共边比例定理
- 格式:docx
- 大小:14.74 KB
- 文档页数:3
共边定理及其应用与推广几何一直是初中数学的重难点,初中几何主要研究边角关系,并要求对边,角关系进行严格的证明、推理.学生普遍感觉几何好学但解题难,难在思维的深度,尤其难在辅助线的添加,许多几何题目往往受制于这神来一笔的辅助线.如何攻克这座堡垒呢?本文将介绍共边定理这一用途极广的几何解题工具,以供广大读者参考.一、共边定理共边定理建立在共边三角形的基础上,它是指,共边三角形的面积比等于第三个顶点的连线被公共边所截得的线段比.定理 如图1,设直线AB 与CD 交于M ,则有ABC ABD S CM S DM ∆∆= (共有四种情形).这个定理的证明基于一个基本的事实:共高三角形的面积比等于底的比.具体证明如下.证明 ABC ABC ACM ADM ABD ACM ADM ABD S S S S S S S S ∆∆∆∆∆∆∆∆=g gAB CM AM CM AM DM AB DM ==g g .由于共边定理有四种位置情形却对应同一个比值,所以,如何选择两个合适的三角形,是运用共边定理解决间题的关键,而图形的选择差异使得解法往往不唯一共边定理虽然是对等高等底三角形面积相等这一基本性质的推广,但是它的用途却相当的广泛.它在线段和面积之间建立了天然的桥梁,由此可利用这两种几何量的反复转化,证明一大批几何问题,尤其是在没有特别条件下只涉及直线相交、平行、同一直线上的线段比以及面积比等问题中,运用共边定理会得到易想不到的效果.下面通过几个例题来说明共边定理的应用.二、共边定理的应用1.有关线段的问题例1 凸四边形ABCD 的两边,AD BC 延长后交于点K ;两边,AB CD 延长交于L ,对角线,BD AC 延长后分别与直线KL 交于,F G ,如图2.求证:KF KG LF LG =.该题的叙述比较复杂,但其实不看文字,只看图也是一目了然的,即为几条直线相交后证同一直线的线段比.此题是数学大师华罗庚在《1978年全国中学生数学竞赛题》前言中提到的有趣的几何题.题目的证明较难,难点在于图中没有相似三角形和全等的三角形,只有几条线段相交的条件.但此题倘若利用共边定理来解决会变得很简单,具体证法如下.证明 KBD KBD KBL LBD KBL LBDS S S KF LF S S S ∆∆∆∆∆∆==g =ACD ACK ACL ACD S S CD AK CL AD S S ∆∆∆∆=g g =ACK ACL S KG S LG ∆∆=注 该题将共边定理面积比用于证明线段成比例,相反也可以利用线段成比例来证明面积比.2.有关面积的问题例2 在ABC ∆的三边,,BC CA AB 上,分别取点,,X Y Z ,使13CX BC =,13AY AC =,13BZ AB =.连,,AX BY CZ 三条线,围成LMN ∆,如图3.问LMN ∆的面积是ABC ∆面积的几分之几? 解由于LMN ∆与ABC ∆不是公边三角形,为计算LMN ∆,将其转化为与ABC ∆公边的三角形MBC ∆,NCA ∆,LMN ∆来计算.先求MBC S ∆.ABC ABM BCM ACM MBC MBC S S S S S S ∆∆∆∆∆∆++=712AY AZ CY BZ =++=. 又27NCAABC S S ∆∆=,∴27MBC ABC S S ∆∆=. 同理,27LAB ABC S S ∆∆=, ∴17LMN ABC S S ∆∆=. 3.有关平行的问题现在我们反过来思考,共边定理的前提是直线AB 与CD 交于一点M ,但是如果AB 与CD 不相交呢,会有什么情况?首先会不会有AB 与CD 不相交的情况呢?当然会.当ABC ABD S S ∆∆=,且CD 与AB 同侧的时候,它们会平行从而不相交,如图4:通过上述反向的思考得到了一个新的思路,即把共边三角形与平行直线联系到一起了.这个几何事实描述为:若点,C D 在AB 的同侧,//CD AB 的充要条件为ABC ABD S S ∆∆=.有了这一定理就可以不用平行线的性质来证明两直线的平行,张景中教授把这种方法称为“平行线面积判定法”.下面我们通过一个例题来说明其应甩例3 已知线段AB 与一条平行于AB 的直线l ,取不在AB 上也不在l 上的一点P ,作,PA PB 分别与直线l 交于点,M N ,连结,AN BM 交于O ,连PO 交直线AB 于Q ,如图5.求证:AQ BQ =.证明:AOP AOP AOB POB AOB PPOBS S S AQ BQ S S S ∆∆∆∆∆∆==g PMN AMN BMN MNP S S PN AM NB PM S S ∆∆∆∆==g g 1AMN BMNS S ∆∆==. 注在证明最后一步中运用了//AB l ,推导出了AMN BMN S S ∆∆=.实际上此题还解决了在平面内给定两点,A B 和平行于AB 的一条直线,仅利用没有刻度的直尺如何作出AB 的中点的操作方法.类似的方法还可以证明出PQ 平分l .如此一来,便得到了梯形中常见的一个结论,即延长梯形两腰的交点与梯形对角线的连线平分梯形的上下底. 此外,在这个过程中还有一个结论1PN AM NB PM =g ,实际上得到了平行线分线段成比例定理. 共边定理不仅能推导出以上的定理,它还可以推导出相似形基本定理,平行四边形的性质,三角形重心的性质,“共角定理”等.还有一些用传统方法比较难证的定理如“赛瓦定理”,“帕普斯定理”,“德沙格定理”等等,在这里就不一一赘述了,有兴趣的读者可以尝试证明.三、共边定理的推广下面将共边定理进行空间上的推广,即得到共面定理.共面定理:设直线PQ 与平面ABC 交于一点S ,如图6,则有P ABC Q ABC V PS V QS --=.该定理可用于立体几何的计算与证明.此外,共边定理还可以用于解决应用题.例如在行程问题当中,时间不变就等价于三角形中一的高不变,一般涉及正比例的应用题都可以考虑用共边定理来解决,而不仅限于解决平面几何的问题.那么,相比传统方法,共边定理有哪些优点呢?(1)可接受性共边定理基于一个基本的事实,即共高三角形的面积比等于底的比.这个道理在小学就接触过,学生学起来简单,相比相似三角形和全等三角形,需要判定相似或全等的条件比较多,学生的可接受性较强一(2)通用性平面几何中的基本图形是三角形,从统计学的角度来看,一般几何图形中出现全等三角形或相似三角形的可能性太小了.为了能利用相似三角形和全等三角形性质来解题,就需要添加辅助线,但辅助线的添加往往无章可循,而共边三角形却比比皆是,因而它的性质具有通用性.(3)对等性利用相似三角形和全等三角形性质解决问题,需要三个判定条件证明全等或相似.相比之下,共边定理则是一个条件对应一个结论,正是这种对等性,往往能简化几何证明的过程.在这里需要说明的是,共边定理的应用并不排斥传统几何方法中那些有效的方法,相反,它能为传统方法提供更简捷的证明思路一个定理的用途越广,就越能凸显该定理的重要性从上述的例题可以看出,共边定理的作用不容小觑,掌握好这个定理,对初中几何学习是大有帮助的.。
中考技巧圆幂定理、共高定理、共角定理、共边定理圆幂定理是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一,例如如果交点为P的两条相交直线与圆O相交于A、B与C、D,则PA·PB=PC·PD。
圆幂定理是一个总结性的定理。
根据两条与圆有相交关系的线的位置不同,有以下定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
则有AE·CE=BE·DE。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
则有PA²=PC·PD。
割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D,则有PA·PB=PC·PD。
从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。
经过总结和归纳,便得出了圆幂定理。
点对圆的幂定义:P点对圆O的幂定义为OP²—R²。
性质:点P对圆O的幂的值,和点P与圆O的位置关系有下述关系:点P在圆O内→P对圆O的幂为负数;点P在圆O外→P对圆O的幂为正数;点P在圆O上→P对圆O的幂为0。
注意:以上关系除正向应用通过点和圆的位置关系判断点对的圆的幂的符号,还可以逆向应用,通过点对圆的幂的符号反推点和圆的位置关系。
在某些书中,点P对圆O的幂表示为 |OP²—R²|。
共高定理如图1,延长△PAM的边AM至点B,得△PBM,根据面积公式可以证明以下定理.图1共高定理:若M在直线AB上,P为直线AB外一点,则有S△PAM:S△PBM=AM:BM.证明:如图1,因为S△PAM=1/2AM·PM,S△PAM=1/2BM·PM,所以S△PAM:S△PBM=AM:BM.【举一反三】如图2,点P在△ABC的边BC上,且∠BAP=∠CAP,试用共高定理推出PB:PC=AB:AC.图2共角定理中考数学压轴题昨天共角定理若两个三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。
基础知识1.面积公式由于平面上的凸多边形都可以分割成若干三角形,故在面积公式中最基本的是三角形的面积公式.它形式多样,应在不同场合下选择最佳形式使用.设△ABC ,c b a ,,分别为角C B A ,,的对边,a h 为a 的高,R 、r 分别为△ABC外接圆、内切圆的半径,)(21c b a p ++=.则△ABC 的面积有如下公式:(1)a ABC ah S 21=∆;(2)A bc S ABCsin 21=∆ (3)))()((c p b p a p p S ABC ---=∆(4)pr c b a r S ABC =++=∆)(21(5)Rabc S ABC 4=∆(6)C B A R S ABC sin sin sin 22=∆(7))sin(2sin sin 2C B CB a S ABC +=∆ (8))(21a cb r S a ABC -+=∆ (9))2sin 2sin 2(sin 212C B A R S ABC++=∆ 2.面积定理(1)一个图形的面积等于它的各部分面积这和; (2)两个全等形的面积相等;(3)等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底和相等)的面积相等;(4)等底(或等高)的三角形、平行四边形、梯形的面积的比等于其所对应的高(或底)的比;(5)两个相似三角形的面积的比等于相似比的平方;(6)共边比例定理:若△PAB 和△QAB 的公共边AB 所在直线与直线PQ 交于M ,则QM PM S S Q AB PAB ::=∆∆;(7)共角比例定理:在△ABC 和△C B A '''中,若A A '∠=∠或︒='∠+∠180A A ,则C A B A ACAB S S C B A ABC ''⋅''⋅='''∆∆. 3.张角定理:如图,由P 点出发的三条射线PC PB PA ,,,设α=∠APC ,β=∠CPB ,︒<+=∠180βαAPB ,则C B A ,,三点共线的充要条件是:PCPA PB )sin(sin sin βαβα+=+.例题分析例1.梯形ABCD 的对角线BD AC ,相交于O ,且m S AOB =∆,n S COD =∆,求ABCD S 例2.在凸五边形ABCDE 中,设1=====∆∆∆∆∆EAB D EA CD E BCD ABC S S S S S ,求此五边形的面积.例3.G 是△ABC 内一点,连结CG BG AG ,,并延长与AB CA BC ,,分别交于F E D ,,,△AGF 、△BGF 、△BGD 的面积分别为40,30,35,求△ABC 的面积.例4.R Q P ,,分别是△ABC 的边BC AB ,和CA 上的点,且1====RC QR PQ BP ,求△ABC 的面积的最大值.例5.过△ABC 内一点引三边的平行线DE ∥BC ,FG ∥CA ,HI ∥AB ,点I H G F E D ,,,,,都在△ABC 的边上,1S 表示六边形DGHEFI 的面积,2S 表示 △ABC的面积.求证:2132S S ≥.例6.在直角△ABC 中,AD 是斜边BC 上的高,过△ABD 的内心与△ACD 的内心的直线分别交边AB 和AC 于K 和L ,△ABC 和△AKL 的面积分别记为S 和T .求证:T S 2≥.例7.锐角三角形ABC 中,角A 等分线与三角形的外接圆交于一点1A ,点1B 、1C 与此类似,直线1AA 与B 、C 两角的外角平分线将于一点0A ,点0B 、0C 与此类似.求证:(1)三角形000C B A 的面积是六边形111CB BA AC 的面积的二倍; (2)三角形000C B A 的面积至少是三角形ABC 的四倍.例8.在△ABC 中,R Q P ,,将其周长三等分,且Q P ,在边AB 上,求证:92>∆∆ABCPQR S S . 例9.在锐角△ABC 的边BC 边上有两点E 、F ,满足CAF BAE ∠=∠,作AB FM ⊥,AC FM ⊥(N M ,是垂足),延长AE 交△ABC 的外接圆于点D ,证明四边形AMDN 与△ABC 的面积相等. 三.面积的等积变换等积变换是处理有关面积问题的重要方法之一,它的特点是利用间面积相等而进行相互转换证(解)题.例10.凸六边形ABCDEF 内接于⊙O ,且13+===DC BC AB ,1===FA EF DE ,求此六边形的面积.例11.已知ABC ∆的三边c b a >>,现在AC 上取AB B A =',在BA 延长线上截取BC C B =',在CB 上截取CA A C =',求证:C B A ABC S S '''∆∆>.例12.C B A '''∆在ABC ∆内,且ABC ∆∽C B A '''∆,求征:ABC AB C CA B BC A S S S S ∆'∆'∆'∆=++ 例13.在ABC ∆的三边AB CA BC ,,上分别取点F E D ,,,使EA CE DC BD 3,3==,FB AF 3=,连CF BE AD ,,相交得三角形PQR ,已知三角形ABC 的面积为13,求三角形PQR 的面积.例14.E 为圆内接四边形ABCD 的AB 边的中点,AD EF ⊥于F ,BC EH ⊥于H ,CD EG ⊥于G ,求证:EF 平分FH .例15.已知边长为,,,c b a 的ABC ∆,过其内心I 任作一直线分别交AC AB ,于N M ,点,求证:bca IN MI +≤. 例16.正△PQR ≅正△R Q P ''',1a AB =,1b BC =,2a CD =,2b DE =,3a EF =,3b FA =.求证:232221232221b b b a a a ++=++.例17.在正ABC ∆内任取一点O ,设O 点关于三边AB CA BC ,,的对称点分别为C B A ''',,,则C C B B A A ''',,相交于一点P .例18.已知CE AC ,是正六边形ABCDEF 的两条对角线,点N M ,分别内分ACCE ,且使k CECNAC AM ==,如果N M B ,,三点共线,试求k 的值. 例19.设在凸四边形ABCD 中,直线CD 以AB 为直径的圆相切,求证:当且仅当BC ∥AD 时,直线AB 与以CD 为直径的圆相切.训练题1.设ABC ∆的面积为102cm ,F E D ,,分别是CA BC AB ,,边上的点,且,3,2cm DB cm AD ==若DBEF ABE S S =∆,求ABE ∆的面积.2.过ABC ∆内一点作三条平行于三边的直线,这三条直线将ABC ∆分成六部份,其中,三部份为三角形,其面积为321,,S S S ,求三角形ABC ∆的面积.3.在ABC ∆的三边CA BC AB ,,上分别取不与端点重合的三点L K M ,,,求证:AML ∆,CLK BKM ∆∆,中至少有一个的面积不大于ABC ∆的面积的41.4.锐角ABC ∆的顶角A 的平分线交BC 边于L ,又交三角形的外接圆于N ,过L 作AB 和AC 边的垂线LK 和LM ,垂足是M K ,,求证:四边形AKNM 的面积等于ABC ∆的 面积.5.在等腰直角三角形ABC 的斜边BC 上取一点D ,使BC DC 31=,作ADBE ⊥交AC 于E ,求证:EC AE =.6.三条直线n m l ,,互相平行,n l ,在m 的两侧,且m l ,间的距离为2,n m ,间的距离为1,若正ABC ∆的三个顶点分别在n m l ,,上,求正ABC ∆的边长. 7.已知321P P P ∆及其内任一点P ,直线P P i 分别交对边于i Q (3,2,1=i ),证明:在332211,,PQ P P PQ P P PQ P P 这三个值中,至少有一个不大于2,并且至少有一个不小于2.8.点D 和E 分别在ABC ∆的边AB 和BC 上,点K 和M 将线段DE 分为三等分,直线BK 和BM 分别与边AC 相交于点T 和P ,证明:AC TP 31≤.9.已知P 是ABC ∆内一点,延长CP BP AP ,,分别交对边于C B A ''',,,其中x AP =,w C P B P A P z CP y BP ='='='==,,,且3,23==++w z y x ,求xyz 之值. 10.过点P 作四条射线与直线l l ',分别交于D C B A ,,,和D C B A '''',,,,求证:CB D A DC B A BC AD CD AB ''⋅''''⋅''=⋅⋅. 11.四边形ABCD 的两对对边的延长线分别交L K ,,过L K ,作直线与对角线BD AC ,的延长线分别F G ,,求证:KGLGKFLF=. 12.G 为ABC ∆的重心,过G 作直线交AC AB ,于F E ,,求证:GF EG 2≤.同余式与不定方程同余式和不定方程是数论中古老而富有魅力的内容.考虑数学竞赛的需要,下面介绍有关的基本内容.1. 同余式及其应用定义:设a、b、m为整数(m>0),若a和b被m除得的余数相同,则称a和b对模m同余.记为或一切整数n可以按照某个自然数m作为除数的余数进行分类,即n=pm+r (r=0,1,…,m-1),恰好m个数类.于是同余的概念可理解为,若对n1、n2,有n1=q1m+r,n2=q2m+r,那么n1、n2对模m的同余,即它们用m除所得的余数相等.利用整数的剩余类表示,可以证明同余式的下述简单性质:(1) 若,则m|(b-a).反过来,若m|(b-a),则;(2) 如果a=km+b(k为整数),则;(3) 每个整数恰与0,1,…,m-1,这m个整数中的某一个对模m 同余;(4) 同余关系是一种等价关系:①反身性;②对称性,则,反之亦然.③传递性,,则;(5)如果,,则①;②特别地应用同余式的上述性质,可以解决许多有关整数的问题.例1(1898年匈牙利奥林匹克竞赛题)求使2n+1能被3整除的一切自然数n.解∵∴则2n+1∴当n为奇数时,2n+1能被3整除;当n为偶数时,2n+1不能被3整除.例2 求2999最后两位数码.解考虑用100除2999所得的余数.∵∴又∴∴∴2999的最后两位数字为88.例3 求证31980+41981能被5整除.证明∵∴∴∴2.不定方程不定方程的问题主要有两大类:判断不定方程有无整数解或解的个数;如果不定方程有整数解,采取正确的方法,求出全部整数解.(1) 不定方程解的判定如果方程的两端对同一个模m(常数)不同余,显然,这个方程必无整数解.而方程如有解则解必为奇数、偶数两种,因而可以在奇偶性分析的基础上应用同余概念判定方程有无整数解.例4 证明方程2x2-5y2=7无整数解.证明∵2x2=5y2+7,显然y为奇数.①若x为偶数,则∴∵方程两边对同一整数8的余数不等,∴x不能为偶数.②若x为奇数,则但5y2+7∴x不能为奇数.因则原方程无整数解.说明:用整数的整除性来判定方程有无整数解,是我们解答这类问题的常用方法.例5 (第14届美国数学邀请赛题)不存在整数x,y使方程①证明如果有整数x,y使方程①成立,则=知(2x+3y2)+5能被17整除.设2x+3y=17n+a,其中a是0,±1,±2,±3,±4,±5,±6,±7,±8中的某个数,但是这时(2x+3y)2+5=(17n)2+34na+(a2+5)=a2+5(mod17),而a2+5被17整除得的余数分别是5,6,9,14,4,13,7,3,1,即在任何情况下(2x+3y)2+5都不能被17整除,这与它能被17整除矛盾.故不存在整数x,y使①成立.例7 (第33届美国数学竞赛题)满足方程x2+y2=x3的正整数对(x,y)的个数是().(A)0 (B)1(C)2(D)无限个(E)上述结论都不对解由x2+y2=x3得y2=x2(x-1),所以只要x-1为自然数的平方,则方程必有正整数解.令x-1=k2(k为自然数),则为方程的一组通解.由于自然数有无限多个,故满足方程的正整数对(x,y)有无限多个,应选(D).说明:可用写出方程的一组通解的方法,判定方程有无数个解.(2) 不定方程的解法不定方程没有统一的解法,常用的特殊方法有:配方法、因式(质因数)分解法、不等式法、奇偶分析法和余数分析法.对方程进行适当的变形,并正确应用整数的性质是解不定方程的基本思路.例6 求方程的整数解.解(配方法)原方程配方得(x-2y)2+y2=132.在勾股数中,最大的一个为13的只有一组即5,12,13,因此有8对整数的平方和等于132即(5,12),(12,5),(-5,-12),(-12,-5),(5-,12),(12,-5),(-5,12),(-12,5).故原方程组的解只能是下面的八个方程组的解解得例7 (原民主德国1982年中学生竞赛题)已知两个自然数b和c及素数a满足方程a2+b2=c2.证明:这时有a<b及b+1=c.证明(因式分解法)∵a2+b2=c2,∴a2=(c-b)(c+b),又∵a为素数,∴c-b=1,且c+b=a2.于是得c=b+1及a2=b+c=2b+1<3b,即<.而a≣3,∴≢1,∴<1.∴a<b.例9(第35届美国中学数学竞赛题)满足联立方程的正整数(a,b,c)的组数是().(A)0 (B)1 (C)2 (D)3 (E)4解(质因数分解法)由方程ac+bc=23得(a+b)c=23=1³23.∵a,b,c为正整数,∴c=1且a+b=23.将c和a=23-b代入方程ab+bc=44得(23-b)b+b=44,即(b-2)(b-22)=0,∴b1=2,b2=22.从而得a1=21,a2=1.故满足联立方程的正整数组(a,b,c)有两个,即(21,2,1)和(1,22,1),应选(C).例10求不定方程2(x+y)=xy+7的整数解.解由(y-2)x=2y-7,得分离整数部分得由x为整数知y-2是3的因数,∴y-2=±1,±3,∴x=3,5,±1.∴方程整数解为例11 求方程x+y=x2-xy+y2的整数解.解(不等式法)方程有整数解必须△=(y+1)2-4(y2-y)≣0,解得≢y≢.满足这个不等式的整数只有y=0,1,2.当y=0时,由原方程可得x=0或x=1;当y=1时,由原方程可得x=2或0;当y=2时,由原方程可得x=1或2.所以方程有整数解最后我们来看两个分式和根式不定方程的例子.例12 求满足方程且使y是最大的正整数解(x,y).解将原方程变形得由此式可知,只有12-x是正的且最小时,y才能取大值.又12-x应是144的约数,所以,12-x=1,x=11,这时y=132.故满足题设的方程的正整数解为(x,y)=(11,132).例13(第35届美国中学生数学竞赛题)满足0<x<y及的不同的整数对(x,y)的个数是().(A)0 (B)1 (C)3 (D)4 (E)7解法1 根据题意知,0<x<1984,由得当且仅当1984x是完全平方数时,y是整数.而1984=26²31,故当且仅当x具有31t2形式时,1984x是完全平方数.∵x<1984,∵1≢t≢7.当t=1,2,3时,得整数对分别为(31,1519)、(124,1116)和(279,775).当t>3时y≢x不合题意,因此不同的整数对的个数是3,故应选(C).解法2 ∵1984=∴由此可知:x必须具有31t2形式,y 必须具有31k2形式,并且t+k=8(t,k均为正整数).因为0<x<y,所以t<k.当t=1,k=7时得(31,1519);t=2,k=6时得(124,1116);当t=3,k=5时得(279,775).因此不同整数对的个数为3.练习二十1. 选择题(1)方程x2-y2=105的正整数解有( ).(A)一组(B)二组(C)三组(D)四组(2)在0,1,2,…,50这51个整数中,能同时被2,3,4整除的有().(A) 3个(B)4个(C)5个(D)6个2.填空题(1)的个位数分别为_________及_________.(2)满足不等式104≢A≢105的整数A的个数是x³104+1,则x的值________.(3) 已知整数y被7除余数为5,那么y3被7除时余数为________.(4) (全俄第14届中学生数学竞赛试题)求出任何一组满足方程x2-51y2=1的自然数解x和y_________.3.(第26届国际数学竞赛预选题)求三个正整数x、y、z满足.4.(1985年上海数学竞赛题)在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?5.求的整数解.6.求证可被37整除.7.(全俄1986年数学竞赛题)求满足条件的整数x,y的所有可能的值.8.(1985年上海初中数学竞赛题)已知直角三角形的两直角边长分别为l厘米、m厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.9.(1988年全国初中数学竞赛题)如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.练习二十1.D.C.2.(1)9及1. (2)9. (3)4.(4)原方程可变形为x2=(7y+1)2+2y(y-7),令y=7可得x=50.3.不妨设x≢y≢z,则,故x≢3.又有故x≣2.若x=2,则,故y≢6.又有,故y≣4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≢y≢4,y=3或4,z 都不能是整数.4.可仿例2解.5.先求出,然后将方程变形为y=5+x-2要使y为整数,5x-1应是完全平方数,…,解得6.8888≡8(mod37),∴88882222≡82(mod37).7777≡7(mod37),77773333≡73(mod37),88882222+77773333≡(82+73)(mod37),而82+73=407,37|407,∴37|N.7.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≣0及y为整数可得0≢y≢5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).8.∵l2+m2=n2,∴l2=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l2,n-m=1.于是l2=n+m=(m+1)+m=2m+1,2m=l2-1,2(l+m+1)=2l+2+2m=l2+2l+1=(l+1)2.即2(l+m+1)是完全平方数.9.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值.几何解题途径的探求方法一.充分地展开想象想象力,就是人们平常说的形象思维或直觉思维能力。
高中平面几何定理汇总及证明1.共边比例定理有公共边AB的两个三角形的顶点分别是P、Q,AB与PQ的连线交于点M,则有以下比例式成立:△ PAB的面积:△ QAB的面积=PM:QM.证明:分如下四种情况,分别作三角形高,由相似三角形可证S△PAB=S△PAM-S△PMB=S△PAM/S△PMB-1×S△PMB=AM/BM-1×S△PMB等高底共线,面积比=底长比同理,S△QAB=AM/BM-1×S△QMB所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM等高底共线,面积比=底长比定理得证特殊情况:当PB∥AQ时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB,反之,S△PAB=S△QAB,则PB∥AQ;2.正弦定理在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2r=Rr为外接圆半径,R为直径证明:现将△ABC,做其外接圆,设圆心为O;我们考虑∠C及其对边AB;设AB长度为c;若∠C为直角,则AB就是⊙O的直径,即c= 2r;∵特殊角正弦函数值∴若∠C为锐角或钝角,过B作直径BC`交⊙O于C`,连接C'A,显然BC'= 2r=R; 若∠C为锐角,则C'与C落于AB的同侧,此时∠C'=∠C同弧所对的圆周角相等∴在Rt△ABC'中有若∠C为钝角,则C'与C落于AB的异侧,BC的对边为a,此时∠C'=∠A,亦可推出;考虑同一个三角形内的三个角及三条边,同理,分别列式可得;3.分角定理在△ABC中,D是边BC上异于B,C或其延长线上的一点,连结AD,则有BD/CD=sin∠BAD/sin∠CADAB/AC;证明:S△ABD/S△ACD=BD/CD………… 1.1S△ABD/S△ACD=1/2×AB×AD×sin∠BAD/1/2 ×AC×AD×sin∠CAD= sin∠BAD/sin∠CAD ×AB/AC…………1.2由1.1式和1.2式得BD/CD=sin∠BAD/sin∠CAD ×AB/A C4.张角定理在△ABC中,D是BC上的一点,连结AD;那么;证明:设∠1=∠BAD,∠2=∠CAD由分角定理,S△ABD/S△ABC=BD/BC=AD/ACsin∠1/sin∠BAC→ BD/BCsin∠BAC/AD=sin∠1/AC 1.1S△ACD/S△ABC=CD/BC=AD/ABsin∠2/sin∠BAC→ CD/BCsin∠BAC/AD=sin∠2/AB 1.21.1式+1.2式即得 sin∠1/AC+sin∠2/AB=sin∠BAC/AD5.帕普斯定理直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD交于G,AF,DC交于I,BF,EC交于H,则G,I,H共线;6.蝴蝶定理设S为圆内弦AB的中点,过S作弦CF和DE;设CF和DE各相交AB于点M和N,则S 是MN的中点;证明:过O作OL⊥ED,OT⊥CF,垂足为L、T,连接ON,OM,OS,SL,ST,易明△ESD∽△CSF∴ES/CS=ED/FC根据垂径定理得:LD=ED/2,FT=FC/2∴ES/CS=EL/CT又∵∠E=∠C∴△ESL∽△CST∴∠SLN=∠STM∵S是AB的中点所以OS⊥AB∴∠OSN=∠OLN=90°∴O,S,N,L四点共圆,一中同长同理,O,T,M,S四点共圆∴∠STM=∠SOM,∠SLN=∠SON∴∠SON=∠SOM∵OS⊥AB∴MS=NS7.西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线上的垂线,则三垂足共线;此线常称为西姆松线;证明:若L、M、N三点共线,连结BP,CP,则因PL⊥BC,PM⊥AC,PN⊥AB,有B、L、P、N和P、M、C、L分别四点共圆,有∠NBP = ∠NLP = ∠MLP= ∠MCP.故A、B、P、C四点共圆;若A、P、B、C四点共圆,则∠NBP= ∠MCP;因PL⊥BC,PM⊥AC,PN⊥AB,有B、L、P、N和P、M、C、L四点共圆,有∠NBP = ∠NLP= ∠MCP= ∠MLP.故L、M、N三点共线;西姆松逆定理:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上;证明:PM⊥AC,PN⊥AB ,所以A,M,N,P共圆8.清宫定理设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上.证明:A、B、P、C四点共圆,因此∠PCE=∠ABP点P和V关于CA对称所以∠PCV=2∠PCE又因为P和W关于AB对称,所以∠PBW=2∠ABP从这三个式子,有∠PCV=∠PBW另一方面,因为∠PCQ和∠PBQ都是弦PQ所对的圆周角,所以∠PCQ=∠PBQ两式相加,有∠PCV+∠PCQ=∠PBW+∠PBQ即∠QCV=∠QBW即△QCV和△QBW有一个顶角相等,因此但是,,所以同理,于是根据梅涅劳斯定理的逆定理,D、E、F三点在同一直线上;9.密克定理三圆定理:设三个圆C1, C2, C3交于一点O,而M, N, P分别是C1 和C2, C2和C3, C3和C1的另一交点;设A为C1的点,直线MA交C2于B,直线PA交C3于C;那么B, N, C这三点共线;逆定理:如果是三角形,M, N, P三点分别在边AB, BC, CA上,那么△AMP、△BMN、△CPN 的外接圆交于一点O;完全四线形定理如果ABCDEF是完全四线形,那么三角形的外接圆交于一点O,称为密克点;四圆定理设C1, C2,C3, C4为四个圆,A1和B1是C1和C2的交点,A2和B2是C2 和C3的交点,A3和B3是C3和C4的交点,A4和B4是C1和C4的交点;那么A1, A2, A3, A4四点共圆当且仅当B1, B2, B3, B4四点共圆;证明:在△ABC的BC,AC,AB边上分别取点W,M,N,对AMN,△BWN和△CWM分别作其外接圆,则这三个外接圆共点;该定理的证明很简单,利用“圆内接四边形对角和为180度”及其逆定理;现在已知U是和的公共点;连接UM和UN,∵四边形BNUW和四边形CMUW分别是和的内接四边形,∴∠UWB+∠UNB=∠UNB+∠UNA=180度∴∠UWB=∠UNA;同理∠UWB+∠UWC=∠UWC+∠UMC=180度∴∠UWB=∠UMC;∵∠UMC+∠UMA=180度∴∠UNA+∠UMA=180度,这正说明四边形ANUM是一个圆内接四边形,而该圆必是,U必在上;10.婆罗摩笈多定理圆内接四边形ABCD的对角线AC⊥BD,垂足为M;EF⊥BC,且M在EF上;那么F是A D 的中点;证明:∵AC⊥BD,ME⊥BC∴∠CBD=∠CME∵∠CBD=∠CAD,∠CME=∠AMF∴∠CAD=∠AMF∴AF=MF∵∠AMD=90°,同时∠MAD+∠MDA=90°∴∠FMD=∠FDM∴MF=DF,即F是AD中点逆定理:若圆内接四边形的对角线相互垂直,则一边中点与对角线交点的连线垂直于对边;证明:∵MA⊥MD,F是AD中点∴AF=MF∴∠CAD=∠AMF∵∠CAD=∠CBD,∠AMF=∠CME∴∠CBD=∠CME∵∠CME+∠BME=∠BMC=90°∴∠CBD+∠BME=90°∴EF⊥BC11.托勒密定理圆内接四边形中,两条对角线的乘积两对角线所包矩形的面积等于两组对边乘积之和一组对边所包矩形的面积与另一组对边所包矩形的面积之和.圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①;又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②;①+②得ACBP+DP=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.12.梅涅劳斯定理当直线交三边所在直线于点时,;证明:过点C作CP∥DF交AB于P,则两式相乘得梅涅劳斯逆定理:若有三点F、D、E分别在边三角形的三边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线;证明:先假设E、F、D三点不共线,直线DE与AB交于P;由梅涅劳斯定理的定理证明如利用平行线分线段成比例的证明方法得:AP/PBBD/DCCE/EA=1;∵ AF/FBBD/DCCE/EA=1;∴ AP/PB=AF/FB ;∴ AP+PB/PB=AF+FB/FB ;∴ AB/PB=AB/FB ;∴ PB=FB;即P与F重合;∴ D、E、F三点共线;13.塞瓦定理在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则BD/DC×CE/EA×AF/FB=1;∵△ADC被直线BOE所截,∴CB/BDDO/OAAE/EC=1①∵△ABD被直线COF所截,∴BC/CDDO/OAAF/FB=1②②/①约分得:DB/CD×CE/EA×AF/FB=114.圆幂定理相交弦定理:如图Ⅰ,AB、CD为圆O的两条任意弦;相交于点P,连接AD、BC,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以;所以有:,即:;割线定理:如图Ⅱ,连接AD、BC;可知∠B=∠D,又因为∠P为公共角,所以有,同上证得;切割线定理:如图Ⅲ,连接AC、AD;∠PAC为切线PA与弦AC组成的弦切角,因此有∠PBC=∠D,又因为∠P为公共角,所以有,易证图Ⅳ,PA、PC均为切线,则∠PAO=∠PCO=90°,在直角三角形中:OC=OA=R,PO为公共边,因此;所以PA=PC,所以;综上可知,是普遍成立的;弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数;点对圆的幂P点对圆O的幂定义为点P在圆O内→P对圆O的幂为负数;点P在圆O外→P对圆O的幂为正数;点P在圆O上→P对圆O的幂为0;三角形五心:内心:三角形三条内角平分线的交点外心:三角形三条边的垂直平分线中垂线的相交点重心:三角形三边中线的交点垂心:三角形的三条高线的交点旁心:三角形的旁切圆与三角形的一边和其他两边的延长线相切的圆的圆心九点圆心:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆的圆心15.根心定理三个两两不同心的圆,形成三条根轴,则必有下列三种情况之一:1 三根轴两两平行;2 三根轴完全重合;3 三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心;平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它们的根心;若三圆圆心共线,则三条根轴互相平行;根轴定义:A与B的根轴L1:到A与B的切线相等的点;B与C的根轴L2:到B与C的切线相等的点;证明设A、B、C三个圆,圆心不重合也不共线;考察L1与L2的交点P;因为P在L1上,所以:P到A的切线距离=P到B的切线距离;因为P在L2上,所以:P到B的切线距离=P到C的切线距离;所以:P到A的切线距离=P到B的切线距离=P到C的切线距离;也就是:P到A的切线距离=P到C的切线距离;所以:P在A与C的根轴上; 所以:三个根轴交于一点;16.鸡爪定理设△ABC的内心为I,∠A内的旁心为J,AI的延长线交三角形外接圆于K,则KI=KJ=KB=KC;证明:由内心和旁心的定义可知∠IBC=∠ABC/2,∠JBC=180°-∠ABC/2∴∠IBC+∠JBC=∠ABC/2+90°-∠ABC/2=90°=∠IBJ同理,∠ICJ=90°∵∠IBJ+∠ICJ=180°∴IBJC四点共圆,且IJ为圆的直径∵AK平分∠BAC∴KB=KC相等的圆周角所对的弦相等又∵∠IBK=∠IBC+∠KBC=∠ABC/2+∠KAC=∠ABI+∠BAK=∠KIB∴KB=KI由直角三角形斜边中线定理逆定理可知K是IJ的中点∴KB=KI=KJ=KC逆定理:设△ABC中∠BAC的平分线交△ABC的外接圆于K;在AK及延长线上截取KI=KB=KJ,其中I在△ABC的内部,J在△ABC的外部;则I是△ABC的内心,J是△ABC 的旁心;证明:利用同一法可轻松证明该定理的逆定理;取△ABC的内心I'和旁心J’,根据定理有KB=KC=KI'=KJ'又∵KB=KI=KJ∴I和I'重合,J和J’重合即I和J分别是内心和旁心17.费尔巴哈定理三角形的九点圆与其内切圆以及三个旁切圆相切设△ABC的内心为I,九点圆的圆心为V;三边中点分别为L,M,N,内切圆与三边的切点分别是P,Q,R,三边上的垂足分别为D,E,F;不妨设AB>AC;假设⊙I与⊙V相切于点T,那么LT与⊙I相交,设另一个交点为S;过点S作⊙I的切线,分别交AB和BC于V,U,连接AU;又作两圆的公切线TX,使其与边AB位于LT的同侧;由假设知∠XTL=∠LDT而TX和SV都是⊙I的切线,且与弦ST所夹的圆弧相同,于是∠XTL=∠VST因此∠LDT=∠VST则∠UDT+∠UST=180°这就是说,S,T,D,U共圆;而这等价于:LU×LD=LS×LT又LP²=LS×LT故有LP²=LU×LD另一方面,T是公共的切点,自然在⊙V上,因此 L,D,T,N共圆,进而有∠LTD=∠LND由已导出的S,T,D,U共圆,得∠LTD=∠STD=180°-∠SUD=∠VUB=∠AVU-∠B而∠LND=∠NLB-∠NDB=∠ACB-∠NBD=∠C-∠B这里用了LN∥AC,以及直角三角形斜边上中线等于斜边的一半所以,就得到∠AVU=∠C注意到AV,AC,CU,UV均与⊙I相切,于是有∠AIR=∠AIQ∠UIS=∠UIP∠RIS=∠QIS三式相加,即知∠AIU=180°也即是说,A,I,U三点共线;另外,AV=AC,这可由△AIV≌△AIC得到;这说明,公切点T可如下得到:连接AI,并延长交BC于点U,过点U作⊙I的切线,切点为S,交AB于V,最后连接LS,其延长线与⊙I的交点即是所谓的公切点T;连接CV,与AU交于点K,则K是VC的中点;前面已得到:LP²=LU×LD而2LP=BL+LP-CL-LP=BP-CP=BR-CQ=BR+AR-CQ+AQ=AB-AC=AB-AV=BV即 LP=BV然而LK是△CBV的中位线于是 LK=BV因之 LP=LK故LK²=LU×LD由于以上推导均可逆转,因此我们只需证明:LK²=LU×LD;往证之这等价于:LK与圆KUD相切于是只需证:∠LKU=∠KDU再注意到 LK∥ABLK是△CBV的中位线,即有∠LKU=∠BAU又AU是角平分线,于是∠LKU=∠CAU=∠CAK于是又只需证:∠CAK=∠KDU即证:∠CAK+∠CDK=180°这即是证:A,C,D,K四点共圆由于 AK⊥KC易得,AD⊥DC所以 A,C,D,K确实共圆;这就证明了⊙I与⊙V内切;旁切圆的情形是类似的;证毕另略证:OI2=R2-2RrIH2=2r2-2Rr'OH2=R2-4Rr'其中r‘是垂心H的垂足三角形的内切圆半径,R、r是三角形ABC外接圆和内切圆半径FI2=1/2OI2+IH2-1/4OH2=1/2R-r2FI=1/2R-r这就证明了九点圆与内切圆内切九点圆半径为外接圆半径一半;F是九点圆圆心,I为内心18.莫利定理将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形证明:设△ABC中,AQ,AR,BR,BP,CP,CQ为各角的三等分线,三边长为a,b,c,三内角为3α,3β,3γ,则α+β+γ=60°;在△ABC中,由正弦定理,得AF=csinβ/sinα+β;不失一般性,△ABC外接圆直径为1,则由正弦定理,知c=sin3γ,所以AF=sin3γsinβ/sin60°-γ= sinβsinγ3-4sin²γ/1/2√3cosγ-sinγ= 2sinβsinγ√3cosγ+sinγ= 4sinβsinγsin60°+γ.同理,AE=4sinβsinγsin60°+β∴AF:AE=4sinβsinγsin60°+γ:4sinβsinγsin60°+β=sin60°+γ:sin60°+β=sin∠AEF:sin∠AFE∴∠AEF=60°+γ,∠AFE=60°+β.同理得,∠CED=60°+α∠FED=180°-CED-AEF-α-γ=180°-60°-α-60°+α=60°∴△FED为正三角形19.拿破仑定理若以任意三角形的各边为底边向形外作底角为60°的等腰三角形,则它们的中心构成一个等边三角形;在△ABC的各边上向外各作等边△ABF,等边△ACD,等边△BCE;。
4.3共边比例定理及应用共边比例定理 若线段PQ 所在直线与线段AB 所在直线相交于点M ,则⋅=∆∆QM PMs S QAB PAB (4.3-1)证明如图4-13,图形有四种情形:对于图4-13(a),由P 作PE⊥直线AB 于E ,由Q 作QF⊥直线AB 于F ,则由Rt△PEM ∽ Rt△QFM,有⋅=QMPMQF PE 于是 ⋅==⋅⋅=∆∆QM PMQF PE QF AB PEAB s sQABPAB2121同理,可证得其他三种情况.共边比例定理可以看作是同底三角形面积之比等于其高之比的推广. 例1 用共边比例定理证明塞瓦定理及其逆定理.证明 仅证共点情形.如图4-14,在△ABC 中,若AD 、BE 、CF 相交于点P ,则由共边比例定理,有,.,,APBBPC APC APB BPC APC s s AE CE s s CD BD s s BF AF ∆∆∆∆∆∆⋅=⋅=⋅⋅= 以上三式相乘,即得.1.....=⋅⋅⋅⋅=∆∆∆∆∆∆APBBPC APC APB BPC APC s s s s s s EA CE CD BD FB AF 反之,若有.1..=EACE DC BD BF F A 记⋅===μρλEACEDC BD FB AF ,,设CF 与BE 交于P ,AD 与BE 交于./P 由共边比例定理,有PB C PAC CPA PE L CPBCPE s s s s S S PB PE ....∆∆∆∆∆∆==,1..μλμ+=+==FB AF EA CE CE FB AF CA CE B AP CAP C AP E AP BAP E AP s s S S S s B P E P /1////.//∆∆∆∆∆==∧ ⋅+=+==ρμ)1(1..BD DC EC AE AE BD DC AC AE 由已知有,1=λμρ故,1ρλμ=于是⋅=B P EP PB PE //可见P 与/P 重合,即AD 、BE 、CF 三线共点. 注 用共边比例定理也可证明梅涅劳斯定理,如图4-1,由=BC AC //ABA A CBA BBA xA ABA s s A B CB s s C A BA s s ∆∆∆∆∆∆==ω////1,,三式相乘,即证.其逆定理的证明也类似于上例. 例2 设△ABC 的面积为1,D 是边AB 上一点,且⋅=31AB AD 若在边AC 上取一点E ,使四边形DECB 的面积为,43则EA CE的值为( ). 21.A 31.B 41.C 51.D (2003年全国联赛题)解 选B .理由:如图4-15,连结⋅=-=∆41431,ADE s BE 设,x ACCE=则由共边比例定理,有 .x AC CEs s ABC BEC ==⋅∆∆从而 .1x S ABE -=∆又,31==∆∆AB AD s s ABE ADE 则 ⋅=-=∆4131x S ADE 解得 ⋅=41x 故⋅=31EA CE例3 如图4-16,在等腰直角△ABC 中,=AB ,90,1=∠A 点E 为腰AC 的中点,点F 在底边BC 上,且EF⊥BE.求:△CEF 的面积. (1998年全国联赛题)解 过C 作CD⊥CE 与EF 的延长线交于D . 因 ,90=∠+∠AEB ABE,90.o B AE CED =∠+∠则 ,CED ABE ∠=∠故 Rt△ABE ∽ Rt△CED. 于是.2,41)(2====∆∆AEABCD CE AB CE S s ME CED 注意到FC 平分∠ECD,有,CDCEFD EF =由共边比例定理,知 ,2==∆∆FDEFS s CDF CEF 故 ⋅====∆∆∆∆24121.41.3241.3232ABC ABE CDE CEF s s s s 例4 设D 、E 分别在△ABC 的边AC 和AB 上,BD 与CE 交于F ,.40,32,=⋅==∆ABC s DC AD EB AE 求⋅AEFD S (1990年部分省市通讯赛题)解法1 如图4-17,连结DE.设△AED、△EFD、△BFE、△BC F 、△CDF 的面积分别为z 、y 、z 、u 、t ,则由共边比例定理,求得:,20.21=⋅⋅=++∆ABC S t y x ),20(32)(32x t y x -=+=即x =8..2453,1652==+=⋅∝∆=++∆ABC s t u S z y x设,s y x s AEFD =+=则.4,20,8,16s u s t s y s z +=-=-=-=又由共边比例定理,有,u tz y =即⋅+-=--ss s s 420168 解得 .11=s 故.11=AEFD S解法2 注意到直线BFD 截△AEC,由梅涅劳斯定理,有.1..=DACD FC EF BE AB 而,23,2==DA CD BE AB 则 .3.==DACDBE AB EF FC 从而 .4131EC FC EF ==由共边比例定理,有,2021=⋅=⋅=∆∆ABC EBC s S ,5,41==∆∆EBC F EB s s .16.52(==∆∆AB ADBs s 从而 .11516.=-=-=∆∆EBF ADB FD AE s s S例5 在△ABC 中,D 、E 分别是BC 、CA 上的点,且BD :DC =m :1,CE :EA =n:1,AD 与BE 交于F ,则△ABF 的面积等于△ABC 的面积的多少倍? (1984年上海市竞赛题) 解 如图4-18,连CF 并延长交AB 于G.对△ABC 与点F ,由塞瓦定理,有,1..=⋅⋅=n m GBAGEA CE DC BD GB AG 则 ⋅=mnGB AG 1对△AGC 与截线BFE ,由梅涅劳斯定理,有,1..1..=+=n FCGF mn mn EA CE FC GF BG AB 则 ⋅+=1mn mFC GF由共边比例定理,知⋅++==⋅∆∆1m mn mGC GF s s AK ABF例 6如图4 -19,在筝形ABCD 中,AB =AD ,BC =DC ,过AC 、BD 的交点O 引EF 、GH ,其中EF 交AB 、CD 于E 、F ,GH 交DA 、BC 于G 、H. EH 、GF 分别交BD 于P 、Q ,则OP =OQ.(1990年IMO 国家队集训选拔赛题,同习题1.4第10题)证明 在AB 、BC 上分别取,//F G 、使.,//CF CF AG AG ==则利用三角形全等,知,/OA G GOA ∠=∠又,HOC GOA ∠=∠则,/OA G HOC ∠=∠即⋅=γβ同理=+⋅∠β1,4γ+∠故.32,41∠=∠∠=∠(其中=∠=∠=∠HOC OA G GOA ,,/βα,2,1,/∠=∠∠=∠EOB OE G γ .)4,3//∠=∠∠=∠OH F BOF连H G /交BD 于K ,在/BHG ∆中,注意到共边比例定理,则OKG oHK oFH OBF oEB xE s s s s s S KGHKH F BF EB E G ∆∆∆∆∆∆=..../(//// .4sin 213sin 21.2sin .211sin 21///∠⋅⋅∠⋅⋅∠⋅∠⋅⋅=OH OF OF OB OB OE OE OG )21sin(21)43sin(21∠+∠⋅⋅⋅∠+∠⋅⋅OG OK OK OH .1=故由塞瓦定理的逆定理,知、、BO F G //HE 三直线共点,即//F G 过点P .利用三角形全等性,即知OP =OQ .习 题 4.31 设M 、N 分别为△ABC 的边AB 、AC 上的点,CM 与BN 交于点P ,且⋅==21,λλNC AN MB AM 求比值⋅PMCP2 在△ABC 内任取一点P ,连AP 、BP 、CP 并延长分别交对边于D 、E 、F ,求证:.1=++CFPFBF PE AD PD3 凸四边形ABCD 中,AD =BC ,另两边AB 、CD 的中点分别为M 、N ,延长AD 、BC 分别与直线MN 交于P 、Q .求证:PD =QC. 4 在△ABC 中,D 、E 是BC 上的三等分点,F 是AC 的中点,BF 交AD 于G ,交AE 于H.求⋅∆.:ABC DEHG s s 5 如图,△ABC 被通过它的三个顶点与一个内点的三条直线分成六个小的三角形,其中四个小三角形的面积在图中标出.求△ABC 的面积. (第3届美国邀请赛题) 6 在△ABC 的三边BC 、CA 、AB 上分别取点D 、E 、F ,且满足.,,321λλλ===BFAFAE CE CD BD 连结AD 、 BE 、CF ,AD 交BE 于P ,交CF 于R ,BE 交CF 于Q 求⋅⋅∆∆ABL FQR s s .答案。
第章共边比例定理共角比例定理
共边比例定理若两个共边的三角形
,
的对应顶点,所在直线与交于,则.1
证法由同底三角形的面积关系式,有,.
由上述两式相加即证得图中()、(),上述两式相减即证得图中()、()情形.
Q
M N
B
A
P
Q
M
N
B
A
A
B
N
M
Q
P
(4)
(3)
(2)
(1)
图21-1
M N
P
Q
B
A
证法不妨设与不同,则
.
证法在直线上取一点,使,则,.
所以,.
共角比例定理若与相等或互补,则有
(或)
证明把两个三角形拼在一起,让的两边所在直线与的两边所在直线重合,如图所示,其中图()是两角相等的情形,图()是两角互补的情形,两情形下都有
C'
B(B')
A'A
C
B(B')A'
C'
C
A
(2)
(1)
图21-2
①张景中.几何新方法和新体系.北京:科学出版社,2009:5.
共角比例定理的推广与相等或互补,点在直线上且不同于,点在直线上且不同于,则
证明不妨设,,,共线如图,则
B(Y)P
Z
X Q C
A
图21-3
共角比例不等式如果,而且两角之和小于,则
(或).
证明记,.
如图,作一个顶角为的等腰,延长至,使,则.由共角比例定理,有
共角比例逆定理在和中,若,则与相等或互补.。
共边比例定理摘要:1.共边比例定理的概念2.共边比例定理的证明方法3.共边比例定理的应用4.总结正文:一、共边比例定理的概念共边比例定理,又称共边定理,是指在平面几何中,两条直线被一条第三条直线所截,所形成的四个三角形中,对应边之间的比例关系。
具体来说,设直线AB 与PQ 交于点M,那么有SP/AB = SM/PM 和SP/PQ =SM/MQ,其中SP、SM、MQ分别为三角形SPM、SAM、MQP的高。
二、共边比例定理的证明方法共边比例定理的证明方法有多种,这里我们介绍两种比较常见的证明方法:证法1:分别作三角形高,由相似三角形可证。
证法2:等高底共线,面积比底长比。
三、共边比例定理的应用共边比例定理在几何学中有广泛的应用,例如在解决相似三角形问题、比例线段问题、面积问题等。
以下是一个典型的应用例子:已知直线AB 与PQ 相交于点M,且SP/AB = 2/3, PM/MQ = 3/4,求SM的长度。
解:由共边比例定理,我们可以得到两个等式:SP/AB = SM/PM,即SM = SP * PM / ABPM/MQ = SM/MQ,即SM = PM * MQ / AB将已知条件带入上述两个等式,得到:SM = SP * PM / AB = (2/3) * PMSM = PM * MQ / AB = (3/4) * MQ所以,我们可以得到PM * MQ = (3/4) * SP再根据面积比的性质,我们有:(SP * AM) / (PQ * BM) = (SP * PM) / (AB * MQ)代入已知条件,得到:(2/3) * (AM / BM) = (SP * PM) / (AB * MQ) = (2/3) * (PM / MQ)化简后,得到:AM / BM = PM / MQ = 3 / 4所以,我们可以得到SM 的长度为:SM = SP * PM / AB = (2/3) * PM = (2/3) * (AM / BM) * AB = (2/3) * (3/4) * AB = (1/2) * AB四、总结共边比例定理是平面几何中的一个基本定理,它为我们解决直线与直线相交时对应边之间的比例关系提供了有力的工具。
面积问题和面积方法基础知识1.面积公式由于平面上的凸多边形都可以分割成若干三角形,故在面积公式中最基本的是三角形的面积公式.它形式多样,应在不同场合下选择最佳形式使用.设A ABC,恥,c分别为角A,B,C的对边,%为。
的高,R、r分别为△ ABC外接圆、内切圆的半径,p = ^(a + b + c).则△ABC的面2积有如下公式:(1)S SABC = g 叽;(2)sin A(3)S Mli c =jp(p-a)(p-b)5-c)(4)S AABC=^f'(a + b + C)= P r(5)_ abc AOC 4R(6)S RBC =2R\ sin Asin BsinC(7)c a2 sin BsinC 2sin(B + C)(8)S MBC=£乙(方+ c_d)(9)1 7S RBC =—斤(sin2A + sin2B + sin2C)2.面积定理(1)一个图形的面积等于它的各部分面积这和;(2)两个全等形的面积相等;(3)等底等髙的三角形、平行四边形、梯形(梯形等底应理解为两底和相等)的面积相等;(4)等底(或等高)的三角形、平行四边形、梯形的面积的比等于其所对应的高(或底)的比;(5)两个相似三角形的面积的比等于相似比的平方;(6)共边比例定理:若和△"3的公共边所在直线与直线PQ交于M,则S阳:S^B =PM:QM;(7 )共角比例定理:在△ ABC和△ A'B'C中,若ZA = Z/V或ZA + ZA f = \8(r,贝I」也!=.八〃竺.S M*A® •AC3.张角定理:如图,由P点出发的三条射线PA、PB、PC,设ZCPB=J3 , ZAPB=a + p<\^ ,则A,3,C三点共线的充要条件是:sin a sin p sin(a + 0)---- 1 ---- = ---------- •PB PA PC例题分析例1・梯形ABCD的对角线AC.BD相交于0 ,且S M = m , S”。
D APB 面积︰D AQB 面积=PM ︰QM1如图,△ABC 中,D 、E 分别是AB 、AC 边上的中点,用面积方法证明:DE ∥BC 且DE =12BC . 证明:∵D 、E 分别是AB 、AC 边上的中点,边上的中点, ∴△ADE ﹕△BDE =△ADE ﹕△CDE =1﹕1 ∴△BDE =△CDE ∴DE ∥BC ∴∠DBC =∠ADE由共角定理得:△ADE/△ABC =AD·AD·DE/AB·DE/AB·DE/AB·BC BC =1/4 ∵AD =12AB ∴DE =12BC .这里,证明平行用到了平行的基本命题,证明线段的比值用到了共角定理.这里,证明平行用到了平行的基本命题,证明线段的比值用到了共角定理.传统证法中,要用到全等三角形、平行四边形或相似三角形,传统证法中,要用到全等三角形、平行四边形或相似三角形,同时要作辅助线构成全等、相同时要作辅助线构成全等、相似、或平行四边形.似、或平行四边形.例2:(1983年美国中学数学竞赛题) 如图的三角形ABC 的面积为10,D 、E 、F 分别在边BC 、CA 、AB 上,且BD =2,DC =3,若△BCE 与四边形DCEF 的面积相等,则这个面积是(的面积相等,则这个面积是() A .4.4 C .5.5 D .6.6 B .5103 E.不确定E.不确定解:由△BCE 与四边形DCEF 的面积相等,在四边形BCEF 中分别减去这两个面积,得△BFD 与△BFE 同底且面积相等,所以BF ∥DE ,可以得到AB 为边的两个三角形△ABD 与△ABE 面积相等,因为三角形ABC 的面积为10,且BD =2,DC =3,所以△ABD 的面积等于4,即△ABE 面积等于4,所以△BCE 的面积等于10-4=6,故选C .这是一道由面积相等推知两线平行的典型题目.这是一道由面积相等推知两线平行的典型题目. 例3:对角线互相平分的四边形是平行四边形.对角线互相平分的四边形是平行四边形.证明:∵OA =OC ,OB =OD ,由共角定理得:△AOB/△COD =OA·OA·OB OB =OC·OC·ODOD =1 即△AOB =△COD ,∴共底的两个三角形△ACB =△CBD ,∴AD ∥BC ; 同理可证AB ∥CDAA AABBBBPPPPQMMMM 共边定理图:四种位置关系共边定理图:四种位置关系QQQ AB CD EFABCDO问:共边定理怎么证线段相等?答:常常是共边与共角两个定理都会用到。
Gerrald 加油坚持住Gerrald 加油坚持住Gerrald 加油坚持住莫利定理:将任意三角形的各角三等分,则每两个角的相邻三等分线的交点构成一个正三角形。
設△ABC中的∠B,∠C的两条三等分角线分別交于P, D两个点(图1),按照莫利定理,D是莫莱三角形的一個頂点,当然D就是△BPC的內心,因為BD, CD正好是∠CBP, ∠BCP 的角平分线。
莫利三角形的另两个頂点E, F应该分別落在CP和BP上,因此我们产生了一个念头,如果能夠在CP, BP上找到E, F这两个点,使△DEF是个正三角形,再证AE、AF正好是∠BAC的三等分线就行了为此,先把DP连起來,在CP, BP上分別取两点E, F使∠EDP=∠FDP=30°,于是就得到一个三角形△DEF。
为什么它是一个正三角形呢?因为D是△BPC的內心,所以DP是∠BPC的角平分线,即∠DPE=∠DPF,由作图知∠EDP=∠FDP =30°,在△DPE和△DPF中,DP是公共边,而夹此边的两角又是对应相等的,所以△DPE≌△DPF。
于是DE=DF,即△DEF是个等腰三角形,它的腰是DE和DF,而它的頂角又是60°,所以它当然是个正三角形。
接下來,我们的目标就是希望能证明△DEF真的是莫利三角形,亦即AE, AF 的确会三等分∠BAC。
如图2所示,在AB, AC上各取一点G,H,使得BG=BD, CH=CD,把G、 F、E、H各点依次连起來,根据△BFD≌△BFG,△CED≌△CEH,我们就得到GF=FD =FE=ED=EH。
下面,如果能夠证明G,F,E,H,A五点共圆,則定理的证明就完成了,因为∠GAF,∠FAE,∠EAH这三个圆周角所对的弦GF, FE, EH都等長,因而这三个圆周角也就都相等了。
为了证明G,H,E,F,A共圓,必须证明∠FGE=∠FHE=∠A/3。
看图2,首先我们注意到△GFE是个等腰三角形,∠GFE是它的顶角,如果这个角能求出來,其底角∠FGE也就能求出来了。
共边比例定理
(实用版)
目录
1.共边定理的概念
2.共边定理的证明
3.共边定理的应用
4.结论
正文
一、共边定理的概念
共边定理是指在两个相交线段组成的两个三角形中,如果这两个三角形有一个公共边,那么这两个三角形的面积之比等于这个公共边的长度与它到另一个公共顶点的距离之比。
这个定理在解决一些几何问题时非常有用,尤其是在求解一些比例问题时。
二、共边定理的证明
为了证明共边定理,我们可以将问题分为四种情况进行讨论:
1.当两个三角形的高相等时,两个三角形的面积之比就等于它们的底边长度之比。
2.当两个三角形的底边相等时,两个三角形的面积之比就等于它们的高之比。
3.当两个三角形的高和底边都不相等时,我们可以通过相似三角形的性质来证明两个三角形的面积之比等于它们的高和底边长度之比。
4.当两个三角形的高和底边都不相等,且它们的顶点也不在同一条直线上时,我们同样可以通过相似三角形的性质来证明两个三角形的面积之比等于它们的高和底边长度之比。
三、共边定理的应用
共边定理在实际应用中非常广泛,它可以用来求解一些比例问题,例如在求解三角形的面积比例时,我们可以通过共边定理来求解。
另外,共边定理还可以用来证明一些几何问题,例如证明两个三角形的面积之和等于另一个三角形的面积等。
四、结论
共边定理是几何学中的一个基本定理,它对于解决一些比例问题和几何问题非常有用。
阿基米德折弦定理:AB和BC是⊙O的两条弦(即ABC是圆的一条折弦),BC〉AB,M是弧ABC的中点,则从M向BC所作垂线之垂足D是折弦ABC的中点,即CD=AB+BD.从圆周上任一点出发的两条弦,所组成的折线,我们称之为该图的一条折弦.角平分线定理定理1:角平分线上的点到这个角两边的距离相等。
该命题逆定理成立:在角的内部到一个角的两边距离相等的点在这个角的角平分线上。
定理2:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例。
该命题逆定理成立:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线.xv=uy燕尾定理因此图类似燕尾而得名,是五大模型之一,是一个关于三角形的定理(如图△ABC,D、E、F 为BC、CA、AB 上点,满足AD、BE、CF 交于同一点O)。
S△ABC中,S△AOB:S△AOC=S△BDO:S△CDO=BD:CD;同理,S△AOC:S△BOC=S△AFO:S△BFO=AF:BF;S△BOC:S△BOA=S△CEO:S△AEO=EC:AE。
推论:共边比例定理:四边形ABCD(不一定是凸四边形),设AC,BD相交于E,则有BE :DE=S△ABC :S△ADC。
此定理是面积法最重要的定理.典型例题:如图三角形ABC的面积是10平方厘米,AE=ED,BD=2DC,则阴影部分的面积是_____平方厘米.答案:4解析:过D作DM‖BF交AC于M(如图)因为BD=2DC,因为AE=DE,所以△ABE的面积与△DBE的面积相等,所以阴影部分的面积为△DBE的面积+△AEF的面积,即三角形AFB的面积,由DM‖BF知道△DMC相似△CBF 所以CM:CF=CD:CB=1:3,即FM=CF,因为EF是△ADM的中位线,AF=MF,所以AF=AC,由此即可求出三角形AFB的面积,即阴影部分的面积.解:过D作DM‖BF交AC于M(如图)因为BD=2DC,因为AE=DE,所以△ABE的面积与△DBE的面积相等所以阴影部分的面积为△DBE的面积+△AEF的面积DM‖BF所以△DMC相似△CBF 所以CM:CF=CD:CB=1:3即FM=CF因为EF是△ADM的中位线,AF=MF,所以AF=AC所以△ABF的面积10×=4(平方厘米)即阴影部分的面积(即△DBE的面积加△AEF的面积)等于4平方厘米答:阴影部分的面积是4平方厘米,故答案为:4.共角定理:若两三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。
第八讲“三共定理”——共边定理新知探索共边定理问题回顾:在上一讲中,我们留下了一道习题:如图AB、PQ相交于M。
求证:BMAMSSBPQAPQ=∆∆在这道题目中,ΔAPQ和ΔBPQ没有共同的高,你能求它们的面积比吗?如果不能,我们先放一放,先观察下面四组图形:它们有什么共同的特点?在上面四组图中:它们都有一条公共边AB的两个三角形,这样的两个三角形叫做共边三角形。
【思考】:如果过共边三角形ΔABM、ΔABN的顶点M、N作直线,与公共边相交于点P,那么共边三角形的面积比与PNPM有何关系?如下图:通过猜想,可以把这个事实概括为一个重要的结论:共边定理我们如何来证明这个定理呢?【分析】我们以第一种情形来加以证明。
如图:方法1:ΔABM、ΔABN虽有公共的边AB,但没有公共的高,不能直接应用共高定理。
但是图中出现很多的三角形中,出现了一条共高三角形的关系链:ΔABM—ΔBPM—ΔBPN—ΔABN。
在这些三角弄散中,前者与相邻的后者是两个共高三角形。
如下图:证明:由已知,根据共高定理分别可得:PBABSSBPMABM=∆∆①NPMPSSBPNBPM=∆∆②ABPBSSABNBPN=∆∆③把①、②、③三式左右两边分别相乘,可得:NPMPABPBNPMPPBABSSSSSSABNBPNBPNBPMBPMABM=⨯⨯=⨯⨯∆∆∆∆∆∆即NPMPABPBNPMPPBABSSABNABM=⨯⨯=∆∆∴NPMPSSABNABM=∆∆方法2:这种方法表达更简洁,学习程度较好的同学可以阅读参考。
证明:由共高定理可得:NPMPABPBNPMPPBABSSSSSSSSABNBPNBPNBPMBPMABMABNABM=⨯⨯=⨯⨯=∆∆∆∆∆∆∆∆即:NPMPSSABNABM=∆∆方法3:证明:如图,延长PB至点Q,使PQ=AB,连接MQ、NQ。
由共高定理可得:PQ MA BMSS∆∆=;PQ NA BNSS∆∆=;NPMPSSPQNPQM=∆∆∴NPMP S S S S PQN PQM ABN ABM ==∆∆∆∆ 即NP MP S S ABN ABM =∆∆ 想一想:其它三种情形的共边三角形,你能否用上述三种方法一一证明?试试看!【实践练习1】如下图,根据给的条件填空:①=∆∆ABC ABE S S ;②=∆∆BDCABD S S ; ③=∆∆BDE ABE S S ;④=∆∆DEC ABD S S ⑤=FE AE 。
2018奥数夏令营平面几何(教师版)2018年奥数夏令营讲义——平面几何目录一、等差幂线定理 (2)二、共边比例定理、分角张角 (7)2.1 共边比例定理 (7)2.2 分角定理 (10)2.3 张角定理 (12)三、Menelaus、Ceva、Pascal定理 (15)3.1 梅涅劳斯(Menelaus)定理 (15)3.2 赛瓦(Ceva)定理 (19)3.3 Pascal定理 (23)四、三角形五心 (28)4.1 三角形的内心 (28)4.2 三角形的外心 (31)4.3 三角形的重心 (34)4.4 三角形的垂心 (38)4.5 三角形的旁心 (42)五、等角共轭 (49)5.1 等角共轭 (49)5.2 等角共轭点 (50)六、Simson 定理、托勒密、三弦定理 (62)6.1 Simson 定理 (62)6.2 Ptolemy 定理 (65)6.3 三弦定理 (70)七、Stewart 定理 (73)八、欧拉定理、欧拉线、欧拉圆 (78)九、圆幂定理、根轴、根心 (86)十、内外角平分线定理、线段的“分割比”、阿波罗尼斯圆 (103)十一、调和点列、线束 (108)十二、顾冬华20题 (117)注:第81题、第104题、第124题为同一题,分别由三位老师提供,诠释角度不同,故仍然顺应内容重复编排在内,方便备课.1 / 1362 / 136一、等差幂线定理1. 如图,点P 为ABC △内部一点,PL PM PN 、、分别垂直于BC CA AB 、、,且AM AN =,BN BL =.求证:CL CM =.B【证明】由定差幂线定理PN AB ⊥?2222PA PB NA NB -=-;PL BC ⊥?2222PB PC LB LC -=-;PM CA ⊥2222PC PA MC MA ?-=-. 上述三式相加,结合AM AN =及BNBL =,得CL CM =.2. 在正方形对角线上一点(不与重合),. 求证:【证明】则D F3 / 1363. 在中,. 求证:和边上的中线和互相垂直.【证明】连接,得4. 如图,在ABC △中,CD AB ⊥,BE AC ⊥,D 、E 是垂足,CD 与BE 交于点H . 证明:AH BC ⊥. ABC DH E证明:在凹四边形ACBH 中,由CH AB ⊥得2222AC BH BC AH +=+. 在凹四边形ABCH 中,由BH AC ⊥得2222AB CH BC AH +=+.于是,在凹四边形ABHC 中,得到2222AB CH AC BH +=+,则AH BC ⊥. 由此题可得ABC △垂线H 的一个性质:222222AB CH BC AH AC BH +=+=+.ABCDE5.在五边形中,为五边形内一点,.求证:.ABC【证明】连接延长交,由,得:两式相减:即:由凹四边形得:.6.如图,在四边形ABCD中,E和F是CD和BC上的点,AB=AD,DF求证:CDB证明:在四边形ADEF中,由DF及定差幂线定理得,又因为AB=AD,BACDEPQ4 / 136所以,即,由定差幂线定理知7.若点P在ABC△三边BC、CA、AB所在直线上的射影分别为X、Y、Z. 证明:自YZ、ZX、XY的中点分别向BC、CA、AB所作的垂线共点.B证明:由三角形中线长公式,有22221()42am b c a=+-.由DX BC'⊥,EY CA'⊥,FZ AB'⊥,则2222X B X C BD CD''-=-22211()24BZ BY YZ=+-22211()24CY CZ YZ-+-22221()2BY BZ CY CZ=+--.同理,2222221()2Y C Y A CZ CX AZ AX ''-=+--2222221()2Z A Z B AX AY BX BY ''-=+--.以上三式相加,得222222X B X C Y C Y A Z A Z B ''''''-+-+-2222221()2XCXB YA YC ZB ZA=-+-+-.因为,由定差幂线定理可得:以上三式相加得所以222222X B X C Y C Y A Z A ZB''''''-+-+-=0(*)设与交于M 点,则由定差幂线定理可得代入(*)得即所以M在过引AB的垂线上,所以、、三线共点.5 / 1366 / 1368. 以锐角△ABC 的一边AC 为直径作圆,分别与AB 、BC 交于点K 、L ,CK 、AL 分别与△ABC 的外接圆交于点F 、D (F ≠C ,D ≠A ),E 为劣弧AC 上一点,BE 与AC 交于点N . 若AF 2+BD 2+CE 2=AE 2+CD 2+BF 2. 求证:KNB BNL =∠∠.证明如图,由于以AC 为直径的圆分别与AB 、BC 交于点K ,L ,则CK AB ⊥,AL BC ⊥. 设CK 与AL 交于点H ,则H 为ABC △的垂心,故点H 与F 关于AB 对称,点H 与D 关于BC 对称. 从而,AF AH =,CD CH =,BD BH BF ==. 由222222AF BD CE AE CD BF ++=++,有 2222AH CE AE CH +=+.即2222AH CH AE CE -=-. 由定差幂线定理知,HE AC ⊥. 又注意到H 为垂心,有BH AC ⊥. 故知B 、H 、E 三点共线. 因为N 为边AC 与BH 的交点,则BN AC ⊥. 故KNB BNL =∠∠.7 / 136二、共边比例定理、分角张角2.1 共边比例定理9. 如图,ABC △中,DE BC ∥,BE 、CD 交于P . 求证:直线AP 平分BC 和DE .EPDC BA【证明】设直线AP 分别交BC 、DE 于M 、H . 由共边定理,得ACP BCP S AD BD S =△△,ABP CBP S AE CE S =△△,而DE BC ∥,则AD AEBD CE=,所以ACP ABPBCP CBPS S S S =△△△△,则ACP ABP S S =△△. 又由共边定理,得BAP CAP S BM CM S =△△,所以1BMCM=,即BM CM =,所以M 是BC 的中点. 又易知BPD CPE S S =△△,则DAP EAP S S =△△. 由共边定理,得1DAPEAPS DH HE S ==△△,则DH HE =,所以H 是DE 的中点. 故直线AP 平分BC 和DE .MH E PDCBA8 / 13610. 过圆外一点P 引圆的两条切线和一条割线,在上取一点使. 求证:.【证明】设由共边比例定理,得:(的高)又得连接,. .,. 11. 在内任取一点P ,连结P A 、PB 、PC 分别交对边于X 、Y 、Z 点. 求证:ABC证明:由共边比例定理知:9 / 13612. 已知O 是ABC △的内切圆,D 、E 、N 分别为AB 、AC 、BC 上的切点,连结NO 并延长交DE 于点K ,连结AK 并延长交BC 于点M . 求证:M 是BC 的中点.ABC证明:如图,联结OD ,OE ,由O 、D 、B 、N 及O 、N 、C 、E 分别四点共圆有KOD B ∠∠=,KOE C ∠=∠.由共边比例定理,有sin sin ODK OKE S DK OD OK DOK KE S OE OK KOE ??∠==??∠△△sin sin sin sin DOK B ACKOE C AB ∠===∠,及sin sin ADK AEK S DK DAKKE S EAK∠==∠△△. 于是,sin sin ABM ACM S BM AB BAM MC S AC CAM ?∠==?∠△△sin sin AB DAK AC EAK ?∠=?∠AB DK AC KE =?1AB ACAC AB=?=. 故M 是BC 的中点.B10 / 1362.2 分角定理13. 在等腰△ABC 中,∠A <90°,从边AB 上点D 引AB 的垂线,交边AC 于E ,交边BC 的延长线于F .求证:AD =CF 当且仅当△ADE 面积是△CEF 面积的两倍.ABCF【证明】连接BE ,则EA 外分BED ∠.设βα=∠=∠AEB AED ,,作BC EM ⊥. 由分角定理得:BE DEAB AD :sin sin =βα ①在BEF ?中,EC 内分BEF ∠,由分角定理得:BEEFBC CF :sin sin =βα②由①=②且CF AD =,得EF ABBCDE ?=. 设θ=∠ABC ,在等腰ABC ?中,有θcos 2=ABBC. ∴θcos 2?=EF DE ,∴EM DE 2=,∴CEF ADE S S ??=2.以上过程均可逆.11 / 13614. 设△ABC 是直角三角形,点D 在斜边BC 上,4BD DC =,已知圆过点C 与AC 交于F ,与AB相切于AB 的中点G . 求证:AD BF ⊥.【证明】设α=∠BAD ,β=∠ABF ,γ=∠DAC . 在ABC ?中,AD 内分BAC ∠,则:ABACAC AB DC BD 4:sin sin ==γα. 又ααπγcos )2sin(sin =-=,∴ABAC4tan =α. 又在ABF Rt ?中,AB AF=βtan . ∴24tan tan AB AFAC ??=?βα,又AG AB 2=,∴AC AF AG AB ?==4422(切割线定理)∴1tan tan =?βα,从而2πβα=+,.BF AD ⊥∴ 15. △ABC 是等腰直角三角形,∠BAC =90°,AB =AC . 以AB 为一边作△ABD ,且AD =BD .若∠ADC =15°,求证:△ABD 是等边三角形.DBA证明:设.在中,在AB 边上用分角定理可得:12 / 136在中,在AB 边上用分角定理可得:所以解得,所以ABD 是等边三角形2.3 张角定理16. 已知AM 是△ABC 的BC 边上的中线,任作一直线顺次交AM AC AB ,,于N Q P ,,. 求证:AQAC AN AM AP AB ,,成等差数列.【证明】令θβα=∠=∠=∠AMB MAC BAM ,,. 以A 为视点,分别对Q N P ,,及C M B ,,应用张角定理,有AQAP AN αββαsin sin )sin(+=+,①AC AB AM αββαsin sin )sin(+=+.②又在ABM ?和AMC ?中,由正弦定理,有MC AC MB AB βθαθsin sin ,sin sin ==.由已知MC MB =,上述两式相除得ABAC βαsin sin =,于是②式可变为:AC AB AM αββαsin 2sin 2)sin(==+,即sin()sin 2AB AM αββ+=,sin()sin 2AC AM αβα+=.代入①得,).(21AQ AC AP AB AN AM +=13 / 136故AQAC AN AM AP AB ,,成等差数列.14 / 13617. 如图,在线段AB 上取内分点M ,使AM BM ≤,分别以MA ,MB 为边,在AB 的同侧作正方形AMCD 和M BEF ,P 和Q 分别是这两个正方形的外接圆,两圆交于M ,N . 求证:B ,C ,N 三点共线.证明连MD ,ME ,NE ,ND ,NM ,则90DNM ENM ==?∠∠,则D ,N ,E 三点共线,注意454590DME =?+?=?∠.设DMN NEM α==∠∠,P ,Q 的半径分别为1r ,2r ,则M C =,MB ,12cos MN r α=?= 22sin r α?. 对视点M ,考察点B ,C ,N 所在的三角形△MBN. 由22sin sin sin 902sin CMB CMN MN MB r α?+=+=∠∠()2111sin cos sin cos sin cos 2cos 2cos r r αααααααα+?-+?==?11cos sin 2r αα+===sin NMBMC==∠.由张角定理可知B ,C ,N 三点共线.15 / 136三、Menelaus 、Ceva 、Pascal 定理3.1 梅涅劳斯(Menelaus )定理设直线l 与ABC ?三边所在直线BC ,CA ,AB 分别交于点D ,E ,F ,则1=??FBAFEA CE DC BD 反之,若三角形三边所在直线上三点使得上述等式成立,则该三点共线. 利用面积转换,可得出如下两个角元形式:第一角元形式:1sin sin sin sin sin sin =∠∠?∠∠?∠∠FCBACFEBA CBE DAC BAD第二角元形式:1sin sin sin sin sin sin =∠∠?∠∠?∠∠FOBAOFEOA COE DOC BOD(O 为不再三边所在直线上的任意一点)18. AD 为锐角三角形ABC 的一条高,K 为AD 上任一点,BK 、CK 的延长线分别交AC 、AB 于点E 、F .求证:∠EDK =∠FDK .证明:过点A 作MN ∥BC ,与DE 、DF 的延长线分别交于点M 、N .BCAE FK MN由于AF FB ·BD DC ·CEEA=1.而AF FB =AN BD ,CE EA =DC AM . ?ANAM =1?AN =AM ,即DA 是等腰三角形DMN 的底边上的高,从而∠EDA =∠FDA .DBC AEFK16 / 13619. 在△ABC 中,AM 、AT 分别为BC 边上的中线与角平分线. TK ∥AC ,交AM 于K . 证明:AT ⊥CK .证明:由CD 截△ABM ,有AD DB ·BC CM ·MK KA =1. 故AD DB =1 2·AKKM.HBCAK D设AB =c ,BC =a ,CA =b ,则BT CT =c b ?BT =ac b +c ,CT =abb +c .MT =CM -CT =a 2-ab b +c =a (c -b )2(b +c ).但TK ∥AC ?AK KM =CT TM =2b c -b ,?AD DB =bc -b .AD AB =AD AD +DB =b c ,即AD c =bc ?AD =b =AC . 故证.20. 如图,四边形ABCD 中,AB 与CD 所在直线交于点E ,AD 与BC 所在直线交于点F ,BD 与EF所在直线交于点H ,AC 与EF 所在直线交于点G . 求证:HE FG HF EG ?=?.F【解析】考虑AEF ?被直线HBD 截,应用梅涅劳斯定理可知1=??DAFD HF EH BE AB ① HBC AM TK17 / 136考虑AEG ?被直线BCF 截,同理可得1=??CAGC FG EF BE AB ②考虑AGF ?被直线ECD 截,同理可得1=??DAFDEF GE CG AC ③ ②×③÷①可得1=?EHHFFG GE 所以原命题成立21. 如图,已知ABC ?的内切圆分别切BC 、CA 、AB 于点D 、E 、F ,线段BE 、CF 分别与该内切圆交于点P ,Q . 若直线FE 与BC 交于圆外一点R ,证明:P ,Q ,R 三点共线.RC【析】考虑ABC ?被直线EFR 截,应用梅涅劳斯定理可知RC1=??EA CE RC BR FB AF ,因为AF =AE 所以CE FBRC BR =,如图,设BE 与CF 交于点S ,则EFC ?~QEC ?,FEB ?~PFB ?,SEQ ?~SFP ?所以,EQFPSQ SP FB FE PB FP EF CE EQ CQ ===,,18 / 136考虑SBC ?及三个点P ,Q ,R ,RC BR QE CQ PB FP RC BR PB CQ EQ FP RC BR PB CQ SQ SP QS CQ RC BR PB SP ??=??=??=??1=??=CEFB EF CE FB FE 由梅涅劳斯定理的逆定理可知,P ,Q ,R 三点共线.22. 已知ABC △的内心为I ,外接圆圆心为O ,BC 中点为N ,NI 与AC 交于点P ,B 点相对的旁切圆圆心为M ,MI 与圆O 交于点E ,过M 点的直线l 与AC 平行且与BC 所在直线交于点F . 求证:P ,E ,F 三点共线.F【析】如图,连结BI,设MI 与AC 交于点D ,易知,B ,I ,D ,E ,M 五点共线.因为MC 平分ACF ∠,所以MF =CF ,且DC BCMF BF FC BF == 考虑BCD ?被NIP 截,应用梅涅劳斯定理知1=??IBDIPD CP NC BN又因为BC CD BI DI =,所以1=??BC CD PD CP NC BN . 所以CD BCPD CP =所以22CD BC PD CP FC BF =?. 又因为BCD ?~AED ?所以ED AECD BC =,所以22DE AE PD CP FC BF =?. 而ABE ?~DAE ?,则AEDE BE AE =,所以BE DE AE ?=2. 所以DE BE DE BE DE PD CP FC BF =?=?2,所以1=??BEDEPD CP FC BF . 所以由梅涅劳斯定理逆定理知,P ,E ,F 三点共线.19 / 1363.2 赛瓦(Ceva)定理设点P 不在ABC ?三边所在直线上,直线AP ,BP ,CP 分别与BC ,CA ,AB 交于点D ,E ,F ,则1=??FBAFEA CE DC BD ,反之,若三角形三边所在直线上的点使得上述等式成立,则AD ,BE ,CF 交于一点或互相平行.Ceva 定理角元形式:为了方便,我们可以从某个角开始,把六个角顺时针(或逆时针)标记为1∠至6∠,则16sin 5sin 4sin 3sin 2sin 1sin =∠∠?∠∠?∠∠.或者改为判断过ABC ?的顶点的三条直线AX ,BY ,CZ 是否共点,等价于1sin sin sin sin sin sin =∠∠?∠∠?∠∠YBACBY ZCB ACZ XAC BAX23. 在ABC △中,已知40BAC ∠=,60ABC ∠=,D ,E 分别为边AC ,AB 上的点,且使40CBD ∠=,70BCE ∠=,F 是BD 与CE 的交点,连结AF ,证明:AF BC ⊥.。
三角形共边定理三角形共边定理,也称为两边之和大于第三边定理,是几何学中一个基本的定理。
它指出:三角形的任意两边之和大于第三边。
这个定理对于我们研究和解决三角形问题非常重要。
它提供了一个判断三条线段是否可以构成三角形的条件,也帮助我们理解三角形的性质和特点。
让我们来看一下这个定理的几何证明。
假设我们有一个三角形ABC,其中AB、BC、AC分别为三边。
我们要证明,AB + BC > AC。
我们可以通过画一条平行于AC的直线段DE,使得DE与BC相交于F点,与AB相交于G点。
这样,我们就得到了两个三角形,即三角形ABF和三角形CBF。
根据平行线之间的性质,我们可以得到三角形ABF和三角形CBF 的对应边是平行的,即AB和CF平行,BF和AF平行。
根据平行线之间的性质,我们可以得到三角形ABF和三角形CBF 的对应角是相等的,即∠ABF = ∠CBF。
根据三角形内角和定理,我们知道∠ABF + ∠BAC + ∠CBF = 180°。
将上述两个结论代入上式,得到∠BAC + ∠ABF + ∠CBF = 180°。
由于∠ABF = ∠CBF,所以可以得到∠BAC + 2∠ABF = 180°。
根据三角形内角和定理,我们知道三角形ABC的内角和为180°。
因此,我们可以得到∠BAC + ∠ABC + ∠ACB = 180°。
将上述两个等式相减,得到∠ABC + ∠ACB - 2∠ABF = 0。
化简后得到∠ABC + ∠ACB = 2∠ABF。
根据三角形内角和定理,我们知道一个三角形的内角和为180°。
因此,我们可以得到∠ABF + ∠BFC + ∠CFB = 180°。
将上述两个等式相减,得到∠ABC + ∠ACB - (∠BFC + ∠CFB) = 0。
化简后得到∠ABC + ∠ACB = ∠BFC + ∠CFB。
根据三角形内角和定理,我们知道一个三角形的内角和为180°。
4.4共角比例定理及应用共角比例定理若在△ABC和///CBA∆中,/AA∠=∠或+∠A,180/ο=∠A则⋅⋅⋅=∆∆///////CABAACABssCBAABC(4.4-1)证明不妨设/AA∠∠与重合或互为邻补角,如图4-20所示.这时连,//BCCB、由共边比例定理,有/////.CBACABcABABCABCABCsssSss∆∆∆∆∆∆⋅=⋅⋅=////.CAACBAAB注也可由三角形面积公式推导,即⋅⋅⋅=∠⋅⋅∠⋅⋅=⋅∆∆///////////sin21sin21///CABAACABCABCABABACACABSsCBAABC显然,当//CAAC=时,式(4.4-1)即为式(4.3-1)的一种情形,即共角比例定理也可看作共边比例定理的一种推广,运用共角比例定理,可方便地推证一些基本结论,如(1)在△ABC中,若∠B=∠C,则由,1ACABACBCABBCSSCABBAc=⋅⋅==∆∆得.ACAB=(2)在△ABC中,若AD平分∠A交BC于D,则由.ADADSSDCBDADCADB==∆∆,ACABACAB=得⋅=DCBDACAB 例1 如图4—21,在△ABC的边AB、AC上分别取点D、E,使AD= AE.又设M是BC之中点,AM与DE 交于N,求证:⋅=ABACNEDN&证明由共角比例定理,有⋅⋅⋅=⋅⋅=∆∆∆∆AMACAEANssAMABADANssACMANEABMAND,两式相除,并注意到,,,ABMACMsSAEADMCBM∆∆===则⋅==∆∆ABACssNENDENAAND&例2如图4-22,在△ABC 中,,72ο=∠CBA E 是AC 中点,D 在BC 上且2BD =DC ,AD 与BE 交于F ,则△BDF 与四边形FDCE 的面积比是( ). 51.A 41.B 31.C 52.D E .这些都不是 (第9届美国奥林匹克预赛题)解选A .理由:用共角比例定理及共边比例定理,得)(3BFFE BF BF BD BE BC S S BDF BCE +=⋅⋅=∆∆ )1(3)1(3ABD ADE s s BFFE ∆∆+=+= ).1(3ABD ADC ADC ADE S S S S ∆∆∆∆⋅⋅+= .6)12.211(3=+= 即,6.BDF BCE S S ∆∆=故⋅=∆FDCE BDF S S 51 注 上述方法求解时,题中条件ο72=∠CBA 是多余的,例3 如图4-23,点M 和N 三等分AC ,点X 和y 三等分BC ,AY 与BM 、BN 分别交于点S 、R ,则四边形SRNM 的面积与△ABC 的面积之比为 . (1996年上海市竞赛题)解 填⋅425理由:对△BMC 与截线ASY ,由梅涅劳斯定理得,121.31...==SM BS YB CY AC MA SM BS即有 ,6=SM 从而⋅=7BM 又对△BNC 与截线ARY 运用梅涅劳斯定理,有 ,121.32...==RN BR YB CY AC NA RN BR 即有 ,3=RN BR 从而⋅=43BN BR 由共角比例定理,有,14943.76==⋅⋅=∆∆BN BM BR BS s S BMN BSR从而 ⋅=∆145BMN RSMN s s又由共边比例定理,有 ⋅==⋅⋅∆∆31AB MN S S ABC BMN 故 ⋅==⋅=⋅∆∆∆42531.145145.ABC BMN ABC SRNM S S S S 例4 设M 是任意三角形ABC 的边BC 的中点,在AB 、AC 上分别取点E 、F ,连EF 与AM 交于N .求证: ⋅+=)(21AFAC AE AB AN AM (1978年辽宁省竞赛题) 证明 如图4-24,由MB = MC ,得.22ACM ABM ABC S S S ∆∆∆==对等式AFN AEN AEF S S S ∆∆∆+=两边同除以,ABC S ∆得⋅+=⋅+=⋅∆∆∆∆∆∆∆∆∆ACMAFN ABM AEN ABC AFN AEN ABC AEF S s S S S s s S S 22 对上式,运用共角比例定理得)..(21AMAC AN AF AM AB AE AC AB AF AE ⋅⋅+⋅=⋅⋅ ,)(21ω⋅⋅+=AN AC AF AB AE整理即得 ⋅+=)(21AFAC AE AB AN AM 例5 已知四边形ABCD 的对角线AC 经过另一对角线BD 的中点0,过0作两直线分别与AB 、BC 、CD 、DA 交于E 、H 、F 、G,连EH 、FG 分别与BD 相交于P 、Q 求证:OP=OQ .(§4.3中例5的推广)证明 如图4-25,连ED 、BG 、BF 、DH .由共边比例定理和共角比例定理,有OGF DGF BHE OHE S S S S OQ DQ BP OP ∆∆∆∆=..& BHEBAC BAC DAC DAC DGF OGF OHE S S S S S S S S ∆∆∆∆∆∆∆∆=... BE BH BC BA BO DO DC DA DF DG OF OG OE OH ⋅⋅⋅⋅⋅⋅=... BDEBDC BDH BDA BDC BDF BDA BDG BDF BDE BDG BDH s S S S S S S S S S S s ∆∆∆∆∆∆∆∆∆∆∆∆⋅⋅=..1 (1)从而,DQ OQ BP OP =即有,ODOQ BO OP =故OP =OQ . 注此问题是张景中院士提出并证明.本节及上节中的例题的解法,一部也是张院士给出的,习 题 4.41 设D 、E 分别是△ABC 的边AC 、AB 上的点,且满足=∠=∠ECB DBC .21A ∠求证:BE =CD . 2 设△ABC 是等腰直角三角形,.90ο=∠C 在BC 边上取一点M ,使CM =2MB ,过C 作MA 的垂线与斜边AB交于P .求⋅PBAP 3 平行四边形ABCD 的面积为60,E 、F 分别是AB 、BC 的中点,AF 分别与ED 、BD 交于G 、H ,求四边形BHGE 的面积.4 在△ABC 的边AB 、BC 、CA 上分别取M 、K 、L .求证:△AML、△BMK 、△CKL 中至少有一个面积不大于.41⋅∆ABC S (第8届IMO 试题) 5 在凸四边形ABCD 中,AB = CD ,E 、F 分别是AD 、BC 的中点.延长BA 、CD 分别交FE 的延长线于P 、Q 求证:PA =QD.(同习题4.3第3题)答案。
正六边JUNE 2021形面积公式整理人尼克知识改变命运竞赛讲座07--面积问题和面积方法基础知识1.面积公式由于平面上的凸多边形都可以分割成若干三角形,故在面积公式中最基本的是三角形的面积公式.它形式多样,应在不同场合下选择最佳形式使用.设△,分别为角的对边,为的高,、分别为△外接圆、内切圆的半径,.则△的面积有如下公式:(1) ;(2) (3) (4) (5) (6) (7) (8) (9) 2.面积定理(1)一个图形的面积等于它的各部分面积这和;(2)两个全等形的面积相等;(3)等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底和相等)的面积相等;(4)等底(或等高)的三角形、平行四边形、梯形的面积的比等于其所对应的高(或底)的比;(5)两个相似三角形的面积的比等于相似比的平方;(6)共边比例定理:若△和△的公共边所在直线与直线交于,则;(7)共角比例定理:在△和△中,若或,则.3.张角定理:如图,由点出发的三条射线,设,,,则三点共线的充要条件是:.例题分析例1.梯形的对角线相交于,且,,求例2.在凸五边形中,设,求此五边形的面积.例3. 是△内一点,连结并延长与分别交于,△、△、△的面积分别为40,30,35,求△的面积.例4. 分别是△的边和上的点,且,求△的面积的最大值.例5.过△内一点引三边的平行线∥,∥,∥,点都在△的边上,表示六边形的面积,表示△的面积.求证:.例6.在直角△中,是斜边上的高,过△的内心与△的内心的直线分别交边和于和,△和△的面积分别记为和.求证:.例7.锐角三角形中,角等分线与三角形的外接圆交于一点,点、与此类似,直线与、两角的外角平分线将于一点,点、与此类似.求证:(1)三角形的面积是六边形的面积的二倍;(2)三角形的面积至少是三角形的四倍.例8.在△中,将其周长三等分,且在边上,求证:.例9.在锐角△的边边上有两点、,满足,作,( 是垂足),延长交△的外接圆于点,证明四边形与△的面积相等.三.面积的等积变换等积变换是处理有关面积问题的重要方法之一,它的特点是利用间面积相等而进行相互转换证(解)题.例10.凸六边形内接于⊙,且,,求此六边形的面积.例11.已知的三边,现在上取,在延长线上截取,在上截取,求证:.例12. 在内,且∽,求征:例13.在的三边上分别取点,使,,连相交得三角形,已知三角形的面积为13,求三角形的面积.例14. 为圆内接四边形的边的中点,于,于,于,求证:平分.例15.已知边长为的,过其内心任作一直线分别交于点,求证:.例16.正△正△,,,,,,.求证:.例17.在正内任取一点,设点关于三边的对称点分别为,则相交于一点.例18.已知是正六边形的两条对角线,点分别内分,且使,如果三点共线,试求的值.例19.设在凸四边形中,直线以为直径的圆相切,求证:当且仅当∥时,直线与以为直径的圆相切.训练题1.设的面积为10 ,分别是边上的点,且若,求的面积.2.过内一点作三条平行于三边的直线,这三条直线将分成六部份,其中,三部份为三角形,其面积为,求三角形的面积.3.在的三边上分别取不与端点重合的三点,求证:,中至少有一个的面积不大于的面积的.4.锐角的顶角的平分线交边于,又交三角形的外接圆于,过作和边的垂线和,垂足是,求证:四边形的面积等于的面积.5.在等腰直角三角形的斜边上取一点,使,作交于,求证:.6.三条直线互相平行,在的两侧,且间的距离为,间的距离为1,若正的三个顶点分别在上,求正的边长.7.已知及其内任一点,直线分别交对边于( ),证明:在这三个值中,至少有一个不大于2,并且至少有一个不小于2.8.点和分别在的边和上,点和将线段分为三等分,直线和分别与边相交于点和,证明:.9.已知P是内一点,延长分别交对边于,其中,,且,求之值.10.过点P作四条射线与直线分别交于和,求证:.11.四边形的两对对边的延长线分别交,过作直线与对角线的延长线分别,求证:.12. 为的重心,过作直线交于,求证:P是椭圆=1上一点,E、F是左、右焦点,e是椭圆的离心率,则(1),(2)。
共边比例定理
摘要:
一、共边比例定理的概述
二、共边比例定理的证明
三、共边比例定理在实际应用中的案例分析
四、共边比例定理与其他相关定理的联系与区别
五、总结与展望
正文:
【提纲】
一、共边比例定理的概述
共边比例定理,又称共线段比例定理,是三角形中一个重要的比例定理。
它指出在三角形ABC中,如果有一条共边的线段AB与另外两条不共边的线段AC、BC相交,那么线段AB与线段AC、BC之间的比例关系满足:
$frac{AB}{AC}=frac{BC}{AB}$。
【提纲】
二、共边比例定理的证明
证明:设$angle A = alpha$, $angle B = beta$, $angle C = gamma$,则有:
1.根据三角形内角和定理,$alpha + beta + gamma = 180^circ$。
2.由于$angle A$、$angle B$、$angle C$是三角形ABC的内角,所以它们的角度都小于180^circ。
3.根据角度比例定理,$frac{angle A}{angle B} = frac{angle C}{angle A}$。
4.整理得:$angle A^2 = angle B cdot angle C$。
5.由于$angle A + angle B + angle C = 180^circ$,所以$angle A cdot angle B + angle A cdot angle C = angle A^2$。
6.将$angle A^2$替换为$angle B cdot angle C$,得到$angle A cdot angle B + angle A cdot angle C = angle B cdot angle C$。
7.整理得:$angle A cdot (angle B - angle C) = 0$。
8.由于$angle A$、$angle B$、$angle C$是三角形ABC的内角,所以$angle B - angle C < 180^circ$。
9.因此,$angle A = 0$,即线段AB与线段AC、BC之间的比例关系满足:$frac{AB}{AC}=frac{BC}{AB}$。
【提纲】
三、共边比例定理在实际应用中的案例分析
1.在建筑领域,共边比例定理可以用于测量未知边长。
已知三角形ABC 中,边长AB和角度$angle A$,求边长AC。
可以通过共边比例定理求解。
【提纲】
四、共边比例定理与其他相关定理的联系与区别
1.共边比例定理与平行线分线段成比例定理的联系:它们都涉及线段的比例关系,但共边比例定理应用于三角形,而平行线分线段成比例定理应用于平行线与截线段之间的比例关系。
2.共边比例定理与三角形相似定理的区别:共边比例定理关注的是线段之
间的比例关系,而三角形相似定理关注的是三角形形状的相似程度。
【提纲】
五、总结与展望
1.本文对共边比例定理进行了详细的阐述,包括定理的概述、证明、实际应用以及与其他相关定理的联系与区别。
2.共边比例定理在实际应用中具有重要意义,有助于解决三角形相关问题。