矩阵的秩
- 格式:ppt
- 大小:739.50 KB
- 文档页数:21
矩阵的秩计算矩阵的秩是线性代数中一个重要的概念,它可以用来描述矩阵的线性相关性和线性无关性。
在计算机科学、工程学和物理学等领域中,矩阵的秩也有着广泛的应用。
本文将从基本概念、计算方法和应用三个方面介绍矩阵的秩。
一、基本概念矩阵的秩指的是矩阵中线性无关的行或列的最大个数。
具体来说,对于一个m行n列的矩阵A,如果它的秩为r,那么就意味着存在r 个线性无关的行或列,且没有更多的线性无关行或列。
同时,矩阵的秩也等于它的列空间或行空间的维度。
二、计算方法对于一个矩阵A,可以通过进行初等行变换或初等列变换来求解其秩。
初等行变换包括交换两行、某行乘以一个非零常数、某行加上另一行的k倍。
初等列变换与之类似。
通过这些变换,可以将矩阵A转化为行简化阶梯形或列简化阶梯形,从而求得其秩。
可以通过矩阵的特征值来计算矩阵的秩。
具体来说,对于一个n阶矩阵A,如果它有n个非零的特征值,那么它的秩为n。
反之,如果它只有k个非零特征值,那么它的秩就是n-k。
三、应用1. 线性方程组的解:对于一个m行n列的矩阵A和n行1列的矩阵X,可以通过求解AX=0来得到线性方程组的解。
如果矩阵A的秩等于n,那么线性方程组有唯一解;如果矩阵A的秩小于n,那么线性方程组有无穷多解;如果矩阵A的秩小于m,那么线性方程组无解。
2. 矩阵的相似性:矩阵的秩还可以用于判断两个矩阵是否相似。
如果两个矩阵A和B相似,那么它们的秩相等。
3. 矩阵的逆:对于一个n阶矩阵A,如果它的秩等于n,那么它是可逆的,即存在一个n阶矩阵B,使得AB=BA=I,其中I是单位矩阵。
反之,如果矩阵A的秩小于n,那么它是不可逆的。
4. 图像处理:在图像处理中,可以使用矩阵的秩来判断图像的信息量。
如果一个图像的秩较高,那么它包含了更多的信息;反之,如果一个图像的秩较低,那么它的信息量较少。
总结起来,矩阵的秩是描述矩阵线性相关性和线性无关性的重要指标。
它可以通过初等行变换、初等列变换或特征值来计算。
第五节:矩阵的秩及其求法一、矩阵秩的概念 1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式。
例如 共有 个二阶子式,有 个三阶子式矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而为 A 的一个三阶子式。
显然, 矩阵 A 共有 个 k 阶子式。
2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A )。
规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } . (4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n . 二、矩阵秩的求法1、子式判别法(定义)。
例1 设 为阶梯形矩阵,求R (B )。
解由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2.结论:阶梯形矩阵的秩=台阶数。
例如一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数。
()n m ij a A ⨯={}),min 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯kn k m cc ()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =例2 设 如果 求 a .解或 例3则2、用初等变换法求矩阵的秩定理2 矩阵初等变换不改变矩阵的秩。
第五节:矩阵的秩及其求法一、矩阵秩的概念1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式。
例如 共有个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。
显然, 矩阵 A 共有 个 k 阶子式。
2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作R (A )或秩(A )。
规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果 An ×n , 且 则 R ( A ) = n .反之,如 R ( A ) = n ,则 因此,方阵 A 可逆的充分必要条件是 R ( A ) = n .二、矩阵秩的求法1、子式判别法(定义)。
例1 设 为阶梯形矩阵,求R (B )。
解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R (B ) = 2.结论:阶梯形矩阵的秩=台阶数。
例如一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数。
()n m ij a A ⨯={}),m in 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯k nk m c c ()n m ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =例2 设 如果求 a . 解或 例3 则2、用初等变换法求矩阵的秩定理2 矩阵初等变换不改变矩阵的秩。
第一章 矩阵的秩矩阵理论是高等代数的主要内容之一, 在数学及其它科学领域中有着广泛的应用.在矩阵理论中, 矩阵的秩是一个重要的概念. 它是矩阵的一个数量特征, 而且是初等变换下的不变量. 本文归纳了矩阵的秩与向量的线性关系; 线性方程组的求解; 空间中点面位置关系; 二次型; 线性变换等问题的密切的联系.1 矩阵的秩的定义及简单的公式1.1 矩阵的秩的定义定义1一个向量组的极大线性无关组所含向量的个数称为这个向量组的秩. 所谓矩阵的行秩就是矩阵的行向量组的秩, 矩阵的列秩就是矩阵的列向量组的秩. 矩阵的行秩等于矩阵的列秩, 并统称为矩阵的秩. 另外, 矩阵的秩等于它的不为零的子式的最高阶数, 这是矩阵的秩的行列式定义.定义2设()n m a A ij ⨯=有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 , 称r 为矩阵A 的秩,记作()A R 或。
定义3 矩阵A 经过初等变换所化成的阶梯型中非零行的个数称为矩阵A 的秩. 矩阵A 的秩为r ,记为()r A R =.特别,零矩阵的秩()00=R1.2 矩阵的秩的几个简单性质性质1 ()0=A r , 当且仅当A 是零矩阵 性质2 ()n A r =, 当且仅当|A |≠0性质3 设A 是m ×n 矩阵, 则()}{n m A r ,min 0≤≤ 性质4 ()()()B r A r B A r +≤+性质5 ()()TA rank A rank =1.3矩阵秩的求法(1)定义法找出矩阵A 中不为零的最高子式,算出它的阶数. (2)初等变换法用初等变换(行、列均可)将矩阵A 化为标准形r E O O O ⎛⎫⎪⎝⎭,即可得出()R A r =;或化成阶梯形矩阵,其非零行的个数即为秩.例设6117404112901316124223A ⎛⎫ ⎪ ⎪⎪=- ⎪--- ⎪ ⎪-⎝⎭, 求秩(A) 解 A →1290404161171316124223-⎛⎫ ⎪ ⎪ ⎪ ⎪--- ⎪ ⎪-⎝⎭→1290084010115570525108403-⎛⎫⎪- ⎪⎪- ⎪-- ⎪ ⎪-⎝⎭→12900151015711015150153-⎛⎫ ⎪-- ⎪ ⎪-- ⎪-- ⎪ ⎪--⎝⎭→12900151000458800034000014-⎛⎫ ⎪-- ⎪ ⎪- ⎪- ⎪ ⎪-⎝⎭所以()3R A =.第二章 矩阵的秩的相关问题1 矩阵的秩在向量组线性相关性问题中的应用向量组的线性相关性是线性代数中一个较为抽象的概念, 它既是线性代数的重点, 又是一个难点。
矩阵的秩的定义矩阵的秩是线性代数中一个重要的概念,它描述了矩阵中线性无关的行或列的个数。
矩阵秩的定义可以通过矩阵的行阶梯形式来描述,即将矩阵化简为上三角形式时,非零行的个数就是矩阵的秩。
矩阵的秩在很多应用中都扮演着重要的角色。
首先,在线性方程组的求解中,矩阵的秩可以用来判断方程组的解的情况。
当矩阵的秩等于方程组的未知数个数时,方程组有唯一解;当矩阵的秩小于方程组的未知数个数时,方程组有无穷多解;当矩阵的秩小于方程组的未知数个数时,方程组无解。
在线性映射和线性变换中,矩阵的秩也起着重要的作用。
对于一个线性映射或线性变换,矩阵的秩等于其定义域的维数和值域的维数中的较小值。
这个结论可以用来判断线性映射或线性变换是否是一一对应的。
在求解矩阵的逆和矩阵的特征值等问题中,矩阵的秩也是一个重要的参考指标。
矩阵的逆存在的充分必要条件是矩阵的秩等于其行(或列)的个数;而矩阵的特征值的个数等于矩阵的秩。
矩阵的秩还与矩阵的行列式有密切的关系。
对于一个n阶矩阵,它的秩r等于其非零行列式的最高次数。
这个结论可以用来求解矩阵的秩,特别是对于较大的矩阵,可以利用行列式的性质来简化计算。
总结来说,矩阵的秩是一个非常重要的概念,它在线性代数中有着广泛的应用。
通过矩阵的秩,我们可以判断线性方程组的解的情况,判断线性映射或线性变换是否是一一对应的,求解矩阵的逆和矩阵的特征值等等。
了解和掌握矩阵的秩的定义和性质,对于深入理解线性代数的基本概念和方法是非常重要的。
希望通过这篇文章的阐述,读者能够对矩阵的秩有一个清晰的认识,并在实际问题中能够灵活运用矩阵的秩来解决各种线性代数相关的问题。
通过深入理解矩阵的秩的定义和性质,读者可以更好地理解线性代数的基本概念和方法,从而提高数学思维能力和问题解决能力。
第五讲 矩阵的秩矩阵的秩是线性代数中又一重要概念,它描述了矩阵的一个重要的数值特征:在判定向量组的线性相关性,线性方程组是否有解,求矩阵的特征值以及在多项式、空间几何中等多个方面都有广泛的应用。
本讲我们主要了解矩阵秩的求方法以及其与方程组各类型解的关系。
5.1.1 矩阵秩的定义在第二讲中,我们通过矩阵的初等变换定义了矩阵的行阶梯形、矩阵的行最简形以及矩阵的标准形。
其中矩阵行阶梯形与矩阵行最简形不唯一,但矩阵的标准形唯一。
因此,下面就利用矩阵标准形的唯一性来给出矩阵秩的概念。
定义5.1 对于给定的m n ⨯矩阵A ,它的标准形(-)(-)(-)(-)rr n r m r r m r n r m nE OF O O ⨯⨯⨯⨯⎛⎫=⎪⎝⎭由数r 完全确定,我们称数r 为矩阵m n A ⨯的秩(rank ),记作()R A 。
其中, r E 是r 阶单位矩阵;其余都是零矩阵。
注:(1) 零矩阵的秩为零:()0R O =;(2) 矩阵的秩就是矩阵标准形中左上角单位矩阵的阶数。
(3)对于n 阶方阵A ,当()R A n =时,称A 为满秩矩阵。
当()R A n <时,称A 为降秩矩阵.例5.1 求矩阵111610121210A ⎛⎫⎪=-- ⎪ ⎪-⎝⎭的秩。
解 先将A 通过初等变换化为标准形111610121210A ⎛⎫ ⎪=-- ⎪ ⎪-⎝⎭2131111601280306r r r r --⎛⎫⎪−−−→ ⎪ ⎪⎝⎭323111601280026r r -⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭111601280013⎛⎫ ⎪→ ⎪ ⎪⎝⎭12312101201280013r r r ---⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭13232100101020013r r r r +-⎛⎫ ⎪−−−→ ⎪ ⎪⎝⎭ ()4142433312,3100001000010c c c c c c E O -⨯--⎛⎫⎪−−−−−→= ⎪ ⎪⎝⎭可看出,矩阵A 的标准形中左上角是3阶单位矩阵,所以()3R A =. 矩阵秩有如下性质 性质5.1 ()()T R A R A =; 性质5.2 }{0()min ,R A m n ≤≤;性质5.3 如果n 阶方阵A 可逆,则()R A n =;(可逆矩阵也称为满秩矩阵) 性质5.4 {}()min (),()R PA R P R A ≤; 当P 可逆时,()()R PA R A =;若 P Q 、都可逆,且有PAQ B =,则()()R A R B =.性质5.5 max {}(),()()()+()R A R B R A B R A R B ≤≤ ;特别地,当B 为列矩阵时,有max {}(),()()()+1R A R B R A B R A ≤≤ ;性质5.6 ()()();()()().r A B r A r B r A B r A r B +≤+-≥-性质5.7 设A 为m n ⨯矩阵,(),r A r =则A 的任意S 行组成的矩阵B ,有().r B r s n ≥+-下面只证明性质5.3和性质5.4,其余的性质请学生自证。
矩阵的秩的运算一、矩阵秩的定义1. 基本概念- 对于一个m× n矩阵A,它的秩r(A)是矩阵A中线性无关的行向量(或列向量)的最大个数。
- 例如,对于矩阵A=begin{pmatrix}1&2&32&4&6end{pmatrix},通过观察可以发现第二行是第一行的2倍,所以矩阵A的行向量中最多只有一个线性无关的向量,r(A) = 1。
2. 等价定义- 矩阵A的秩等于矩阵A的行最简形矩阵中非零行的行数。
例如,将矩阵A=begin{pmatrix}1&1&11&2&31&3&5end{pmatrix}化为行最简形begin{pmatrix}1&0& - 10&1&20&0&0end{pmatrix},非零行有2行,所以r(A)=2。
二、矩阵秩的基本运算性质1. r(A)=r(A^T)- 矩阵A与其转置矩阵A^T具有相同的秩。
这是因为矩阵A中行向量的线性相关性与A^T中列向量的线性相关性是对应的。
例如,若A=begin{pmatrix}1&2&34&5&6end{pmatrix},A^T=begin{pmatrix}1&42&53&6end{pmatrix},通过计算可知r(A)=2,r(A^T) = 2。
2. r(kA)- 若k≠0为常数,r(kA)=r(A)。
这是因为数乘矩阵只是对矩阵的每个元素进行数乘,不会改变向量之间的线性相关性。
例如,设A=begin{pmatrix}1&23&4end{pmatrix},2A=begin{pmatrix}2&46&8end{pmatrix},r(A)=2,r(2A)=2。
- 当k = 0时,r(0A)=0(零矩阵的秩为0)。
3. r(A + B)≤ r(A)+r(B)- 设A=begin{pmatrix}1&00&0end{pmatrix},B=begin{pmatrix}0&00&1end{pmatrix},r(A)=1,r(B)=1,A +B=begin{pmatrix}1&00&1end{pmatrix},r(A + B)=2,此时r(A + B)=r(A)+r(B);再设A=begin{pmatrix}1&00&0end{pmatrix},B=begin{pmatrix}-1&00&0end{pmatrix},r(A)=1,r(B)=1,A +B=begin{pmatrix}0&00&0end{pmatrix},r(A + B)=0,r(A + B)<r(A)+r(B)。
矩阵的秩公式(一)
矩阵的秩公式
1. 定义
矩阵的秩是指矩阵中线性无关的行(或列)的最大数量。
对于一个m × n 的矩阵 A,其秩记作 rank(A)。
2. 行秩与列秩
矩阵的行秩和列秩是相等的,它们都等于矩阵的秩。
3. 秩的性质
对于一个m × n 的矩阵 A,其秩 rank(A) 满足以下性质:•rank(A) ≤ min(m, n)
•rank(A) = rank(A^T) (A^T 表示 A 的转置矩阵)
•rank(A + B) ≤ rank(A) + rank(B)
4. 矩阵的秩公式
矩阵的秩可以通过使用高斯消元法将矩阵化为行阶梯形矩阵,并计算行阶梯形矩阵中非零行的数量来得到。
5. 举例说明
例1:
考虑以下矩阵 A:
1 2 3
4 5 6
7 8 9
我们可以通过对矩阵 A 进行高斯消元变换得到行阶梯形矩阵:
1 2 3
0 -3 -6
0 0 0
可以观察到,在行阶梯形矩阵中非零行的数量为 2,因此矩阵 A 的秩为 2。
例2:
考虑以下矩阵 B:
1 2 -3
-4 5 6
7 8 -9
通过对矩阵 B 进行高斯消元变换得到行阶梯形矩阵:
1 2 -3
0 1 2
0 0 0
在行阶梯形矩阵中非零行的数量仍为 2,因此矩阵 B 的秩也为 2。
综上所述,矩阵的秩公式是通过将矩阵化为行阶梯形矩阵,并计
算非零行的数量来确定矩阵的秩。
矩阵的秩理解
矩阵的秩是指矩阵中非零行的个数,也可以理解为矩阵中线性无关的行或列的个数。
矩阵的秩是很重要的概念,它可以用来判断矩阵的行列式是否为0,从而判断矩阵是否可逆。
如果矩阵的秩等于它的行数或列数,那么该矩阵就是一个满秩矩阵,它一定是可逆的。
如果矩阵的秩小于它的行数或列数,那么该矩阵就是一个奇异矩阵,它是不可逆的。
另外,矩阵的秩也可以用来描述线性方程组的解的情况。
如果一个线性方程组有唯一解,那么它的系数矩阵的秩一定等于方程组中未知数的个数;如果一个线性方程组有无穷多解,那么它的系数矩阵的秩一定小于方程组中未知数的个数。
总之,矩阵的秩在线性代数中扮演着非常重要的角色,它不仅可以用来判断矩阵的可逆性,还可以用来描述线性方程组的解的情况。
熟练掌握矩阵的秩的概念和应用,对于学习线性代数和应用数学都是非常有帮助的。
- 1 -。