矩阵的秩求法
- 格式:ppt
- 大小:251.50 KB
- 文档页数:15
第五节:矩阵的秩及其求法之五兆芳芳创作一、矩阵秩的概念 1. k 阶子式 定义1 设 在A 中任取k 行k 列穿插处元素按原相对位置组成的阶行列式,称为A 的一个k 阶子式.例如共有个二阶子式,有 个三阶子式矩阵 A 的第一、三行,第二、四列相交处的元素所组成的二阶子式为 而为 A 的一个三阶子式.显然, 矩阵 A 共有 个k 阶子式.2. 矩阵的秩 定义2 设 有r 阶子式不为0,任何r +1阶子式(如果存在的话)全为0 ,称r 为矩阵A 的秩,记作R (A )或秩(A ).规则: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质,(3) R(A ) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果An ×n , 且 则 R ( A ) = n .反之,如 R()nm ij a A ⨯={}),min 1(n m k k ≤≤43334=C C 1015643213-=D nm ⨯()nm ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠( A ) = n ,则因此,方阵 A 可逆的充分需要条件是 R ( A ) = n . 二、矩阵秩的求法 1、子式判别法(定义).例1 设 为阶梯形矩阵,求R (B ). 解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则R (B ) = 2.结论:阶梯形矩阵的秩=台阶数.例如 一般地,行阶梯形矩阵的秩等于其“台阶数”——非零行的行数. 例2 设 如果 求a .解 或例3则 2、用初等变换法求矩阵的秩定理2矩阵初等变换不改动矩阵的秩. 即则注: 只改动子行列式的符号. 是 A 中对应子式的k 倍.2021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭⎪⎪⎪⎭⎫ ⎝⎛=a a a A 111111(),3<A R ()3<A R 1=∴a 2-=a ()3=A R =K 3-BA →)()(B R A R =ji r r ↔.1irk .2是行列式运算的性质.求矩阵A 的秩办法:1)利用初等行变换化矩阵A 为阶梯形矩阵B 2)数阶梯形矩阵B 非零行的行数即为矩阵A 的秩. 例4求 解R(A ) = 2例5三、满秩矩阵定义3A 为n 阶方阵时,称 A 是满秩阵,(非奇异矩阵) 称 A 是降秩阵,(奇异矩阵) 可见:对于满秩方阵A 施行初等行变换可以化为单位阵E ,又按照初等阵的作用:每对A 施行一次初等行变换,相当于用一个对应的初等阵左乘A,由此得到下面的定理. 定理3设A 是满秩方阵,则存在初等方阵 使得对于满秩矩阵A ,它的行最简形是n 阶单位阵 E . 例如A 为满秩方阵.关于矩阵的秩的一些重要结论:ji krr +.3().A R μλμλ,2,6352132111,求)(且设=⎪⎪⎪⎭⎫⎝⎛--=A R A (),n A R =(),n A R <()0≠⇔=A nA R EA P P P P s s =-121,定理5R (AB )R (A ),R (AB )R (B ),即R (AB )min{R (A ),R (B )}设A 是 矩阵,B 是 矩阵, 性质1性质2 如果 A B = 0 则性质3 如果 R (A )= n, 如果A B = 0 则 B = 0. 性质4 设A,B 均为矩阵,则例8 设A 为n 阶矩阵,证明R (A+E )+R (A-E )≥n 证: ∵ (A+E )+(E-A )=2E∴R (A+E )+ R ( E-A )≥ R (2E )=n而 R ( E-A )=R ( A-E ) ∴ R (A+E )+R (A-E )≥n≤nm ⨯tn ⨯).()()(AB R n B R A R ≤-+.)()(n B R A R ≤+nm ⨯).()()(B R A R B A R +≤±。
矩阵秩的计算方法:将矩阵A按初等行数变换为梯形矩阵B,梯形矩阵B的非零行数即为矩阵A的秩。
在线性代数中,矩阵A的列秩是A的线性独立列数的最大值,类似地,行秩是A的线性独立的水平行数的最大值,一般说来,如果将矩阵看作行向量或列向量,则秩是这些行向量或列向量的秩,即包含在最大不相关群中的向量的个数。
矩阵秩的性质;
1.矩阵的行秩、列秩、秩均相等。
2.初等变换不改变矩阵的秩。
3.矩阵Rab<=min{Ra,Rb}乘积的秩。
4.如果p和q是可逆矩阵,则r(PA)=r(A)=r(AQ)=r(PAQ)。
5.当r(A)<=n-2时,最高阶非零子公式的阶数<=n-2,n-1阶子公式为零,而伴随矩阵中的每个元素都是n-1阶子公式加一个符号,所以伴随矩阵是零矩阵。
6.当r(A)<=n-1时,最高阶非零子公式的阶数为<=n-1,因此n-1
阶子公式可能不为零,因此伴随矩阵可能为非零(等号成立时伴随矩阵必须为非零)。
矩阵秩的概念矩阵秩的概念矩阵是线性代数中的重要概念,它是由若干行和列组成的矩形数组。
在矩阵中,每个元素都可以用一个行列坐标来表示。
而矩阵秩则是描述了一个矩阵所包含的信息量大小的指标。
一、定义在数学中,一个m×n(m行n列)的矩阵A的秩,也称为矩阵A的维数或者等级,通常记作rank(A)。
它表示该矩阵所包含信息量大小的指标。
简单来说,就是该矩阵所包含非零行或非零列的最大个数。
二、求解方法1. 高斯消元法高斯消元法就是将一个增广矩阵通过初等变换化为行最简形式,然后统计出非零行(列)个数即可得到该矩阵的秩。
2. 初等变换法初等变换法就是将一个矩阵通过初等变换化为行最简形式,然后统计出非零行(列)个数即可得到该矩阵的秩。
3. 行列式法对于一个n*n方阵A,在进行初等变换时如果其主对角线上有0,则可以通过行列式法将其转化为一个上三角矩阵。
此时,该矩阵的秩就等于其主对角线上非零元素的个数。
三、性质1. 对于任意矩阵A,rank(A) <= min(m,n),其中m和n分别表示A 的行数和列数。
2. 对于任意矩阵A,rank(A) = rank(A^T),其中A^T表示A的转置矩阵。
3. 对于任意矩阵A和B,有rank(AB) <= min(rank(A), rank(B))。
4. 对于任意矩阵A和B,有rank(A+B) <= rank(A) + rank(B)。
四、应用1. 线性方程组求解对于一个线性方程组Ax=b,如果rank(A)=rank([A|b]),则该方程组有唯一解;如果rank(A)<rank([A|b]),则该方程组无解;如果rank(A)<n且rank([A|b])=n,则该方程组有无限多解。
2. 线性变换求解对于一个线性变换T:V→W(其中V和W分别表示两个向量空间),其维数为dim(V)*dim(W),而T的秩则是指T所映射出来的向量空间的维数。
求矩阵的秩的三种方法矩阵是线性代数中的一个重要概念,它由一个数域中的矩形阵列组成,是线性变换的一种表现形式。
矩阵的秩是矩阵的重要性质之一,它可以告诉我们矩阵中行向量或列向量之间的关系。
在实际应用中,求解矩阵的秩是非常常见的问题。
本文将介绍矩阵的三种求解秩的方法。
方法一:高斯消元法高斯消元法是求解矩阵秩的一种基础方法。
对于一个矩阵A,如果它的秩为r,则A必然存在一个大小为r的非零行列式。
我们可以通过对矩阵A进行初等行变换将矩阵转化为行简化阶梯矩阵,然后统计矩阵中非零行的个数来确定矩阵的秩。
具体步骤如下:1. 对矩阵A进行高斯列变换,将A转化为行简化阶梯矩阵形式。
2. 统计矩阵中非零行的个数,即为矩阵的秩。
对于下面的矩阵A,我们可以通过高斯消元法求解矩阵的秩:$$A=\begin{bmatrix}1 &2 & 3\\4 &5 & 6\\7 & 8 & 9\end{bmatrix}$$按照高斯消元法的步骤对A进行初等行变换,得到行简化阶梯矩阵:方法二:矩阵的列空间对于一个矩阵A,其列空间是由A中所有列向量所张成的向量空间。
矩阵的秩等于它的列空间的维度。
我们可以先求解矩阵A的列空间的维度,然后确定矩阵A的秩。
具体步骤如下:2. 取矩阵A中与非零列对应的列向量,将它们作为张成列空间的一组基。
3. 求解列空间的维度,即为矩阵A的秩。
阶梯矩阵中非零列的位置分别是1和2,因此取A中的第1列和第2列作为列空间的一组基。
可以看出,这组基中存在一个线性关系:第2列 = 2*第1列。
矩阵A的列空间实际上只由A中的第1列张成,其维度为1,因此矩阵A的秩为1。
总结:本文介绍了求解矩阵秩的三种方法:高斯消元法、矩阵的列空间和矩阵的行空间。
对于一般的矩阵,三种方法的求解结果并不一定相同。
但无论采用哪种方法,都能够有效地求解矩阵的秩。
还有一些特殊的矩阵,它们的秩具有一些特殊性质:1. 对于一个n阶矩阵A,如果它是一个可逆矩阵,那么它的秩为n。
第五节:矩阵的秩及其求法一、矩阵秩的概念1. k 阶子式定义1 设 在A 中任取k 行k 列交叉处元素按原相对位置组成的 阶行列式,称为A 的一个k 阶子式。
例如 共有 个二阶子式,有 个三阶子式 矩阵A 的第一、三行,第二、四列相交处的元素所构成的二阶子式为 而 为 A 的一个三阶子式。
显然, 矩阵 A 共有 个 k 阶子式。
2. 矩阵的秩定义2 设 有r 阶子式不为0,任何r+1阶子式(如果存在的话)全为0 , 称r为矩阵A的秩,记作R (A)或秩(A )。
规定: 零矩阵的秩为 0 .注意:(1) 如 R ( A ) = r ,则 A 中至少有一个 r 阶子式 所有 r + 1 阶子式为 0,且更高阶子式均为 0,r 是 A 中不为零的子式的最高阶数,是唯一的 .(2) 有行列式的性质, (3) R(A) ≤m , R (A ) ≤n , 0 ≤R (A ) ≤min { m , n } .(4) 如果 An ×n , 且 则 R( A ) = n .反之,如 R ( A ) = n ,则因此,方阵 A 可逆的充分必要条件是 R ( A ) = n .二、矩阵秩的求法1、子式判别法(定义)。
例1 设 为阶梯形矩阵,求R(B )。
解 由于 存在一个二阶子式不为0,而任何三阶子式全为0,则 R(B ) = 2.结论:阶梯形矩阵的秩=台阶数。
例如()n m ij a A ⨯={}),m in 1(n m k k ≤≤⎪⎪⎪⎭⎫ ⎝⎛----=110145641321A 182423=C C 43334=C C 10122--=D 1015643213-=D n m ⨯k n k m c c ()n m ij a A ⨯=0,r D ≠()().T R A R A =0,A ≠0.A ≠⎪⎪⎪⎭⎫ ⎝⎛=000007204321B 02021≠⎪⎪⎪⎭⎫ ⎝⎛=010*********A ⎪⎪⎪⎭⎫ ⎝⎛=001021B ⎪⎪⎪⎭⎫ ⎝⎛=100010011C 125034000D ⎛⎫ ⎪= ⎪ ⎪⎝⎭21235081530007200000E ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭()3=A R ()2=B R ()3=C R ()2R D =()3R E =一般地,行阶梯形矩阵的秩等于其“台阶数”—— 非零行的行数。
矩阵的秩的求法
矩阵秩是用来衡量矩阵行(列)列向量空间的维数,它也是描述矩阵线性变换能力的量,是矩阵分解的重要指标,它的求法有多种,主要有下面几种:
一、基本定义法:
秩(Rank)是一个矩阵中非零的最大线性无关列数,也就是说矩阵有n列向量,如果它们的线性组合能够得到任意的列向量,就称这n列向量线性无关,它们之间构成一种基,n就是该矩阵的秩。
二、行列式法
用行列式法求解矩阵秩,是把矩阵的秩定义为矩阵的行列式值的非零因子的个数,例如矩阵的行列式值是 = 31 + 42 + 53,那么矩阵的秩便是三个非零因子的个数。
三、矩阵初等行变换法
采用该法求解矩阵秩的目的是要把原矩阵变换为一个列向量极
简行阶梯形矩阵,然后该矩阵的秩就等于非零行的数量。
矩阵秩常用公式和结论证明
1. 矩阵秩有以下性质:
(1)矩阵A的秩等于其列向量组的极大线性无关组中向量的
个数,也等于其行向量组的极大线性无关组中向量的个数。
(2)矩阵A的秩等于其非零子式(行列式不为0的子矩阵)
的最高阶数。
(3)如果R(A)=r,则A可以表示为r个秩为1的矩阵
之和,即A=A1+A2+…+Ar。
其中,A1、A2、…、Ar都是秩为1的矩阵。
2. 计算矩阵秩的常用公式
(1)初等变换法:对矩阵进行初等变换,使其化为阶梯形矩阵,阶梯上非零行数就是矩阵的秩。
(2)行列式法:计算矩阵的所有阶数的子式的行列式,其中
最高阶数的非零子式的阶数就是矩阵的秩。
(3)矩阵秩的性质法:通过矩阵秩的性质使用相关公式求解。
(4)Gauss-Jordan消元法:通过高斯消元及矩阵初等变换的
方法将矩阵化为行最简形矩阵,其行数即为矩阵的秩。
以上是矩阵秩常用公式和结论的介绍,希望能对您有所帮助。
矩阵的秩相关公式
矩阵的秩是指矩阵中最大行数,也就是矩阵中主对角线以下的行数。
矩阵的秩对于矩阵的计算和分析都非常重要。
以下是矩阵秩的一些相关公式:
1. 矩阵秩的计算公式:设 $A$ 为 $m times n$ 矩阵,则矩阵$A$ 的秩为 $min(n,m)$,即 $A$ 的秩不超过矩阵中任何一行或一列的最大值。
2. 矩阵秩的性质:矩阵秩的值不受矩阵中个别行或列的影响,即对于任意两个矩阵 $A$ 和 $B$,如果 $A$ 的秩等于 $B$ 的秩,则$A$ 和 $B$ 中所有行和列的秩都相等。
3. 矩阵秩的应用:矩阵秩的计算和分析对于矩阵的计算和分析都非常重要。
矩阵的秩可以用来判断矩阵是否可逆,也可以用来求解线性方程组和矩阵的对角化等。
拓展:
4. 矩阵秩的符号:矩阵秩的符号与矩阵中行向量的秩有关。
如果矩阵 $A$ 的秩为 $n$,则 $A$ 中所有行向量的秩都为 $n$,也就是说,$A$ 中所有非零行向量都是线性相关的。
如果矩阵 $A$ 的秩为 $m$,则 $A$ 中所有行向量的秩都为 $m$,也就是说,$A$ 中所有非零行向量都是线性相关的。
5. 矩阵秩的递增顺序:对于任意两个矩阵 $A$ 和 $B$,如果$A$ 的秩大于 $B$ 的秩,则 $A$ 中所有行向量的秩都大于 $B$ 中所有行向量的秩。
反之,如果 $B$ 的秩大于 $A$ 的秩,则 $B$ 中
所有行向量的秩都大于 $A$ 中所有行向量的秩。
矩阵的秩8个公式及证明
矩阵的秩是线性代数中的一个重要概念,它描述了矩阵中线性无关的列(或行)的最大数量。
下面我将列举并证明矩阵的秩的八个公式。
1. 零矩阵的秩为0,证明很简单,因为零矩阵中没有非零的行或列。
2. 对角矩阵的秩等于非零对角元素的个数,证明也比较简单,因为对角矩阵中只有对角线上的元素可能非零,所以秩等于非零对角元素的个数。
3. 初等变换不改变矩阵的秩,初等变换包括交换矩阵的两行(列),用非零常数乘以矩阵的某一行(列),以及用一个非零常数乘以矩阵的某一行(列)加到另一行(列)上。
这些操作不改变矩阵的秩。
4. 行(列)等价的矩阵具有相同的秩,行等价指的是通过一系列的初等行变换可以相互转化的矩阵,列等价类似。
由于初等变换不改变矩阵的秩,所以行(列)等价的矩阵具有相同的秩。
5. 矩阵的秩不超过它的行数和列数中的较小值,这是因为矩阵
的秩描述的是矩阵中线性无关的列(或行)的最大数量,而这个数
量不可能超过矩阵的行数或列数。
6. 对于任意的矩阵A和B,秩(A + B) ≤ 秩(A) + 秩(B),证
明过程比较复杂,可以使用矩阵的行列式性质和秩的定义进行证明。
7. 对于任意的矩阵A和B,秩(AB) ≤ min(秩(A), 秩(B)),
证明过程比较复杂,可以使用矩阵的行列式性质和秩的定义进行证明。
8. 对于任意的矩阵A,秩(A) = 秩(A^T),这个公式的证明比
较简单,可以通过矩阵的转置操作和秩的定义进行证明。
综上所述,这是矩阵的秩的八个公式及其证明。
这些公式在线
性代数中具有重要的应用和意义。