无创血流动力学监测
- 格式:pdf
- 大小:12.49 MB
- 文档页数:74
第2章无创血流动力学监测近十年来,血流动力学监测设备从短时监测向长时实时监测的方向发展,从有创向微创甚至无创的方向发展。
虽然在不同病人中,各种无创血流动力学的检查结果的可靠性差强人意,还有很多需改进的地方,它在获取安全性及简单性的同时丢失了准确性,但它的无创性及操作的简单性为它的临床广泛使用提供了可能。
一、非侵入式脉冲轮廓分析仪(一)T-lineT-line 系统由美国圣地亚哥的Tensys Medical公司生产。
它使用一种称作扁平张力(applanation tonometry)的仪器作为感受器来进行脉冲轮廓分析。
测试时在患者的桡动脉上放置动脉压力传感器,在找到合适位置后,感受器记录被测试者的所有的动脉压力值,并给予被测试者相应的机械压,维持机械压与动脉的跨壁压为零。
随着动脉压值升高,被测试者的受到的机械压力也逐渐升高,达到最大后,动脉压下降,所需机械压力也随之下降。
根据所需机械压大小获得动脉波形图。
与动脉导管监测相比,在监测血压方面,T-line的准确性已被证明,即使在重症监护人群中,它的误差率及一致性也达到了达到美国医疗仪器促进协会(Association for the Advancement of Medical Instrumentation,AAMI)间歇无创血压监测设备的标准。
同时它通过一种特殊的算法结合患者的年龄,性别及其他的生理参数,对动脉波进行计算,得出被测者的心输出量。
有研究报道,在重症患者,该算法与已为大家接受的校准脉冲轮廓分析算法相比,其误差率为23 %。
一项研究对50名心胸手术后患者进行分析,发现T-line测得的CO准确性较高,但该研究对一致性的要求较宽泛。
该研究同时证实了T-line的反应测试者变化趋势的准确性高达95%。
目前关于T-line系统心输出量的测定的准确性的有待于进一步研究,已有的文献暂不能给出肯定的答案,但其对心胸手术患者变化趋势的正确反映,为手术患者围手术期的血流动力学的监测提供可能。
无创血流动力学监测无创血流动力学(LiDCO)监测是近几年来临床广泛使用的血流动力学监测技术。
LiDCO技术测量参数较多,可相对全面地反映血流动力学参数与心脏舒缩功能的变化。
LiDCO血流动力学分析仪同时具备无创与微创两种监测模式。
无创模式基于血管卸荷技术,该技术使用无创指套获得实时的动脉波形,无创袖带校准,经过计算获取血流动力学参数。
LiDCO血流动力学分析仪针对△SV(每搏量增加率)和Frank-Starling原则,依据物理学的定律,结合生理和病理生理学概念,对循环系统中血液运动的规律性进行定量的、动态的、连续的测量和分析,内置了详细的容量负荷试验指导流程,多种容量负荷试验流程适配不同状态的患者。
在不依赖深静脉置管的情况下,LiDCO也能合理判断患者液体容量状态,反映心脏、血管、容量、组织的氧供氧耗等方面功能的多项指标,更好地帮助麻醉科、手术室、重症监护病房、急诊科和其他科室医护人员了解患者血流动力学实时变化,为临床治疗提供数字化的依据,帮助医生制定更贴合患者个体情况的用药和补液方案,辅助临床决策。
有关LiDCO血流动力学分析仪的检测参数,主要有以下几点:CO(心排量)、SV(每搏量/每搏量指数)、SVR(外周阻力/外周阻力指数)、SVV(每搏量变异率)、PPV(脉压变异率)、HRV(心率变异率)、△SV(每搏量增加率)。
其中,主要的监测参数介绍如下:CO:每分钟左心室或右心室射入主动脉或肺动脉的血量,通常所称心输出量,是指每分重心输出量,人体静息时SV约为70毫升(60~80毫升),如果心率每分钟平均为75次,则每分钟输出的血量约为5000毫升(4500~6000毫升)。
SV:指一次心搏,一侧心室射出的血量,称每搏输出量,简称搏出量,搏出量等于心舒末期容积与心缩末期容积之差值,约60~80毫升,影响搏出量的主要因素有:心肌收缩力、静脉回心血量(前负荷)、动脉血压(后负荷)。
SVV:在一个机械通气周期中,吸气时SV增加,呼气时SV下降,以此来算出SVV,SVV来评估液体应答能力,当SVV高于13%时,进行补液或血管活性药物,需要注意的是,纠正SVV不是目标,SVV仅仅是一个工具,提供临床医师用药补液的参考。
无创血流动力学监测在儿科休克患儿治疗中的指导价值分析引言休克是儿科重症患儿常见的临床问题之一,是由于全身组织灌注不足导致的生命威胁性疾病。
休克患儿的早期识别和及时干预对于患儿的生存和康复至关重要。
无创血流动力学监测技术在儿科休克患儿的治疗中具有重要的指导价值,本文将对无创血流动力学监测在儿科休克患儿治疗中的指导价值进行深入分析。
一、无创血流动力学监测的概念及技术原理无创血流动力学监测是指通过无创性的手段监测体循环的血流动力学参数,包括心率、心排量、脉搏压、中心静脉压等指标,以及心脏前后负荷等参数。
无创血流动力学监测技术主要包括多普勒超声心动图、脉搏指示持续血流动力学监测技术(PiCCO)、生物电阻抗技术(Bioimpedance)等。
多普勒超声心动图是一种利用多普勒效应观察和测定心脏各种活动的无创检测技术,通过超声波探头放置在患儿的胸部,可以实时观察心脏的收缩和舒张运动,测定心脏的收缩末期容积、心脏排血量等参数。
脉搏指示持续血流动力学监测技术(PiCCO)是一种通过经皮动脉和经皮静脉导管监测患儿体循环血流动力学参数的技术,可以实时监测心输出量、心脏前负荷、心脏后负荷等指标,为临床治疗提供重要的参考依据。
生物电阻抗技术(Bioimpedance)是一种通过在患儿体表贴附多个电极,通过测量电流通过患儿身体组织的电阻来实现无创监测患儿的心排量、心率、中心静脉压等参数的技术。
二、无创血流动力学监测在儿科休克患儿治疗中的应用1. 早期识别休克类型无创血流动力学监测技术可以帮助临床医生早期识别休克类型,根据患儿的血流动力学参数,可以快速判断出患儿是低心排量休克、高心排量休克还是阻塞性休克,有针对性地进行治疗。
2. 指导治疗策略通过监测患儿的心输出量、心脏前后负荷等血流动力学参数,可以有效地指导临床医生选择合适的治疗策略,包括液体复苏、血管活性药物使用、机械通气等,及时纠正休克状态。
3. 监测治疗效果无创血流动力学监测技术可实时监测患儿在治疗过程中的血流动力学变化,评估治疗效果,调整治疗方案,保证治疗效果最大化。
血流动力学监测的方法血流动力学监测是一种通过测量和监测患者的血液流动和心血管功能参数来评估其循环系统状态和功能的方法。
血流动力学监测可以提供有关心脏输出量、血压、血流速度、血液容量和循环阻力等重要指标的信息,从而帮助医生诊断疾病、制定治疗方案和监测治疗效果。
血流动力学监测的主要方法包括无创性和创伤性两种。
无创性血流动力学监测是通过使用非侵入性技术来测量和监测患者的血流动力学参数。
常用的无创性血流动力学监测方法包括血压测量、脉搏波分析、心电图和超声心动图等。
血压测量是最常用的无创性血流动力学监测方法之一。
通过使用血压计和袖带,可以测量患者的收缩压和舒张压,从而评估其血压水平。
血压是评估循环系统功能的重要指标,可以反映心脏泵血能力和血管阻力情况。
脉搏波分析是一种通过分析脉搏波形来评估患者的心脏输出量和血液容量的方法。
脉搏波形反映了心脏收缩时产生的压力波传播到体循环中的情况。
通过对脉搏波形的分析,可以计算出心脏输出量、心脏指数和血液容量等参数。
心电图是一种通过记录心脏电活动来评估心脏功能的方法。
通过在患者胸部贴上电极,可以记录到心脏收缩和舒张的电活动信号。
心电图可以提供关于心脏节律、心脏传导功能和心室肥厚等信息,对评估心脏功能和监测心脏病变具有重要意义。
超声心动图是一种通过使用超声波技术来观察和评估心脏结构和功能的方法。
通过在患者胸部施加超声波探头,可以实时观察到心脏的收缩和舒张过程,从而评估心脏功能和心脏瓣膜的情况。
超声心动图可以提供关于心脏收缩功能、心脏瓣膜功能和心脏腔径等重要指标的信息。
除了无创性血流动力学监测方法,创伤性血流动力学监测方法也被广泛应用于严重疾病患者的监测和治疗中。
创伤性血流动力学监测方法需要通过插入导管或探头进入患者的血管或心脏,直接测量和监测血流动力学参数。
常用的创伤性血流动力学监测方法包括中心静脉压监测、肺动脉压监测和心输出量监测等。
中心静脉压监测是通过在颈部或锁骨下静脉插入导管来测量患者的中心静脉压力。
无创血流动力学监测仪操作流程及评分标准操作流程1. 准备工作- 确保无创血流动力学监测仪的电源连接正常,并处于工作状态。
- 检查监测仪的传感器是否按照正确的方法连接到患者身体的适当位置。
2. 设置监测参数- 打开监测仪的控制界面。
- 根据患者的情况和临床需求,选择要监测的参数,如血压、心率、血氧饱和度等。
- 输入患者的个人信息和基本生理数据,以便监测仪能够根据个体特征进行准确的监测。
3. 开始监测- 将传感器放置在患者适当的位置,如手腕、手指或耳垂。
- 启动监测仪并等待一段时间以让仪器稳定和校准。
- 检查监测仪显示屏上的数据是否稳定和准确。
4. 校准和调整- 根据需要,进行监测仪的校准和调整,以确保数据的准确性和可靠性。
- 检查监测仪的传感器是否牢固且正确地贴合患者的皮肤,并根据需要进行调整。
5. 结束监测- 当监测完成或不再需要监测时,关闭监测仪。
- 注意妥善处理监测仪和传感器,以确保其长期使用寿命和安全性。
- 清理和消毒传感器,以便下次使用。
评分标准在使用无创血流动力学监测仪时,我们可以根据以下评分标准来评估其性能和准确度:1. 信号质量评分- 优秀:传感器与皮肤良好贴合,信号稳定,无噪音干扰。
- 良好:传感器与皮肤贴合良好,信号基本稳定,少量噪音干扰。
- 一般:传感器与皮肤贴合一般,信号稍不稳定,存在噪音干扰。
- 较差:传感器与皮肤贴合较差,信号不稳定,噪音干扰明显。
- 无效:无法获取有效信号。
2. 数据准确性评分- 优秀:监测数据与实际情况非常接近,误差范围在±2%以内。
- 良好:监测数据与实际情况较接近,误差范围在±5%以内。
- 一般:监测数据与实际情况基本接近,误差范围在±10%以内。
- 较差:监测数据与实际情况较为偏离,误差范围在±15%以内。
- 无效:监测数据与实际情况相差较大,误差超过±15%。
根据以上评分标准,我们可以对无创血流动力学监测仪的操作和数据进行评估,并根据评分结果来判断监测的准确性和信号的质量。
无创血流动力学监测评分标准
简介
本文档旨在制定一套评分标准,用于评估无创血流动力学监测
的质量和准确性。
无创血流动力学监测是一种非侵入性的监测方法,用于评估患者的血流和循环系统功能。
评分标准
1. 监测工具的准确性 (30分)
评估监测工具的准确性是基于工具的测量误差、重复性和和可
靠性。
评分标准如下:
- 工具的测量误差小于3%:10分
- 工具的测量误差在3%到5%之间:8分
- 工具的测量误差大于5%:5分
2. 监测方法的适用性 (30分)
评估监测方法的适用性是基于方法对不同患者群体的适用性程度。
评分标准如下:
- 监测方法适用于所有患者群体:10分
- 监测方法适用于大部分患者群体:8分
- 监测方法适用于少部分患者群体:5分
3. 监测结果的精确性 (30分)
评估监测结果的精确性是基于监测结果与黄金标准的比较。
评分标准如下:
- 监测结果与黄金标准完全一致:10分
- 监测结果与黄金标准相对一致:8分
- 监测结果与黄金标准不一致:5分
4. 监测过程的可操作性 (10分)
评估监测过程的可操作性是基于监测方法的便捷程度和操作难度。
评分标准如下:
- 监测过程简便易行:10分
- 监测过程操作较复杂:8分
- 监测过程操作非常复杂:5分
总结
本评分标准综合考虑了无创血流动力学监测工具的准确性、适用性、结果精确性和监测过程的可操作性。
通过使用此评分标准,我们可以评估无创血流动力学监测的质量和准确性,为医疗工作提供有价值的参考。
无创血液动力学参数意义无创血液动力学监测是一种通过非侵入性方法评估人体心血管系统功能的技术。
它通过测量各项血流动力学参数,包括心率、血压、血氧饱和度以及血流速度等指标,帮助医生判断患者的心血管状况和健康状况,为临床诊断和治疗提供重要依据。
一、心率心率是指心脏每分钟跳动的次数,通常以“次/分钟”表示。
通过无创血液动力学监测,可以实时获得患者的心率数据,帮助医生了解患者的心脏搏动情况,以及心脏的节律是否正常。
心率异常可能提示存在心律失常或心脏病等疾病,对于及时干预和治疗具有重要意义。
二、血压血压是指血液在血管内施加的压力。
通过无创血液动力学监测,可以实时监测患者的血压变化情况,包括收缩压和舒张压等指标。
血压异常可能提示存在高血压、低血压等疾病,对于评估患者的心血管状态、预测疾病风险以及指导治疗具有重要作用。
三、血氧饱和度血氧饱和度是指血液中氧气的饱和程度,在无创血液动力学监测中通常以百分比形式表示。
血氧饱和度的正常范围是95%以上。
通过监测血氧饱和度,可以评估患者的呼吸功能和氧气供应情况。
血氧饱和度异常可能提示存在呼吸功能障碍、循环系统问题或者其他疾病,对于早期发现异常情况有重要意义。
四、血流速度血流速度是指血液在血管内的流动速度,通过无创血液动力学监测,可以实时监测患者的血流速度变化情况。
血流速度异常可能提示存在血液循环障碍、血管狭窄等问题,对于评估患者的循环系统功能以及指导治疗有重要意义。
上述所述的无创血液动力学参数对于评估患者心血管状况,指导治疗以及早期发现异常情况具有重要作用。
通过实时监测这些参数,医生可以更准确地评估患者的健康状况,及时调整治疗方案,提高治疗效果。
同时,这些参数还可以用于监测手术过程中的患者状态,帮助医生及时发现并处理可能的并发症,确保手术安全。
总之,无创血液动力学参数在临床中具有重要意义。
它们通过非侵入性监测方法,为医生提供了评估患者心血管状况和健康状况的关键信息,对于临床诊断和治疗起到了至关重要的作用。
无创血流动力学监护(1)无创血流动力学监护是一种新兴的生命体征监测技术,它可以在一定程度上取代传统的有创血流动力学监测技术,避免了因血液采样、血管穿刺等操作而可能引发的许多并发症和感染风险。
下面我们从以下几个方面来介绍无创血流动力学监护的相关内容。
一、无创血流动力学监护的原理无创血流动力学监护主要是通过生理信号采集设备来采集患者的生理信号,包括血压、血氧饱和度、心率、心律失常等,然后通过相关算法对这些生理信号进行处理,计算出患者的血流动力学状态参数。
这些参数包括心输出量、心脏指数、外周血管阻力、充盈压等,可以反映患者的心血管功能状态。
二、无创血流动力学监护的应用场景无创血流动力学监护主要应用于重症监护和手术麻醉等场景中,通过持续监测患者的血流动力学状态,及时发现和处理心血管功能紊乱,有助于避免术后并发症的发生,提高患者的安全性和手术效果。
三、无创血流动力学监护的优点无创血流动力学监护相比传统的有创血流动力学监测技术具有以下优点:1.无创操作,避免了血液采样和血管穿刺等可能引发的并发症和感染风险。
2.实时监测,可以对患者的血流动力学状态进行持续监测和记录,及时发现和处理可能存在的异常。
3.高精度计算,采用先进的生物信号处理和算法技术,可以实现对患者的心血管功能状态进行精准分析和评估。
4.方便快捷,不需要专业人员进行操作,普通护士或医生即可进行操作。
四、无创血流动力学监护的不足之处无创血流动力学监护目前仍存在一些不足之处:1.受外界干扰影响大,如周围环境噪声、灯光等,可能对生理信号的采集和精度造成不利影响。
2.个体差异较大,不同患者的生理信号的特性和变化规律不同,需要针对不同人群进行调试和优化。
3.信息处理复杂,采集的生理信号需要经过多次的信号处理和算法计算,数据量较大,需要消耗大量的时间和计算资源。
总之,无创血流动力学监护是一种非常有前景和发展潜力的生命体征监测技术,尽管它仍存在着一些不足之处,但随着技术的不断进步和完善,它必将在重症监护、手术麻醉等领域得到广泛的应用和推广。