反射,如此反复,直到全部衰减和透射入屏蔽平板的后面.这多次的反射和吸收损耗称之为再反射损耗(Rr).1.2 磁场屏蔽效能对于频率较低的干扰源,磁场的屏蔽效能(SEH)往往小于电场的屏蔽效能(SEE),在进行电磁屏蔽分析时,主要考虑材料对磁场的屏蔽效能.应用传输线理论可以导出材料的磁场屏蔽效能经验公式[6]SEH=Rm+A+Rr;式中: f为频率,Hz; μr为屏蔽材料的相对磁导率; Gr为该屏蔽材料相对于铜的电导率; r表示屏蔽平板与源的距离,cm; t表示屏蔽平板的厚度,mm; Zm为屏蔽平板所采用金属导体的阻抗,Ω; Zw为波阻抗,Ω.需要注意的是再反射损耗始终是一个负数,它需要从总屏蔽效能中减去才能得到正确的增益.通常当A大于15dB时,Rr可忽略不记.对于磁场,当r<λ/2π时,波阻抗可表示为Zw=377×2πr/λ.式中: r为屏蔽平板与源的距离,m; λ为波长,m.金属导体的阻抗[7]可表示为:.式中: ω为角频率; μ0为真空磁导率; σ为屏蔽材料的电导率.1.3 屏蔽材料的选择根据式(1)~(6)可知,低频磁场屏蔽效果取决于屏蔽平板厚度t、屏蔽材料相对电导率σ和相对磁导率μr以及干扰源距离屏蔽体的距离r等因素.选取高磁导率、高电导率的屏蔽材料能有效地提高机箱对低频干扰的屏蔽效能.现阶段市场上有着许多高磁导率材料,能产生非常优异的屏蔽效果.综合考虑材料强度、结构特性、耐腐蚀性和价格等因素,大多数情况下,还是选用金属材料作为首选.考虑到材料的屏蔽效能和价格,本次实验的理论分析、仿真和测试选取了五种金属材料:坡莫合金、0Cr13不锈铁、45号钢、1Cr18Ni19Ti不锈钢和铁.2.1 材料电磁参数测试坡莫合金的电磁参数可以方便地获得(相对磁导率和电导率分别取保守值2×104 S/m和5×107 S/m).虽然另外几种材料在市面上都是比较常见的金属材料,但是其具体的电磁参数并没有明确给出.测试低频下这四种材料的电导率[8]和磁导率.图1所示为测试实验中所使用的材料样品.根据公式:μr=Ll/μ0N2S;σ=4l/πd2R.得到四种材料的相对磁导率和电导率,如表1所示.由图2,高相对磁导率的0Cr13不锈钢拥有明显优于其他3种材料的低频磁场屏蔽效能.1Cr18Ni19Ti、45号钢和铁的低频磁场屏蔽效果并不理想,特别是1Cr18Ni19Ti不锈钢,低频磁场屏蔽效能和0Cr13不锈钢相差了100 dB.为了更好地说明材料的低频磁场屏蔽效能,下面进行了材料的低频屏蔽效能仿真CST仿真.在五种材料中:坡莫合金具有很好的低频磁场屏蔽性能,但其价格很高;0Cr13不锈钢和45号钢价格便宜,屏蔽效能未知.这三种材料具有各自的特点,由于条件限制,选择这三种材料来进行仿真对比来寻找一种性价比高的低频磁场屏蔽材料.应用CST中的MWS工作室建立如图3所示模型,仿真这三种材料的低频磁场屏蔽效能.图3中机箱长宽高分别为500 mm、500 mm、300 mm,厚2 mm.在x轴方向靠右面的正中间位置,做了一个长宽高分别为300 mm、300 mm、50 mm的门.在z轴正方向面正中心向下220 mm处开了一个直径10 mm的孔.仿真中为了能很好地模拟低频低阻抗源的特征,同时为了能和实测结果进行对比,采用了图3中的单匝直径为300 mm的细线天线作为激励.激励信号为对应测试频点的方波大电流信号.磁场探针放在机箱的中心位置.经过仿真,三种材料的低频磁场屏蔽效能如图4所示.由图4,可以发现坡莫合金屏蔽效能比0Cr13不锈钢好10 dB左右,而0Cr13不锈钢又比45号钢好9 dB左右.坡莫合金具有较高的低频磁场屏蔽效能的主要原因是高磁导率.而0Cr13不锈钢虽然屏蔽性能比坡莫合金稍差,但是和45号钢比有着明显的优势.45号钢的低频磁场屏蔽效能较一般,和另外两种材料相比有着较大的差距.需要注意的是,市面上坡莫合金的价格非常高,而0Cr13不锈钢和45号钢则便宜很多.为了验证CST仿真结果的正确性,我们对三种材料的机箱进行了加工,并分别测试了它们的低频磁场屏蔽性能[7].2.3 屏蔽性能测试测试过程中为了将接收天线和光电转换装置放入机箱内部,在机箱正面(x轴方向靠右的面)中间开了一个长宽高分别为300 mm、300 mm、50 mm的门,并在机箱侧面(z轴正方中心向下220 mm处)开了一个直径10 mm的孔.门与机箱接口处的孔缝会对结果造成很大的影响[9-10],采用单刀双簧片的设计可以确保开口处的可靠电连接,有效消除门对机箱屏蔽效能影响[11].测试的简单示意图如图5所示,测试的照片如图6所示.具体的测试过程:图5中左侧圆环为发射天线,用大功率低频方波信号源激励.右侧接收天线得到的电压信号经过其底座的光电转换装置转换为光信号,光纤通过机箱侧面预留的小孔通到屏蔽室中,最后经过转换显示到示波器上.实验总共测试了3种金属材料分别在8个频点(50、100、200、500、1 000、2 000、5 000、10 000 Hz)的磁场屏蔽效能.将测试得到的屏蔽效能曲线和仿真得到的进行对比,如图7所示.分析图7可知仿真和测试得到的屏蔽效能曲线基本一致.比较图2和图7,理论公式得到的屏蔽效能和仿真实测的存在着误差(40 dB),主要原因是式(1)~(6)的计算准确度会随着收发天线距离的缩小变小.另外由于式(1)~(6)描述的是无限大金属平板的屏蔽效能,这和仿真和实验中测试的屏蔽机箱并不相同(测试用屏蔽机箱的长与首发天线半径比k=3.333,并没有远远大于1).文中给出了一种应用理论公式与商用仿真软件CST寻找高效低频磁场屏蔽材料的方法.通过理论公式预估,用CST仿真来确认材料的屏蔽效能,最后对实际加工后的机箱进行实验测试验证.仿真结果和实测结果基本一致.研究还发现0Cr13不锈钢材料具有较强的低频磁场屏蔽性能.需要注意的是,0Cr13不锈钢是一种常见的不锈钢材料,被广泛应用于工业中.相对于坡莫合金的高昂价格,0Cr13更廉价,同时其不错的强低频磁场屏蔽效能(比坡莫合金差10 dB左右)可以为冶金工业、日常电子设备以及国家安全领域等需要一定低频磁场屏蔽效能的场合提供性价比很高的屏蔽效果.[1] 张龙, 魏光辉, 胡小锋, 等. 强电磁场环境下屏蔽效能测试新方法[J]. 电波科学学报, 2013, 28(4): 716-721.ZHANG Long, WEI Guanghui, HU Xiaofeng, et al. New test method for measuring shielding effectiveness on strong electromagnetic environment[J]. Chinese Journal of Radio Science, 2013, 28(4): 716-721. (in Chinese)[2] 李安金, 赵仁涛. 低频磁场屏蔽问题简述[J]. 科技信息, 2013(3): 211-212.[3] 辛文辉, 颜国正, 王文兴, 等. 人体对低频强电磁场吸收剂量的仿真研究[J]. 电波科学学报, 2010, 25(2): 272-274.XIN Wenhui, YAN Guozheng, WANG Wenxin, et al. Simulation on the absorbed dose of human tissues in the low frequency strong electromagnetic field[J]. Chinese Journal of Radio Science, 2010, 25(2):272-274. (in Chinese)[4] CHENG K B, RAMAKRISHNA S, LEE K C. Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylenecomposites[J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(10): 1039-1045.[5] CELOZZ S, ARANEO R, LOVAT G. 电磁屏蔽原理与应用[M].郎为民,译. 北京: 机械工业出版社, 2009: 35-36.[6] WESTON D. A. Electromagnetic Compatibility: Principles and Applications[M]. 2nd ed. New York: Marcel Dekker Inc, 2001.[7] 高成, 刘晓, 石立华, 等. 低频强磁场屏蔽效能的测试方法与测试设备研制[J]. 高电压技术, 2010, 36(9): 2272-2277.GAO Cheng, LIU Xiao, SHI Lihua, et al. Measurement method and measurement equipment development for low-frequency magnetic field[J]. High Voltage Engineering, 2010, 36(9): 2272-2277. (in Chinese)[8] 邵巍, 徐少春. 测量金属电导率方法的研究[J]. 计量与测试技术, 2012,39(12): 43-45.SHAO Wei, XU Shaochun. A study on the method of measuring the conductivity metal[J]. Measurement and Testing Technology, 2012, 39(12): 43-45. (in Chinese)[9] 汪柳平, 高攸纲. 有孔矩形腔的屏蔽效能及其对谐振抑制研究[J]. 电波科学学报, 2008, 23(3): 561-564.WANG Liuping, GAO Yougang. Analysis of shielding effectiveness for rectangular cavity with apertures and resonance suppression[J]. Chinese Journal of Radio Science, 2008, 23(3): 561-564. (in Chinese)[10] 张亚普, 达新宇, 谢铁城. 偏心孔缝箱体屏蔽效能电磁拓扑分析算法[J]. 电波科学学报, 2014, 29(5): 994-1002.ZHANG Yapu, DA Xinyu, XIE Tiecheng. Electromagnetic topologyalgorithm of shielding effectiveness analysis of a metallic enclosure with off-centre apertures[J]. Chinese Journal of Radio Science, 2014, 29(5): 994-1002. (in Chinese)[11] 沈宝丽, 任武, 高本庆, 等. 屏蔽门金属弹簧片的屏蔽效能分析[J]. 电波科学学报, 2003, 18(6): 699-703.SHEN Baoli, REN Wu, GAO Benqing, et al. Analysis of the shielding effectiveness of the metallic spring in the shielding door[J]. Chinese Journal of Radio Science, 2003, 18(6): 699-703. (in Chinese)吴逸汀(1991-),男,江苏人,南京理工大学博士研究生,主要从事电磁兼容和电磁场数值计算等方面的研究.盛卫星(1966-),男,江苏人,南京理工大学通信工程系教授,博士,中国兵工学会电磁技术专业委员会副主任委员,中国电子学会天线分会委员,中国兵工学会坦克装甲车专业委员会委员,主要研究方向为目标电磁散射特性建模及其应用、阵列天线、智能天线.韩玉兵(1971-),男,江苏人,博士生导师,南京理工大学通信工程系教授,博士,中国计算机学会多媒体专业委员会委员,中国兵工学会会员,主要研究方向为微波系统和天线设计中的优化算法、多输入多输出(MIMO)天线系统等.马晓峰(1981-),男,江苏人,南京理工大学通信工程系讲师,主要研究方向为阵列信号处理、软件无线电等.张仁李(1986-),男,江苏人,南京理工大学通信工程系讲师,主要研究方向为阵列信号处理、恒虚警检测等.段佳, 吴亿锋, 张磊, 等. 基于部件分解的高分辨雷达目标提取方法[J]. 电波科学学报,2015,30(4):679-685. doi: 10.13443/j.cjors. 2014091601DUAN Jia, WU Yifeng, ZHANG Lei, et al. A target extracting method basedon decomposition of components for high-resolution radar images[J]. Chinese Journal of Radio Science,2015,30(4):679-685. (in Chinese). doi: 10.13443/j.cjors. 2014091601。
0.1m~2m屏蔽壳体屏蔽效能的测量方法摘要:一、引言二、0.1m~2m屏蔽壳体概述三、屏蔽效能测量方法1.测量设备与参数2.测量步骤3.测量结果分析与评价四、测量过程中的注意事项五、结论正文:一、引言随着电子技术的不断发展,电磁兼容(EMC)问题日益受到关注。
在电磁兼容性研究中,屏蔽效能的测量是关键环节。
本文将详细介绍0.1m~2m屏蔽壳体屏蔽效能的测量方法,为相关领域的技术人员提供参考。
二、0.1m~2m屏蔽壳体概述0.1m~2m屏蔽壳体是指在电磁辐射环境下,能够对内部设备起到屏蔽作用的壳体。
其主要作用是防止外部电磁干扰进入设备内部,同时阻止内部电磁辐射对外部环境产生影响。
在我国,对该屏蔽壳体的研究及应用已取得了显著成果。
三、屏蔽效能测量方法1.测量设备与参数测量屏蔽效能的设备主要包括频谱分析仪、示波器、电磁场探头等。
此外,还需要测量屏蔽壳体的物理参数,如厚度、密度等。
2.测量步骤(1)搭建测量系统:将屏蔽壳体安装在测试平台上,连接测量设备。
(2)调整设备参数:根据被测屏蔽壳体的特性,设置频谱分析仪的工作频率、分辨率等参数。
(3)测量透过屏蔽壳体的电磁信号:将电磁场探头放置在屏蔽壳体的一侧,记录穿透屏蔽壳体的电磁信号强度。
(4)测量反射电磁信号:将电磁场探头放置在屏蔽壳体的另一侧,记录反射电磁信号强度。
(5)计算屏蔽效能:根据测量数据,计算屏蔽壳体的屏蔽效能。
3.测量结果分析与评价(1)分析测量数据,评估屏蔽效能是否达到预期目标。
(2)对比不同屏蔽壳体材料的屏蔽效能,分析其优缺点。
(3)根据测量结果,对屏蔽壳体设计进行优化。
四、测量过程中的注意事项(1)确保测量设备的精度和稳定性,定期进行校准。
(2)测量过程中避免人为因素对测量结果的影响。
(3)注意环境因素,如温度、湿度等,对测量结果的影响。
五、结论0.1m~2m屏蔽壳体屏蔽效能的测量方法在电磁兼容性研究中具有重要意义。
通过合理选择测量设备、调整参数和分析结果,可以为屏蔽壳体的设计和优化提供有力支持。
药用热敏高分子材料综述S1120494 蒋翠平[摘要]温敏性高分子材料是当今研究热点之一,它是一类能“感知”外界温度微小的物理或化学变化刺激,自身性质随之发生明显改变的功能性聚合物,通过相关文献研读,本文从三个方面论述了温度敏感性材料的性质在药物控释体系中的应用,表明其有很大的开发潜力。
[关键词] 热敏脂质体水凝胶嵌段聚合物一种较好的药物输送系统(drug delivery system,DDS)总是致力于获得更好的疗效而降低周身毒性,同时通过改善药物代谢动力学而增加其利用度,这对药物的开发提出了诸多挑战[1-4]。
对人体而言,发病往往是局部性的,为了尽量避免损伤正常的部位,研发能特异性识别组织、器官、细胞的主动靶向制剂和物理化学靶向制剂显得尤为重要[5]。
在众多的控释方式中,温度的变化不仅容易控制,而且易被应用于生物体内外,因此,温度敏感型高分子聚合物得到广泛的研究。
本文就此药用材料作如下综述。
1.热敏脂质体1.1普通热敏脂质体普通热敏脂质体是相对于磁性热敏脂质体、长循环热敏脂质体等而言的。
现有的热敏脂质体通常以二棕榈酰磷脂酰胆碱(DPPC)、二硬脂酸磷脂酰胆碱(DSPC)、热敏性材料为主要膜材制备而成。
在正常体温下,热敏脂质体中脂质体膜呈致密的胶晶态排列,故药物很难扩散出来;而当脂质体随血液循环经过预先加热的靶器官时,当温度升高到磷脂发生相转变时,磷脂中出现两相共存,出现相分离,膜的通透性增加,内容物渗漏,其内部包裹的药物大量扩散到靶器官中,在靶部位形成较高的药物浓度[6-7]。
如图1所示的过程。
Hattori等[8]的体外实验发现升温明显增强了顺铂脂质体的抗人骨肉瘤细胞的作用,还发现瘤体以及细胞内的药物浓度明显高于单纯使用脂质体者。
热敏脂质体的临床前实验一般采用荷瘤小鼠测定药物在体内各组织和加热部位的分布,观察治疗效果和生存时间。
1.2磁性热敏脂质体磁性热敏脂质体是近年来兴起的一种可以同时发挥热疗与化疗作用的靶向药物载体,它可以在外加磁场的作用下随血液循环聚集到靶器官,通过交变磁场产热,释放药物,达到定向治疗的效果。
基于Ansoft Maxwell的目标磁异常仿真及探测研究摘要:针对二战遗留下来的地雷、炸弹等未爆炸物的探测需求,开展了铁磁性目标磁异常仿真及探测研究,基于Ansoft Maxwell三维数值有限元分析软件,建立了磁目标仿真模型,研究了磁目标的静态磁场分布,对比分析了沿地磁场方向目标磁异常情况,为磁目标探测提供理论计算依据,最后通过实际测量值与仿真计算进行对比分析。
为磁探测、磁成像等提供理论依据。
引言:地下掩埋目标(如地雷)具有良好的隐藏性,致使难以被探测。
铁磁性目标在地磁场的环境下受到磁化会使地磁场发生畸变,进而引起磁信号异常,根据磁异常现象可以对磁性物体实施探测和定位,这一研究方法被称为磁异常信号探测技术(Magnetic Anomaly Detection,MAD)。
磁异常信号探测技术具有反应速度快、可靠性髙等特点受到各军事强国的重视,得到广泛的应用。
它是基于电磁现象的机制,由安装在移动载体上的磁探仪对磁性物体的磁场进行探测,并对磁性物体的磁信号实现对应的信号数据计算,得出被测物体的姿态、磁矩等磁特性,来完成对磁性物体的远距离探潜。
目前,随着对地磁现象和磁异常信号分析的水平不断发展和提高,磁传感器技术水平和精度的不断增强,磁异常探测技术已广泛应用于航空磁探、地质勘探、地磁导航等诸多领域,并且得到了很大的发展。
由于磁异常探测研究中,开展实物实验成本较大,国内多采用模拟仿真的方式对磁场进行计算。
有限元方法(Finte Element Method),可用于求解和分析静态磁场、动态磁场、结构稳定性等各种问题,是分析电磁场常用的一种计算方法。
有限元对研究对象的几何形状、材料性质、边界条件的适应性很强,能够计算不同材料和形状永磁体的场强。
R Engel-Herberta基于等效磁荷的方法,求得了均匀充磁的长方体永磁体空间磁场的数学解析式,并验证了解析方法和有限元分析法具有相同的建模效果。
宋浩利用Comsol软件给出了相对放置的永磁体,具有磁回路结构的磁极,环形磁体的磁场分布图,为静磁场的设计提供了理论依据。