共边比例定理、分角定理、张角定理
- 格式:docx
- 大小:452.12 KB
- 文档页数:7
第5章 张角定理及应用【基础知识】张角定理 设A ,C ,B 顺次分别是平面内一点P 所引三条射线PA ,PC ,PB 上的点,线段AC ,CB对点P 的张角分别为α,β,且180αβ+<︒,则A ,C ,B 三点共线的充要条件是:sin()PCαβ+=sin sin PB PAαβ+. 证明 如图5-1,A ,C ,B 三点共线ABP ACP CBP S S S ⇔=+△△△βαCBAP图5-1111sin()sin sin 222PA PB PA PC PC PB αβαβ⇔⋅⋅+=⋅⋅+⋅⋅ sin()sin sin PC PB PAαβαβ+⇔=+. 推论 在定理的条件下,且αβ=,即PC 平分APB ∠,则A ,C ,B 三点共线的充要条件是:2cos PCα= 11PB PA+. 注 若规定角的绕向,逆时针方向为正,否则为负,则上述定理、推论中的点C 可表示在AB 的延长线上的情形.上述定理把平面几何和三角函数紧密相联,它给出了用三角法处理平面几何问题的一个颇为有用的公式.用它去解几何题,适当地配合三角形面积公式、正弦定理、三角公式、几何知识,可以大大简化解题步骤,众多的几何问题可以简捷地解决. 【典型例题与基本方法】1.恰当地选择共一端点的两线段对同一视点的两张角,是应用张角定理的关键例1 如图5-2,已知ABCD 为四边形,两组对边延长后得交点E ,F ,对角线BD EF ∥,AC 的延长线交EF 于G .求证:EG GF =. (1978年全国竞赛题)ββαGFEDCB A图5-2证明 以E 为视点,令BEC α=∠,CEG β=∠,分别对B ,C ,F ;A ,D ,F 及A ,C ,G 应用张角定理,得sin()sin sin EC EF EBαβαβ+=+, ① sin()sin sin ED EF EA αβαβ+=+, ② sin()sin sin EC EG EAαβαβ+=+.③又由BD EF ∥,有BDE β=∠,在△BED 中应用正弦定理,有sin()sin ED EBαββ+=. 由①+②-③-④,得2sin sin EF EGαα=, ∴ 2EF EG =,即EG GF =.例2 已知ABC △的顶点A ,B ,C 对应的三边长分别为a ,b ,c ,E 为其内切圆圆心,AE 交BC于D .求证:AE b cED a +=. (1979年广东省竞赛题)证明 如图5-3,连BE 并延长交AC 于F ,令BAE α=∠,由于E 为内心,则EAF α=∠.以A 为视点,分别对B ,E ,F 及B ,D ,C 应用张角定理的推论,得FEDCBA图5-32cos 11AE AB AF α=+,2cos 11AD AB AC α=+. 上述两式相除,得()()AC AB AF AD AE AF AC AB +=+, 而1AD AE ED EDAE AE AE+==+, 从而 ()()AB AC AF ED AB CFAE AF AC AB AF AB AC-==⋅++. ①又BF 平分B ∠,则AB AF BC CF =,即AB BCAF CF=. 于是,由上式代入①式,得ED BC AE AB AC =+,故AE b cED a+=. 例3 如图5-4,在四边形ABCD 中,对角线AC 平分BAD ∠.在CD 上取一点E ,BE 与AC 相交于F ,延长DF 交BC 于G .求证:GAC EAC =∠∠. (1999年全国高中联赛题)(G ')GFEDCBA图5-4证明 作CAG CAE '=∠∠,交BC 于G '.只须证G ',F ,D 三点共线,设BAC CAD θ==∠∠,CAG CAE α'==∠∠.以A 为视点,分别对B ,F ,E ;B ,G ',C ;C ,E ,D 应用张角定理,有 ()sin sin sin AF AB AE θααθ+=+, ① sin sin sin()AG AB ACθαθα-=+', ② sin sin sin()AE AD AC θαθα-=+, ③由①-②+③式,得sin()sin sin AF AD AG θααθ+=+'. 又以A 为视点,对G ',F ,D 应用张角定理,知G ',F ,D 三点共线.由此,知G '与G 重合,故GAC EAC =∠∠.例4 如图5-5,已知AM 是ABC △的边BC 上的中线,任作一直线顺次交AB ,AC ,AM 于P ,Q ,N .求证:AB AP ,AMAN,AC AQ 成等差数列.(1979年辽宁省竞赛题)θβαCBA MN PQ图5-5证明 令BAM α=∠,MAC β=∠,AMB θ=∠.以A 为视点,分别对P ,N ,Q 及B ,M ,C 应用张角定理,有sin()sin sin AN AP AQαββα+=+, ① sin()sin sin AM AB ACαββα+=+.②又在△ABM 和△AMC 中,由正弦定理,有 sin sin AB MB θα=,sin sin AC MC θβ=. 注意到MB MC =,上述两式相除得sin sin AC ABαβ=. 于是②式变为sin()2sin 2sin AM AB ACαββα+==. 由①式除以上式,得12AM AB AC AN AP AQ ⎛⎫=+ ⎪⎝⎭. 故AB AP ,AMAN,AC AQ 成等差数列.2.找准视点,寻找到与题设条件或结论有关的线段所在的三角形,是灵活应用张角定理的前提.例5 如图5-6,圆的割线PAB 通过圆心O ,自P 作圆的任一割线PCD 交圆于C ,D .又在圆上取一点E ,使BE BD =,连CE 交AB 于F .求证:211AB BP BF=+.BP图5-6证明 连AC ,BC ,令1ECB =∠∠,2BCD =∠∠,3ACE =∠∠,4ACP =∠∠,AC a =,BC b =. 由BE BD =,有12=∠∠.连BD ,由AE AD =,有34ABD ==∠∠∠.以C 为视点,考察线段AB ,BP ,BF 所在的三角形ABC △和△PBC ,分别应用张角定理,有 sin90sin 1sin 3CF a b︒=+∠∠, sin(904)sin 4sin90a b CP ︒+︒=+∠∠. 即 sin 1sin 3cos 3sin 3ab abCF b a b a ==++∠∠∠∠, cos 4sin 4cos 3sin 3ab abCP b a b a ==--∠∠∠∠. 由此,知cos 3sin 30b a ->∠∠. 在△CPB 中,由余弦定理,得122222cos(903)cos 3sin 3cos 3sin 3ab ab BP b b a b a ⎡⎤⎛⎫=+-⋅⋅︒+⎢⎥ ⎪--⎝⎭⎢⎥⎣⎦∠∠∠∠∠. 因034180<+<︒∠∠,则03490<=<︒∠∠,即cos 30>∠. 于是,()122222cos 3(cos 3sin 3)b a b BP b a 2⎡⎤⋅+⎢⎥==-⎢⎥⎣⎦∠∠∠ 同理,在CFP △中,有BF .又在Rt ABC △中,AB , 故211AB BP BF ==+. 注 此例结论表示AB 是BP 与BF 的调和平均,亦表示1PF 调和分割弦AB . 例6 (第一章例12)任意四边形ABCD 的一组对边BA 与CD 交于M ,过M 作割线交另一组对边所在直线于H 、L ,交对角线所在直线于H '、L '.求证:1111MH ML MH ML +=+''. 证明 如图5-7,MBL α=∠,CML β=∠,BMC αβ=+∠,L'H 'DCBA MH图5-7由张角定理得:sin()sin sin MH MD MAαβαβ+=+, ① sin()sin sin MH MC MA αβαβ+=+', ② sin()sin sin ML MD MA αβαβ+=+', ③ sin()sin sin ML MC MBαβαβ+=+.④由①+④-②-③得sin()sin()sin()sin()0MH ML MH ML αβαβαβαβ+++++--='',故1111MH ML MH HL +=+''. 注 此例也可运用线段的调和分割来证明,可参见第十一章例9.对于第十一章的例10,也可运用张角定理来证.请看下例:例7 圆内接四边形ABCD 一组对边DA 、CB 延长线交P 点,过P 点任作直线PF 分别交圆于E 、F ,交AB 、CD 所在直线于N 、M ,求证:1111PE PF PN PM+=+. 证明 设APM α=∠,BPM β=∠,并分别取AD 、EF 、BC 中点R 、G 、H ,如图5-8,显然P 、R 、G 、H 和圆心O 五点共圆,由托勒密定理可知:PG RH RG PH PR GH ⋅=⋅+⋅.对△RGH 三边用正弦定理代入得:()sin sin sin PG PH PR αβαβ⋅+=⋅+⋅,两边乘2,即()sin()PE PF αβ++= ()()sin sin PB PC PA PD αβ+++.又PE PF PB PC PA PD ⋅=⋅=⋅,则11sin()PE PF αβ⎛⎫++= ⎪⎝⎭1111sin sin PB PC PA PD αβ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭.由张角定理:sin()sin sin PN PB PA αβαβ+=+,sin()sin sin PM PC PD αβαβ+=+,因此1111PE PF PN PM+=+. PFD图5-8当PF 与AB 、DC 的延长线相交同时与圆相交(或相切),如图5-9,例7仍然成立,证法相同.OPR MN K H GFE DCBA 图5-9当PF 与CA ,BD 相交或与它们的延长线相交,同时也与圆相交(或相切),例题7也成立,证法也相同.如图5-10,相切时11PE PF=.P图5-10例8 圆内接ABC △,切线C 点交BA 的延长线于P ,过P 任作直线交圆于E 、F ,交AC 、BC 分别于N 、M ,求证:1111PE PF PN PM+=+. 证明 设APM α=∠,MPC β=∠,并分别取AB 、EF 中点G 、H ,如图5-11,显然P 、G 、H 、C 和圆心O 五点共圆,由托勒密定理可知PH GC GH PC PG HC ⋅=⋅+⋅,对△GHC 三边用正弦定理代入得()sin sin sin PH PC PG αβαβ⋅+=⋅+⋅,两边乘2,即()sin()2sin PE PF PC αβα++=⋅⋅+()sin PA PB β+.因为2PE PF PC PA PB ⋅==⋅,从而11211sin()sin PE PF PC PA PB αβα⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭sin β.图5-11由张角定理,sin()sin sin PN PC PA αβαβ+=+,sin()sin sin PM PC PBαβαβ+=+. 因此1111PE PF PN PM+=+. 【解题思维策略分析】1.给出著名问题的一种新证法 例9(斯坦纳定理) 在ABC △中,BD ,CE 分别是ABC ∠,ACB ∠的平分线.若BD CE =,则AB AC =. 证明 如图5-12,令ABD DBC α==∠∠,BCE ACE β==∠∠,分别以B ,C 为视点,对ABC △应用张角定理的推论,有2cos 11BD AB BC α=+,2cos 11CE AC BCβ=+. βαβαED CBA图5-12亦有2cos 2cos AB BC AC BC BD CE AB BC AC BC αβ⋅⋅⋅⋅===++, 亦即()()cos cos AB AC BC AC AB BC βα+=+. 对上式应用分比定理,把cos cos βα-化为积,并变形可得 ()2sinsincos 22AC AB BC AB AC BC βαβαα++--=-⋅⋅⋅. ①显然,α,β,αβ±均只能为锐角. 若AB AC >,则①式左端为正,而右端为负,若AB AC <,则①式左端为负,而右端为正. 所以AB AC =.例10(蝴蝶定理) 已知M 是O 的弦AB 的中点,过M 任作两弦CD ,EF ,连CF ,DE 分别交AB 于G ,H ,则MH MG =. 证明 如图5-13,令AMF BME α==∠∠,BMD AMC β==∠∠.以M 为视点,对△M DE 和△MCF 分别应用张角定理,有G H 'C图5-13sin()sin sin MH ME MD αββα+=+, sin()sin sin MG MF MCαββα+=+. 上述两式相减,得()()11sin sin sin()MF ME MD MC MH MG ME MF MC MD βααβ⎛⎫+-=--- ⎪⋅⋅⎝⎭. 设P ,Q 分别是CD ,EF 的中点,由OM AB ⊥,有 22cos(90)2sin ,22cos(90)2sin .MD MC MP OM OM MF ME MQ OM OM ββαα-==⋅︒-=⋅⎧⎨-==⋅︒-=⋅⎩ 于是,()11sin 0MH MG αβ⎛⎫+-= ⎪⎝⎭.而180αβ+≠︒,知sin()0αβ+≠.故MH MG =.注 类似地应用张角定理,可证明如图5-8中的AG BH ''=. 2.获得线段倍分关系的一种途径例11 已知G 是ABC △的重心,过G 作直线分别交ABC △的两边AB ,AC 于E ,F .求证:2EG GF ≤.证明 如图5-14,作中线BGM ,CGN ,令MGF BGE α==∠∠,CGF NGE β==∠∠.βαGFECBAM N 图5-14以G 为视点,分别对△GCM ,△BGN 应用张角定理,有sin()sin sin GF MG GC αββα+=+,sin()EGαβ+=sin sin BG NGβα+. 注意到,2BG GM =,2GC NG =,则 sin()sin sin 2GF GM GNαββα+=+, ① sin()sin sin 2EG GM GN αββα+=+. ②①12⋅-②,得 ()113sin sin 024GF EG GN ααβ⎛⎫-⋅+=-⋅⎪⎝⎭≤. 而 ()()sin 0090αβαβ+><+<︒,故1102EG GF-≥,即2EG GF ≤.例12 如图5-15,平行四边形ABCD 中,在AB 边上取一点P ,使3AB AP =,在边AD 上取点Q ,使4AD AQ =,且PQ 交AC 于M .求证:7AC AM =. βαDCBAM OPQ 图5-15证明 连BD 交AC 于O ,则12AO AC =.令DAM α=∠,BAM β=∠,3AB a =,4AD b =.以A 为视点,分别对△APQ 和△ABD 应用张角定理,有 sin()sin sin sin sin b a AM a b abαβαβαβ+⋅+⋅=+=,sin()sin sin 4sin 3sin 3412b a AO a b ab αβαβαβ+⋅+⋅=+=. 因ADO ABO S S =△△,则4sin 3sin b a αβ⋅=⋅. 于是,4sin 3sin 6sin 212sin 12sin 9sin 12sin 7AM b a a AO b a a a αββαβββ⋅+⋅⋅===⋅+⋅⋅+⋅. 故7AC AM =.例13 如图5-16,筝形ABCD 中,AB AD =,BC DC =.经过AC 与BD 的交点O 任作两条直线,分别交AD 于E ,交BC 于F ,交AB 于G ,交CD 于H ,GF ,EH 分别交BD 于I ,J .求证:OI OJ =. (CMO -5试题)δγβαOIJ HGFE D CBA图5-16证明 令AOE α=∠,EOD β=∠,DOH γ=∠,COH δ=∠.由题设,知AC 垂直平分BD 于O ,以O 为视点,考虑分别在OJ ,OI 所在的三角形△FOH 及△GOF 中应用张角定理.但在△EOH 中,涉及OE ,OH ,于是,又在△AOD ,△COD 及△EOH 中分别应用张角定理,有sin90sin sin OE OD OA αβ︒=+,sin90sin sin OH OC OD γδ︒=+,sin()sin sin OJ OH OEβγβγ+=+. 由上述三式,有sin()sin sin sin sin sin sin sin sin OJ OC OD OD OA βγβγβδγαγβ+⋅⋅⋅⋅=+++. 同理,在△AOB ,△COB 及△GOE 中分别应用张角定理,有 sin()sin sin sin sin sin sin sin sin OI OC OB OB OA γβγβγαβδβγ+⋅⋅⋅⋅=+++. 注意到OD OB =,则有11OJ OI=,故OI OJ =. 例14 如图5-17,已知G 是ABC △的重心,过点G 任作一条直线l ,分别交边AB 、AC 于点D 、E ,若AD xAB =,AE y AC =,求证:11x y+为定值.l βαGFEDCBA图5-17证明 当点D 与点B 重合,即1x =时,E 为AC 之中点,即12y =,此时113x y +=,因此只需证明113x y+=即可. 如图,延长AG 交BC 于F ,则F 为BC 的中点,设BAF α=∠,FAC β=∠,由D ,G ,E 三点共线,可得sin()sin sin AG AE AD αβαβ+=+,因为23AG AF =,AD xAB =.AE yAC =,所以()3sin 2AF αβ+= sin sin yAC xAB αβ+,即sin()2sin 2sin 33AF yAC xAB αβαβ+=+①,由B ,F ,C 三点共线可得()sin sin sin AF AC ABαβαβ+=+②,①式减②式可得sin 2sin 211033AC y AB x αβ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,因为F 为BC 的中点,所以ABF AFC S S =△△,即11sin sin 22AF AB AF AC αβ⋅=⋅,即sin sin 0AC AB αβ=≠,所以2211033y x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,即113x y +=.3.证明线段比例关系式的一种方法例15 如图5-18,已知AD ,AE 分别是ABC △的内外角平分线,点D 在BC 边上,点E 在BC 边的延长线上.求证:112BE CE DE+=. ααbaED CBA图5-18证明 设AD a =,AE b =,BAD DAC α==∠∠.以A 为视点,分别对△ADE 和△ABE 应用张角定理,得sin90sin sin(90)AC b a αα︒︒-=+,sin(90)sin90sin a AB b αα︒+︒=+. 于是 cos sin ab AC b a αα=+,cos sin abAB b a αα=-.在△ABE 中,由余弦定理,并注意cos 0α>,cos sin 0b a αα->(0AB >), 有BE ===.同理,在△ACE 中,求得CE =.而在Rt △ADE 中,DE = 故112BE CE DE +==. 注 112BE CE DE +=表示DE 是CE 与BE 的调和平均,亦表示DE 被B 、C 或BC 被D 、E 调和分割(即DB BEDC CE=). 用张角定理也可以证明如下调和分割问题:凸四边形ABDF 的两组对边延长相交于点C ,E ,直线AD 交BF 于M ,交CE 于点N ,则112AM AN AD +=或AM MDAN ND=. 事实上,如图5-19,令CAN α=∠,NAE β=∠,以A 为视点,分别对△ABF ,△ABE ,△ACF ,△ACE 应用张角定理,有FEDCBAM N图5-19sin()sin sin AM AF AB αβαβ+=+,sin()sin sin AD AE AB αβαβ+=+, sin()sin sin AD AF AC αβαβ+=+,sin()sin sin AN AE AC αβαβ+=+. 上述第一式与第四式相减后减去其余两式,得112sin()sin()AM AN AD αβαβ⎛⎫++=⋅+ ⎪⎝⎭. 而sin()0αβ+≠,故112AM AN AD+=. 或由2AD AD AM AN AM AN AM AN +==+得AM MDAN ND=.这个调和分割问题可以参见第九章中的性质2.例16 如图5-20设I ,H 分别为锐角ABC △的内心和垂心,点1B ,1C 分别为边AC ,AB 的中点.已知射线1B I 交边AB 于点2B (2B B ≠),射线1C I 交AC 的延长线于点2C ,22B C 与BC 相交于K ,1A 为△BHC 的外心.试证:A ,I ,1A 三点共线的充分必要条件是△2BKB 和△2CKK 的面积相等.(CMO -18试题)1B 2B 1C 1C 2C BAHK 图5-20证明 首先证明:2260BKB CKK S S BAC =⇔=︒△△∠.设ABC △的外接圆半径为R ,连IC ,在△ACI 与ABC △中运用正弦定理,有1sin sin 2AI ACAIC C =∠∠ 14sin 12cos 2AC R B B ==⋅∠∠,即114sin sin 22AI R B C =⋅⋅∠∠. 又 11sin 2AB AC R B ==⋅∠. 在△12AB B 中,注意AI 平分A ∠,以A 为视点,在此三角形中应用张角定理的推论,有12cos 2AAI=∠ 1211AB AB +, 即有 21112cos sin 12211112cos cos cos sin 12222R B CAB A A B CAI AB ⋅⋅==⋅--∠∠∠∠∠∠ 112cos sin 221sin 2R B CA ⋅⋅=∠∠∠.同理,2112cos sin 221sin 2R C BAC A ⋅⋅=∠∠∠. 从而 222222BKB CKC ABC AB C S S S S AB AC AB AC =⇔=⇔⋅=⋅△△△△ 1111sin cos sin cos 2222sin sin 11sin sin 22C B B C C B A A ⋅⋅⇔⋅=⋅∠∠∠∠∠∠∠∠ 24sin 12A⇔=∠,注意到A ∠为三角形内角60BAC ⇔=︒∠. 其次,再证60BAC A =︒⇔∠,I ,1A 三点共线.连1BA ,1CA ,在△1ABA 和△1ACA 中分别应用正弦定理,有 1111sin sin A A A B ABA A AB =∠∠,1111sin sin A A AC ACA A AC=∠∠. 因I 为ABC △的内心,A ,I ,1A 共线111A AB A AC ABA ⇔=⇔∠∠∠与1ACA ∠均为锐角,1111sin sin ABA ACA ABA ACA =⇔≠∠∠∠∠(因AB AC ≠)时,111180,,,ABA ACA A B A C+=︒⇔∠∠四点共圆. 注意到1A 中圆周角与圆心角的关系,有()1360236021802BAC BHC A A =︒-=︒-︒-=∠∠∠∠,且118060BAC A BAC +=︒⇔=︒∠∠∠. 例17 如图5-21,设O ,I 分别是ABC △的外心和内心,AD 是BC 边上的高,I 在线段OD 上,求证:ABC △的外接圆半径R 等于BC 边上的旁切圆的半径a r .(1998年全国高中联赛题)证明 因BC 边上的旁切圆的半径4sincos cos 222a A B C r R =,故只需证明4sin cos cos 1222A B C⋅=即可. 由图,易得90OAC BAD B ==︒-∠∠,因为2A BAI CAI ==∠∠,所以()902ADAI OAI B ==-︒-∠∠ 902A B α=+-︒=,由于点D ,I ,O 共线,由张角定理可得sin 2sin sin AI AO AD ααα=+,即2cos 1AI AOα=+1AD ,即2sin 112A B AI AO AD ⎛⎫+ ⎪⎝⎭=+,其中AO R =,sin 2sin sin AD AB B R C B ==. 设ABC △的内切圆半径为,则csc2A AI r =,因为4sin sin sin 222A B C r R =,则4sin sin 22B CAI R =⋅,所以有2sin 1122sin sin 4sin sin 22A B B C R R B C R ⎛⎫+ ⎪⎝⎭=+,即4sin cos cos 2sin sin 1222A B C B B C ⎛⎫+=+ ⎪⎝⎭,即2sin 2A B ⎛⎫+ ⎪⎝⎭cos cos 2sin sin 122B C B C B C +-⎛⎫+=+ ⎪⎝⎭,即sin sin 2sin cos 2sin sin 2222A A A B C B B B C -⎛⎫⎛⎫+⋅++= ⎪ ⎪⎝⎭⎝⎭1+,即()3cos cos sin sin 2sin sin 12222B A C A B C B B A B C ++⎛⎫-+++-+=+ ⎪⎝⎭,cos cos cos()B C B C ++-= cos()cos()B C B C --+,即cos cos cos 0B C A +-=,即22coscos 2sin 10222B C B C A+-+-=,即2sincos 2sin cos 12222A B C A B C -+⋅+=,即4sin cos cos 1222A B C=. 14.证明三点共线的又一个工具例18 如图5-22,已知AB 是圆的直径,PA ,PC 是圆的切线,A ,C 为切点.作CD AB ⊥于D ,Q 为CD 的中点.求证:P ,Q ,B 三点共线.BAP图5-22证明 以C 为视点,考察线段PQ ,QB 所张的角的情形. 连AC ,BC ,则90ACB =︒∠,令PCA α=∠,则CBA ACD α==∠∠,令PC a =,易知2cos AC a α=⋅,cot 2cos cot BC AC a ααα=⋅=⋅⋅,2sin 2cos CD BC a αα=⋅=⋅,2cos CQ αα=⋅.所以2sin sin(90)cos 1cos cos PCB CQ CQ a a αααα︒+===⋅⋅∠, 2sin sin sin 2cos sin cos 2cos cot cos PCQ QCB CB CP a a a a ααααααα+=+=+⋅⋅∠∠22sin cos 1cos cos a a αααα+==⋅⋅.故sin sin sin PCB PCQ QCBCQ CB CP=+∠∠∠. 由张角定理,知P ,Q ,B 三点共线.例19 如图5-23,在线段AB 上取内分点M ,使AM BM ≤,分别以MA ,MB 为边,在AB 的同侧作正方形AMCD 和MBEF ,P 和Q 分别是这两个正方形的外接圆,两圆交于M ,N .求证:B ,C ,N 三点共线.(IMO -1试题)图5-23证明 连MD ,ME ,NE ,ND ,NM ,则90DNM ENM ==︒∠∠,则D ,N ,E 三点共线,注意454590DME =︒+︒=︒∠.设DMN NEM α==∠∠,P ,Q 的半径分别为1r ,2r ,则MC =,2MB =,12cos MN r α=⋅= 22sin r α⋅.对视点M,考察点B ,C ,N所在的三角形△MBN .由 22sin sin sin 902sin CMB CMN MN MB r α︒+=+=∠∠()2111sin cos sin cos sin cos 2cos 2cos r r αααααααα+⋅-+⋅==⋅11cos sin cos(45)22r r ααα+︒-===sin 9045sin NMBMCα︒+︒-==∠.应用张角定理,即知B ,C ,N 三点共线.例20 如图5-24,在ABC △中,令A α=∠,B β=∠,C γ=∠,且αβ>,AD ,BE ,CF 是它的三条垂线;AP ,BQ 是两条角平分线;I ,O 分别是它的内心和外心.证明:点D ,I ,E 共线当且仅当P ,O ,Q 共线,当且仅当O ,I ,F 共线.(IMO -38预选题或由1998年全国高中联赛题改编)IOFE DCBAP Q图5-24证明 由于外心O 有在ABC △内、外、边上三种情形,故须对α分三种情况讨论. (Ⅰ)当α为锐角时.设ABC △的外接圆半径为R ,内切圆半径为,令BC a =,CA b =,AB c =,连CO ,CI ,则abCP b c=+,ab CQ a c =+,π2OCQ β=-∠,π2OCP α=-∠,cos CD b γ=⋅,cos CE a γ=⋅,sin 2r CI γ=,OCI ICF =∠∠ π22γβ=--(或π22γα+-),π2OCF βγ=--∠(或2πγα+-). 以C 为视点,分别考察△PCQ ,△DCE ,△OCF ,并应用张角定理.P ,O ,Q 共线sin sin sin OCP OCQOC CQ CP γ⇔=+∠∠ []sin ()cos ()cos ab R a c b c γαβ⇔⋅=+⋅++⋅[]224sin sin sin sin 2sin 22sin (cos cos )R R αβγαβγαβ⇔⋅⋅⋅=+++22(sin 2sin 2sin 2)[sin 2sin 22sin (cos cos )]R R αβγαβγαβ⇔++=+++sin 22sin (cos cos )cos cos cos γγαβγαβ⇔=+⇔=+.D ,I ,E 共线()sinsinsin 22sin cos ab r a b CI CD CEγγγγγ⇔=+⇔⋅=+ ()cos ()()(1cos )cos r a b c r a b a b c γγγ⇔++⋅=+⇔+-=⋅(sin sin )(1cos )sin cos αβγγγ⇔+-=⋅22cos cos2sin sin cos 222γαβγγγ-⇔⋅⋅=⋅2sincoscos cos cos cos 22γαβγγαβ-⇔⋅=⇔=+. O ,I ,F 共线sin sin sin OCF OCI ICFCI CF CO⇔=+∠∠∠ ()cos cos sin 2222sin sin 22sin sin CI CI a R R γγβββγγββαβ⎛⎫⎛⎫++ ⎪ ⎪+⎛⎫⎝⎭⎝⎭⇔=+⇔+=+ ⎪⋅⋅⎝⎭2sinsin sin sin22rr R R γγαβ+⋅⋅⋅⋅(注意π22γβ+≠,4sin sin sin 222r R αβγ=⋅⋅) 12sin 4sin sin 2222cos cos 22γαββαβ⎛⎫⇔+=+⋅ ⎪⎝⎭⋅4sin cos cos 12sin sin 222γαββαβ⎛⎫⇔+⋅⋅=+⋅ ⎪⎝⎭sin sin sin sin 22222222222αβγβγααβγαβββ⎛⎫⎛⎫⎛⎫⎛⎫⇔+++++-++++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭1cos()cos()αβαβ=+--+cos cos 1cos()1cos()cos cos cos cos βααβαβγγαβ⇔+++-=+-+⇔=+. 因此,D ,I ,E 共线⇔P ,O ,Q 共线⇔O ,I ,F 共线.(Ⅱ)当α为钝角时,注意π2OCP α=-∠,依照(Ⅰ)类似证明. (Ⅲ)当α为直角时,易证点D ,I ,E 共线当且仅当ABC △是等腰直角三角形;点P ,O ,Q 共线当且仅当ABC △是等腰直角三角形;点O ,I ,F 共线当且仅当ABC △是等腰直角三角形.综合即证. 注 在ABC △中,可证得:cos cos cos C A B =+∠∠∠,当且仅当ABC △的外接圆半径等于AB 边上的旁切圆半径.因此本例题还等价于ABC △的外接圆半径等于AB 边上的旁切圆半径,此为例17即1998年全国高中联赛平面几何题结论.5.注意张角定理与斯特瓦尔特定理的等价性例21 如图5-25,设B ,P ,C 依次分别为从A 点引出的三条射线AB ,AP ,AC 上的点.线段BP ,PC 对点A 的张角分别为α,β,且180αβ+<︒,则B ,P ,C 三点共线的下述两个充要条件等价:βαCBA EF P 图5-25(Ⅰ)sin()sin sin AP AC ABαβαβ+=+(张角定理); (Ⅱ)222AB PC AC BP AP BC BP PC BC ⋅+⋅=⋅+⋅⋅(斯特瓦尔特定理). 证明sin()sin sin sin()sin sin AB AC AP AB AP AC AP AC ABαβαβαβαβ+=+⇔⋅⋅+=⋅⋅+⋅⋅ sin cos cos sin sin sin AB AC AB AC AP AB AP AC αβαβαβ⇔⋅⋅⋅+⋅⋅⋅=⋅⋅+⋅⋅.作BE ⊥射线AP 于E ,作CF ⊥射线AP 于F ,则 sin sin AB BE BP k BPAC CF PC k PCαβ⋅⋅===⋅⋅ cos cos AC k BP AB k PC AP k BP AP k PC AP k BC βα⇔⋅⋅⋅+⋅⋅⋅=⋅⋅+⋅⋅=⋅⋅222222222AC AP PC AB AP BP AP AC BP AP AB PC AP BC AC AP AB AP +-+-⇔⋅⋅⋅+⋅⋅⋅=⋅⋅⋅222AB PC AC BP AP BC BP PC BC ⇔⋅+⋅=⋅+⋅⋅.【模拟实战】习题A1.在矩形ABCD 中,AB a =,BC b =,M 为BC 中点,DE ⊥射线AM 于E ,求DE 之长.(用a ,b 表示)2.ABC △中,AB AC =,AD 为BC 边上的高,AD 的中点为M ,CM 的延长线交AB 于K .求证:3AB AK =.3.已知AC AB ⊥,BD AB ⊥,AD 和BC 相交于点E ,EF AB ⊥于F .又AC p =,BD q =,EF r =,AF m =,FB n =.求证:111p q r+=. 4.梯形ABCD (AB DC ∥)的对角线AC ,BD 相交于P ,过P 作梯形下底的平行线交两腰AD 于M ,BC 于N .求证:PM PN =.5.设XOY ∠的平分线上任一点为P ,过P 作两条任意直线AB ,CD ,分别交OX ,OY 于A ,C ,B ,D .求证:OC OA BD OB OD AC ⋅⋅=⋅⋅.6.直线l 的同侧有三个相邻的等边三角形△ADE ,△AFG ,ABC △,且G ,A ,B 都在直线l 上.设这三个三角形的边长依次为b ,c ,a ,连GD 交AE 于N ,连BN 交AC 于L .求证:abcAl ab bc ac =++.7.在O 中,过弦GH 的中点M 作弦AB ,CD ,令AMG α=∠,CMG β=∠.求证:sin sin MB MAMC MDαβ-=-. 8.在平行四边形ABCD 的CD 边上取一点P ,使12CP PD =∶∶,在对角线上取一点Q ,使13CQ QA =∶∶.求证:B ,Q ,P 三点共线. 习题B1.已知四边形ABCD 两组对边的延长线分别交于K ,L .过K ,L 作直线,对角线AC ,BD 之延长线分别交KL 于G ,F .求证:1KF ,1KL ,1KG 成等差数列.2.在锐角三角形ABC 中,AC AB >.求证:B ∠的平分线BD 小于C ∠的平分线CE .3.在O 内,直径AOB ⊥半径OC ,O '与OB ,OC 相切于D ,E ,并与O 内切于F .求证:A ,E ,F 三点共线.4.在Rt ABC △中,90ACB =︒∠,CD AB ⊥于D ,△ADC 和△CDB 的内心分别为1O ,2O ,12O O 与CD 交于K .求证:111BC AC CK+=. 5.设P 为ABC △内任一点,顶点A ,B ,C 与P 的连线分别与BC ,CA ,AB 交于点D ,E ,F .P '为△DEF 周界上任一点,过P '作PD ,PE ,PF 的平行线分别与BC ,CA ,AB 交于D ',E ',F '.证明:在比值P D PD '',P E PE '',P F PF ''中必有一个等于另两个的和.。
平面几何的17个著名定理,助力中考,快帮孩子收藏平面几何是初中数学中的一大重点,对于中考数学而言,几何同样占据着举足轻重的地位,学号几何,对于中考数学的提分绝对是必不可少的一大助力。
你拥有一颗几何脑将会让你对于几何的学习异常轻松。
今天为大家分享平面几何的17个著名定理,希望对您的数学提升有所帮助!一、欧拉线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。
二、九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。
三、费尔马点:已知为锐角△ ABC内一点,当∠ APB = ∠ BPC = ∠ CPA = 120° 时,PA PB PC的值最小,这个点P称为△ ABC的费尔马点。
(图中H为B.点,G为C点)四、海伦公式:在△ ABC中,边BC 、 CA 、 AB的长分别为a 、b 、 c,若P = ½ (a bc ),则△ABC的面积S = √ P (P - a)(P - b )(P - c)。
五、塞瓦定理:在△ ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC 、 CA 、 AB与点D 、 E 、 F ,则BD / DC :CE / EA : AF / FB = 1;其逆亦真。
六、密格尔点:若AE 、 AF 、 ED 、 FB四条直线相交于ABCDEF 六点,构成四个三角形,它们是△ ABF、△ AED 、△ BCE 、△ DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点。
七、葛尔刚点:△ ABC的内切圆分别切边AB 、BC 、CA于点D 、E 、F ,则AE 、 BF 、 CD三线共点,这个点称为葛尔刚点。
八、西摩松线:已知P为△ABC外接圆周上任意一点,PD ⊥ BC ,PE ⊥ AC ,PF ⊥ AB , D 、 E、 F为垂足,则D 、 E、 F三点共线,这条直线叫做西摩松线。
初中数学地所有几何定理及公式初中数学中涉及的几何定理和公式较多,以下列举其中常见的一些定理和公式。
一、直线与角度1.垂线定理:若两条直线相交且所成的四个相邻角中,有两个互补,则这两条直线互相垂直。
2.等角定理:当直线与两条平行线相交时,所成的对应角或同位角相等。
3.同旁内角定理:两条直线被一条第三条直线截断,所成的同旁内角互补。
4.同弧定理:在一个圆周上,两个弧所对的圆心角相等。
二、四边形1.矩形定理:矩形的四条边互相平行两两相等,对角线互相垂直且相等。
2.平行四边形定理:平行四边形的对边互相平行且相等,对角线互相平分且相等。
3.正方形定理:正方形的四条边互相平行且相等,对角线互相垂直且相等。
4.菱形定理:菱形的对角线互相垂直,对角线相等。
5.梯形定理:梯形的底边平行,两斜边或两底角相等。
三、三角形1.直角三角形定理:直角三角形斜边的平方等于两直角边平方的和。
2.等腰三角形定理:等腰三角形的两底角相等,两腰相等。
3.等边三角形定理:等边三角形三条边相等,三个内角为60度。
四、面积和周长1.三角形面积公式:三角形的面积等于底边乘以高再除以22.矩形面积公式:矩形的面积等于长乘以宽。
3.正方形面积公式:正方形的面积等于边长的平方。
4.圆面积公式:圆的面积等于半径的平方乘以π。
5.圆周长公式:圆的周长等于直径乘以π。
五、相似和全等1.相似三角形定理:两个三角形对应的各边成比例,这两个三角形相似。
2.全等三角形定理:两个三角形的三条边分别相等,这两个三角形全等。
六、勾股定理在直角三角形中,直角边的平方等于两直角边所对的锐角的两个外角的和的平方。
以上仅是初中数学中的一些常见的几何定理和公式,希望可以帮到你。
如果有需要可以继续探讨其他内容。
高中平面几何定理汇总及证明1.共边比例定理有公共边AB的两个三角形的顶点分别是P、Q,AB与PQ的连线交于点M,则有以下比例式成立:△ PAB的面积:△ QAB的面积=PM:QM.证明:分如下四种情况,分别作三角形高,由相似三角形可证S△PAB=S△PAM-S△PMB=S△PAM/S△PMB-1×S△PMB=AM/BM-1×S△PMB等高底共线,面积比=底长比同理,S△QAB=AM/BM-1×S△QMB所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM等高底共线,面积比=底长比定理得证特殊情况:当PB∥AQ时,易知△PAB与△QAB的高相等,从而S△PAB=S△QAB,反之,S△PAB=S△QAB,则PB∥AQ;2.正弦定理在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆半径的2倍”,即a/sinA = b/sinB =c/sinC = 2r=Rr为外接圆半径,R为直径证明:现将△ABC,做其外接圆,设圆心为O;我们考虑∠C及其对边AB;设AB长度为c;若∠C为直角,则AB就是⊙O的直径,即c= 2r;∵特殊角正弦函数值∴若∠C为锐角或钝角,过B作直径BC`交⊙O于C`,连接C'A,显然BC'= 2r=R; 若∠C为锐角,则C'与C落于AB的同侧,此时∠C'=∠C同弧所对的圆周角相等∴在Rt△ABC'中有若∠C为钝角,则C'与C落于AB的异侧,BC的对边为a,此时∠C'=∠A,亦可推出;考虑同一个三角形内的三个角及三条边,同理,分别列式可得;3.分角定理在△ABC中,D是边BC上异于B,C或其延长线上的一点,连结AD,则有BD/CD=sin∠BAD/sin∠CADAB/AC;证明:S△ABD/S△ACD=BD/CD………… 1.1S△ABD/S△ACD=1/2×AB×AD×sin∠BAD/1/2 ×AC×AD×sin∠CAD= sin∠BAD/sin∠CAD ×AB/AC…………1.2由1.1式和1.2式得BD/CD=sin∠BAD/sin∠CAD ×AB/A C4.张角定理在△ABC中,D是BC上的一点,连结AD;那么;证明:设∠1=∠BAD,∠2=∠CAD由分角定理,S△ABD/S△ABC=BD/BC=AD/ACsin∠1/sin∠BAC→ BD/BCsin∠BAC/AD=sin∠1/AC 1.1S△ACD/S△ABC=CD/BC=AD/ABsin∠2/sin∠BAC→ CD/BCsin∠BAC/AD=sin∠2/AB 1.21.1式+1.2式即得 sin∠1/AC+sin∠2/AB=sin∠BAC/AD5.帕普斯定理直线l1上依次有点A,B,C,直线l2上依次有点D,E,F,设AE,BD交于G,AF,DC交于I,BF,EC交于H,则G,I,H共线;6.蝴蝶定理设S为圆内弦AB的中点,过S作弦CF和DE;设CF和DE各相交AB于点M和N,则S 是MN的中点;证明:过O作OL⊥ED,OT⊥CF,垂足为L、T,连接ON,OM,OS,SL,ST,易明△ESD∽△CSF∴ES/CS=ED/FC根据垂径定理得:LD=ED/2,FT=FC/2∴ES/CS=EL/CT又∵∠E=∠C∴△ESL∽△CST∴∠SLN=∠STM∵S是AB的中点所以OS⊥AB∴∠OSN=∠OLN=90°∴O,S,N,L四点共圆,一中同长同理,O,T,M,S四点共圆∴∠STM=∠SOM,∠SLN=∠SON∴∠SON=∠SOM∵OS⊥AB∴MS=NS7.西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边或其延长线上的垂线,则三垂足共线;此线常称为西姆松线;证明:若L、M、N三点共线,连结BP,CP,则因PL⊥BC,PM⊥AC,PN⊥AB,有B、L、P、N和P、M、C、L分别四点共圆,有∠NBP = ∠NLP = ∠MLP= ∠MCP.故A、B、P、C四点共圆;若A、P、B、C四点共圆,则∠NBP= ∠MCP;因PL⊥BC,PM⊥AC,PN⊥AB,有B、L、P、N和P、M、C、L四点共圆,有∠NBP = ∠NLP= ∠MCP= ∠MLP.故L、M、N三点共线;西姆松逆定理:若一点在三角形三边所在直线上的射影共线,则该点在此三角形的外接圆上;证明:PM⊥AC,PN⊥AB ,所以A,M,N,P共圆8.清宫定理设P、Q为△ABC的外接圆上异于A、B、C的两点,P关于三边BC、CA、AB的对称点分别是U、V、W,且QU、QV、QW分别交三边BC、CA、AB或其延长线于D、E、F,则D、E、F在同一直线上.证明:A、B、P、C四点共圆,因此∠PCE=∠ABP点P和V关于CA对称所以∠PCV=2∠PCE又因为P和W关于AB对称,所以∠PBW=2∠ABP从这三个式子,有∠PCV=∠PBW另一方面,因为∠PCQ和∠PBQ都是弦PQ所对的圆周角,所以∠PCQ=∠PBQ两式相加,有∠PCV+∠PCQ=∠PBW+∠PBQ即∠QCV=∠QBW即△QCV和△QBW有一个顶角相等,因此但是,,所以同理,于是根据梅涅劳斯定理的逆定理,D、E、F三点在同一直线上;9.密克定理三圆定理:设三个圆C1, C2, C3交于一点O,而M, N, P分别是C1 和C2, C2和C3, C3和C1的另一交点;设A为C1的点,直线MA交C2于B,直线PA交C3于C;那么B, N, C这三点共线;逆定理:如果是三角形,M, N, P三点分别在边AB, BC, CA上,那么△AMP、△BMN、△CPN 的外接圆交于一点O;完全四线形定理如果ABCDEF是完全四线形,那么三角形的外接圆交于一点O,称为密克点;四圆定理设C1, C2,C3, C4为四个圆,A1和B1是C1和C2的交点,A2和B2是C2 和C3的交点,A3和B3是C3和C4的交点,A4和B4是C1和C4的交点;那么A1, A2, A3, A4四点共圆当且仅当B1, B2, B3, B4四点共圆;证明:在△ABC的BC,AC,AB边上分别取点W,M,N,对AMN,△BWN和△CWM分别作其外接圆,则这三个外接圆共点;该定理的证明很简单,利用“圆内接四边形对角和为180度”及其逆定理;现在已知U是和的公共点;连接UM和UN,∵四边形BNUW和四边形CMUW分别是和的内接四边形,∴∠UWB+∠UNB=∠UNB+∠UNA=180度∴∠UWB=∠UNA;同理∠UWB+∠UWC=∠UWC+∠UMC=180度∴∠UWB=∠UMC;∵∠UMC+∠UMA=180度∴∠UNA+∠UMA=180度,这正说明四边形ANUM是一个圆内接四边形,而该圆必是,U必在上;10.婆罗摩笈多定理圆内接四边形ABCD的对角线AC⊥BD,垂足为M;EF⊥BC,且M在EF上;那么F是A D 的中点;证明:∵AC⊥BD,ME⊥BC∴∠CBD=∠CME∵∠CBD=∠CAD,∠CME=∠AMF∴∠CAD=∠AMF∴AF=MF∵∠AMD=90°,同时∠MAD+∠MDA=90°∴∠FMD=∠FDM∴MF=DF,即F是AD中点逆定理:若圆内接四边形的对角线相互垂直,则一边中点与对角线交点的连线垂直于对边;证明:∵MA⊥MD,F是AD中点∴AF=MF∴∠CAD=∠AMF∵∠CAD=∠CBD,∠AMF=∠CME∴∠CBD=∠CME∵∠CME+∠BME=∠BMC=90°∴∠CBD+∠BME=90°∴EF⊥BC11.托勒密定理圆内接四边形中,两条对角线的乘积两对角线所包矩形的面积等于两组对边乘积之和一组对边所包矩形的面积与另一组对边所包矩形的面积之和.圆内接四边形ABCD,求证:AC·BD=AB·CD+AD·BC.证明:过C作CP交BD于P,使∠1=∠2,又∠3=∠4,∴△ACD∽△BCP.得AC:BC=AD:BP,AC·BP=AD·BC ①;又∠ACB=∠DCP,∠5=∠6,∴△ACB∽△DCP.得AC:CD=AB:DP,AC·DP=AB·CD ②;①+②得ACBP+DP=AB·CD+AD·BC.即AC·BD=AB·CD+AD·BC.12.梅涅劳斯定理当直线交三边所在直线于点时,;证明:过点C作CP∥DF交AB于P,则两式相乘得梅涅劳斯逆定理:若有三点F、D、E分别在边三角形的三边AB、BC、CA或其延长线上,且满足AF/FB×BD/DC×CE/EA=1,则F、D、E三点共线;证明:先假设E、F、D三点不共线,直线DE与AB交于P;由梅涅劳斯定理的定理证明如利用平行线分线段成比例的证明方法得:AP/PBBD/DCCE/EA=1;∵ AF/FBBD/DCCE/EA=1;∴ AP/PB=AF/FB ;∴ AP+PB/PB=AF+FB/FB ;∴ AB/PB=AB/FB ;∴ PB=FB;即P与F重合;∴ D、E、F三点共线;13.塞瓦定理在△ABC内任取一点O,延长AO、BO、CO分别交对边于D、E、F,则BD/DC×CE/EA×AF/FB=1;∵△ADC被直线BOE所截,∴CB/BDDO/OAAE/EC=1①∵△ABD被直线COF所截,∴BC/CDDO/OAAF/FB=1②②/①约分得:DB/CD×CE/EA×AF/FB=114.圆幂定理相交弦定理:如图Ⅰ,AB、CD为圆O的两条任意弦;相交于点P,连接AD、BC,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以;所以有:,即:;割线定理:如图Ⅱ,连接AD、BC;可知∠B=∠D,又因为∠P为公共角,所以有,同上证得;切割线定理:如图Ⅲ,连接AC、AD;∠PAC为切线PA与弦AC组成的弦切角,因此有∠PBC=∠D,又因为∠P为公共角,所以有,易证图Ⅳ,PA、PC均为切线,则∠PAO=∠PCO=90°,在直角三角形中:OC=OA=R,PO为公共边,因此;所以PA=PC,所以;综上可知,是普遍成立的;弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,等于它所夹的弧所对的圆周角度数;点对圆的幂P点对圆O的幂定义为点P在圆O内→P对圆O的幂为负数;点P在圆O外→P对圆O的幂为正数;点P在圆O上→P对圆O的幂为0;三角形五心:内心:三角形三条内角平分线的交点外心:三角形三条边的垂直平分线中垂线的相交点重心:三角形三边中线的交点垂心:三角形的三条高线的交点旁心:三角形的旁切圆与三角形的一边和其他两边的延长线相切的圆的圆心九点圆心:三角形三边的中点,三高的垂足和三个欧拉点〔连结三角形各顶点与垂心所得三线段的中点〕九点共圆的圆心15.根心定理三个两两不同心的圆,形成三条根轴,则必有下列三种情况之一:1 三根轴两两平行;2 三根轴完全重合;3 三根轴两两相交,此时三根轴必汇于一点,该点称为三圆的根心;平面上任意三个圆,若这三个圆圆心不共线,则三条根轴相交于一点,这个点叫它们的根心;若三圆圆心共线,则三条根轴互相平行;根轴定义:A与B的根轴L1:到A与B的切线相等的点;B与C的根轴L2:到B与C的切线相等的点;证明设A、B、C三个圆,圆心不重合也不共线;考察L1与L2的交点P;因为P在L1上,所以:P到A的切线距离=P到B的切线距离;因为P在L2上,所以:P到B的切线距离=P到C的切线距离;所以:P到A的切线距离=P到B的切线距离=P到C的切线距离;也就是:P到A的切线距离=P到C的切线距离;所以:P在A与C的根轴上; 所以:三个根轴交于一点;16.鸡爪定理设△ABC的内心为I,∠A内的旁心为J,AI的延长线交三角形外接圆于K,则KI=KJ=KB=KC;证明:由内心和旁心的定义可知∠IBC=∠ABC/2,∠JBC=180°-∠ABC/2∴∠IBC+∠JBC=∠ABC/2+90°-∠ABC/2=90°=∠IBJ同理,∠ICJ=90°∵∠IBJ+∠ICJ=180°∴IBJC四点共圆,且IJ为圆的直径∵AK平分∠BAC∴KB=KC相等的圆周角所对的弦相等又∵∠IBK=∠IBC+∠KBC=∠ABC/2+∠KAC=∠ABI+∠BAK=∠KIB∴KB=KI由直角三角形斜边中线定理逆定理可知K是IJ的中点∴KB=KI=KJ=KC逆定理:设△ABC中∠BAC的平分线交△ABC的外接圆于K;在AK及延长线上截取KI=KB=KJ,其中I在△ABC的内部,J在△ABC的外部;则I是△ABC的内心,J是△ABC 的旁心;证明:利用同一法可轻松证明该定理的逆定理;取△ABC的内心I'和旁心J’,根据定理有KB=KC=KI'=KJ'又∵KB=KI=KJ∴I和I'重合,J和J’重合即I和J分别是内心和旁心17.费尔巴哈定理三角形的九点圆与其内切圆以及三个旁切圆相切设△ABC的内心为I,九点圆的圆心为V;三边中点分别为L,M,N,内切圆与三边的切点分别是P,Q,R,三边上的垂足分别为D,E,F;不妨设AB>AC;假设⊙I与⊙V相切于点T,那么LT与⊙I相交,设另一个交点为S;过点S作⊙I的切线,分别交AB和BC于V,U,连接AU;又作两圆的公切线TX,使其与边AB位于LT的同侧;由假设知∠XTL=∠LDT而TX和SV都是⊙I的切线,且与弦ST所夹的圆弧相同,于是∠XTL=∠VST因此∠LDT=∠VST则∠UDT+∠UST=180°这就是说,S,T,D,U共圆;而这等价于:LU×LD=LS×LT又LP²=LS×LT故有LP²=LU×LD另一方面,T是公共的切点,自然在⊙V上,因此 L,D,T,N共圆,进而有∠LTD=∠LND由已导出的S,T,D,U共圆,得∠LTD=∠STD=180°-∠SUD=∠VUB=∠AVU-∠B而∠LND=∠NLB-∠NDB=∠ACB-∠NBD=∠C-∠B这里用了LN∥AC,以及直角三角形斜边上中线等于斜边的一半所以,就得到∠AVU=∠C注意到AV,AC,CU,UV均与⊙I相切,于是有∠AIR=∠AIQ∠UIS=∠UIP∠RIS=∠QIS三式相加,即知∠AIU=180°也即是说,A,I,U三点共线;另外,AV=AC,这可由△AIV≌△AIC得到;这说明,公切点T可如下得到:连接AI,并延长交BC于点U,过点U作⊙I的切线,切点为S,交AB于V,最后连接LS,其延长线与⊙I的交点即是所谓的公切点T;连接CV,与AU交于点K,则K是VC的中点;前面已得到:LP²=LU×LD而2LP=BL+LP-CL-LP=BP-CP=BR-CQ=BR+AR-CQ+AQ=AB-AC=AB-AV=BV即 LP=BV然而LK是△CBV的中位线于是 LK=BV因之 LP=LK故LK²=LU×LD由于以上推导均可逆转,因此我们只需证明:LK²=LU×LD;往证之这等价于:LK与圆KUD相切于是只需证:∠LKU=∠KDU再注意到 LK∥ABLK是△CBV的中位线,即有∠LKU=∠BAU又AU是角平分线,于是∠LKU=∠CAU=∠CAK于是又只需证:∠CAK=∠KDU即证:∠CAK+∠CDK=180°这即是证:A,C,D,K四点共圆由于 AK⊥KC易得,AD⊥DC所以 A,C,D,K确实共圆;这就证明了⊙I与⊙V内切;旁切圆的情形是类似的;证毕另略证:OI2=R2-2RrIH2=2r2-2Rr'OH2=R2-4Rr'其中r‘是垂心H的垂足三角形的内切圆半径,R、r是三角形ABC外接圆和内切圆半径FI2=1/2OI2+IH2-1/4OH2=1/2R-r2FI=1/2R-r这就证明了九点圆与内切圆内切九点圆半径为外接圆半径一半;F是九点圆圆心,I为内心18.莫利定理将三角形的三个内角三等分,靠近某边的两条三分角线相交得到一个交点,则这样的三个交点可以构成一个正三角形证明:设△ABC中,AQ,AR,BR,BP,CP,CQ为各角的三等分线,三边长为a,b,c,三内角为3α,3β,3γ,则α+β+γ=60°;在△ABC中,由正弦定理,得AF=csinβ/sinα+β;不失一般性,△ABC外接圆直径为1,则由正弦定理,知c=sin3γ,所以AF=sin3γsinβ/sin60°-γ= sinβsinγ3-4sin²γ/1/2√3cosγ-sinγ= 2sinβsinγ√3cosγ+sinγ= 4sinβsinγsin60°+γ.同理,AE=4sinβsinγsin60°+β∴AF:AE=4sinβsinγsin60°+γ:4sinβsinγsin60°+β=sin60°+γ:sin60°+β=sin∠AEF:sin∠AFE∴∠AEF=60°+γ,∠AFE=60°+β.同理得,∠CED=60°+α∠FED=180°-CED-AEF-α-γ=180°-60°-α-60°+α=60°∴△FED为正三角形19.拿破仑定理若以任意三角形的各边为底边向形外作底角为60°的等腰三角形,则它们的中心构成一个等边三角形;在△ABC的各边上向外各作等边△ABF,等边△ACD,等边△BCE;。
共边比例定理摘要:一、共边比例定理的概述二、共边比例定理的证明三、共边比例定理在实际应用中的案例分析四、共边比例定理与其他相关定理的联系与区别五、总结与展望正文:【提纲】一、共边比例定理的概述共边比例定理,又称共线段比例定理,是三角形中一个重要的比例定理。
它指出在三角形ABC中,如果有一条共边的线段AB与另外两条不共边的线段AC、BC相交,那么线段AB与线段AC、BC之间的比例关系满足:$frac{AB}{AC}=frac{BC}{AB}$。
【提纲】二、共边比例定理的证明证明:设$angle A = alpha$, $angle B = beta$, $angle C = gamma$,则有:1.根据三角形内角和定理,$alpha + beta + gamma = 180^circ$。
2.由于$angle A$、$angle B$、$angle C$是三角形ABC的内角,所以它们的角度都小于180^circ。
3.根据角度比例定理,$frac{angle A}{angle B} = frac{angle C}{angle A}$。
4.整理得:$angle A^2 = angle B cdot angle C$。
5.由于$angle A + angle B + angle C = 180^circ$,所以$angle A cdot angle B + angle A cdot angle C = angle A^2$。
6.将$angle A^2$替换为$angle B cdot angle C$,得到$angle A cdot angle B + angle A cdot angle C = angle B cdot angle C$。
7.整理得:$angle A cdot (angle B - angle C) = 0$。
8.由于$angle A$、$angle B$、$angle C$是三角形ABC的内角,所以$angle B - angle C < 180^circ$。
张角定理的两个推论
哎呀,说起张角定理,这可是数学界的一位“大佬”,它那两个神奇的推论,简直就像是数学世界里的“独门秘籍”,用得好,解题就是小菜一碟!
第一个推论,我得给它起个响亮的名字,就叫“角度追踪器”吧!这个推论告诉我们,在一个三角形里,如果你知道了两个角的度数,嘿嘿,剩下的那个角就像是被你施了魔法,只能乖乖现身。
比如说,你遇到了一个三角形的两个角分别是60度和70度,那你就可以得意洋洋地告诉别人,第三个角,必须是50度,不多不少!这就是张角定理的魔力,角度在你面前无处遁形!
第二个推论,我给它起了个“边长比例大师”的外号。
这个推论更神奇,它说在一个三角形里,边长的比例和它们所对角的度数是成正比的。
比如说,你发现一个三角形的一条边特别长,就像是奥运冠军的跳远记录一样,那这条边对应的角肯定也很大,说不定就是90度呢!这个推论就像是给你了一副“透视眼镜”,让你一眼就能看穿三角形的“心事”。
总之,张角定理的这两个推论,就像是数学世界的两把利剑,挥舞起来,不仅能斩妖除魔,还能让你在数学的江湖里威风凛凛。
所以,下次遇到三角形的问题,别忘了拿出你的“张角定理大法”,让它帮你轻松搞定!。
高一数学竞赛班二试讲义第1讲 平面几何中的26个定理班级 姓名一、知识点金1. 梅涅劳斯定理:若直线l 不经过ABC ∆的顶点,并且与ABC ∆的三边,,BC CA AB 或它们的延长线分别交于,,P Q R ,则1BP CQ AR PC QA RB⋅⋅= 注:梅涅劳斯定理的逆定理也成立(用同一法证明)2. 塞瓦定理: 设,,P Q R 分别是ABC ∆的三边,,BC CA AB 或它们的延长线上的点,若,,AP BQ CR 三线共点,则1BP CQ AR PC QA RB⋅⋅= 注:塞瓦定理的逆定理也成立3. 托勒密定理:在四边形ABCD 中,有AB CD BC AD AC BD ⋅+⋅≥⋅,并且当且仅当四边形ABCD 内接于圆时,等式成立。
AB AE AC ADBC ED AC AD==⇒又4. 西姆松定理:若从ABC ∆外接圆上一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F ,则,,D E F 三点共线。
西姆松定理的逆定理:从一点P 作,,BC AB CA 的垂线,垂足分别为,,D E F 。
若,,D E F 三点共线,则点P 在ABC ∆的外接圆上。
5. 蝴蝶定理:圆O 中的弦PQ 的中点M ,过点M 任作两弦AB ,CD ,弦AD 与BC 分别交PQ 于X ,Y ,则M 为XY 之中点。
证明:过圆心O 作AD 与BC 的垂线,垂足为S 、T ,,OY ,OM ,SM ,MT 。
∵△AMD ∽△CMB ∴AM/CM=AD/BC∵AS=1/2AD,BT=1/2BC ∴AM/CM=AS/CT又∵∠A=∠C ∴△AMS ∽△CMT∴∠MSX=∠MTY∴∠OMX+∠OSX=180°∴O,S ,X ,M同理,O ,T ,∴∠MTY=∠MOY,∠MSX=∠MOX∴∠MOX=∠MOY , ∵OM⊥PQ ∴XM=YM注:把圆换成椭圆、抛物线、双曲线蝴蝶定理也成立6. 坎迪定理:设AB 是已知圆的弦,M 是AB 上一点,弦,CD EF 过点M ,连结,CF ED ,分别交AB 于,L N ,则1111LM MN AM MB-=-。
(高中)平面几何基础知识(基本定理、基本性质)1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍.2.射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则有)(22222BP AP AC AB +=+; 中线长:222222a c b ma -+=. 4. 垂线定理:2222BD BC AD AC CD AB -=-⇔⊥. 高线长:Cb Bc A a bc c p b p a p p a h a sin sin sin ))()((2===---=. 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线段与这个角的两边对应成比例.如△ABC 中,AD 平分∠BAC ,则ACAB DC BD =;(外角平分线定理). 角平分线长:2cos 2)(2A c b bc a p bcp c b t a +=-+=(其中p 为周长一半). 6. 正弦定理:R C c B b A a 2sin sin sin ===,(其中R 为三角形外接圆半径). 7.余弦定理:C ab b a c cos 2222-+=. 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin . 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2·DC +AC 2·BD -AD 2·BC =BC ·DC ·BD .10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一半.(圆外角如何转化?)11.弦切角定理:弦切角等于夹弧所对的圆周角.12.圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定理):切线长定理:)13.布拉美古塔(Brahmagupta)定理:在圆内接四边形ABCD中,AC⊥BD,自对角线的交点P向一边作垂线,其延长线必平分对边.14.点到圆的幂:设P为⊙O所在平面上任意一点,PO=d,⊙O的半径为r,则d2-r2就是点P对于⊙O的幂.过P任作一直线与⊙O交于点A、B,则PA·PB= |d2-r2|.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.15.托勒密(Ptolemy)定理:圆内接四边形对角线之积等于两组对边乘积之和,即AC·BD=AB·CD+AD·BC,(逆命题成立) .(广义托勒密定理)AB·CD+AD·BC≥AC·BD.16.蝴蝶定理:AB是⊙O的弦,M是其中点,弦CD、EF经过点M,CF、DE 交AB于P、Q,求证:MP=QM.17.费马点:定理1等边三角形外接圆上一点,到该三角形较近两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距离.定理2三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点.18.拿破仑三角形:在任意△ABC的外侧,分别作等边△ABD、△BCE、△CAF,则AE、AB、CD三线共点,并且AE=BF=CD,这个命题称为拿破仑定理.以△ABC的三条边分别向外作等边△ABD、△BCE、△CAF,它们的外接圆⊙C1、⊙A1、⊙B1的圆心构成的△——外拿破仑的三角形,⊙C1、⊙A1、⊙B1三圆共点,外拿破仑三角形是一个等边三角形;△ABC的三条边分别向△ABC的内侧作等边△ABD、△BCE、△CAF,它们的外接圆⊙C2、⊙A2、⊙B2的圆心构成的△——内拿破仑三角形,⊙C2、⊙A2、⊙B2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心.19.九点圆(Nine point round或欧拉圆或费尔巴赫圆):三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如:(1)三角形的九点圆的半径是三角形的外接圆半径之半;(2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;(3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.20.欧拉(Euler)线:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上.21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半径为r ,外心与内心的距离为d ,则d 2=R 2-2Rr .22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各边距离的和.23. 重心:三角形的三条中线交于一点,并且各中线被这个点分成2:1的两部分;)3,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC 于D ,则D 为BC 的中点,则1:2:=GD AG ;(2)设G 为△ABC 的重心,则ABC AC G BC G ABG S S S S ∆∆∆∆===31; (3)设G 为△ABC 的重心,过G 作DE ∥BC 交AB 于D ,交AC 于E ,过G 作PF ∥AC 交AB 于P ,交BC 于F ,过G 作HK ∥AB 交AC 于K ,交BC 于H ,则2;32=++===ABKH CA FP BC DE AB KH CA FP BC DE ; (4)设G 为△ABC 的重心,则①222222333GC AB GB CA GA BC +=+=+; ②)(31222222CA BC AB GC GB GA ++=++; ③22222223PG GC GB GA PC PB PA +++=++(P 为△ABC 内任意一点);④到三角形三顶点距离的平方和最小的点是重心,即222GC GB GA ++最小;⑤三角形内到三边距离之积最大的点是重心;反之亦然(即满足上述条件之一,则G 为△ABC 的重心).24. 垂心:三角形的三条高线的交点;)cos cos cos cos cos cos ,cos cos cos cos cos cos (Cc B b A a y C c y B b y A a C c B b A a x C c x B b x A a H C B A C B A ++++++++ 垂心性质:(1)三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍;(2)垂心H 关于△ABC 的三边的对称点,均在△ABC 的外接圆上;(3)△ABC 的垂心为H ,则△ABC ,△ABH ,△BCH ,△ACH 的外接圆是等圆;(4)设O ,H 分别为△ABC 的外心和垂心,则HCA BCO ABH CBO HAC BAO ∠=∠∠=∠∠=∠,,.25. 内心:三角形的三条角分线的交点—内接圆圆心,即内心到三角形各边距离相等;),(cb a cy by ayc b a cx bx ax I C B A C B A ++++++++ 内心性质:(1)设I 为△ABC 的内心,则I 到△ABC 三边的距离相等,反之亦然;(2)设I 为△ABC 的内心,则C AIB B AIC A BIC ∠+︒=∠∠+︒=∠∠+︒=∠2190,2190,2190; (3)三角形一内角平分线与其外接圆的交点到另两顶点的距离与到内心的距离相等;反之,若A ∠平分线交△ABC 外接圆于点K ,I 为线段AK上的点且满足KI=KB ,则I 为△ABC 的内心;(4)设I 为△ABC 的内心,,,,c AB b AC a BC === A ∠平分线交BC 于D ,交△ABC外接圆于点K ,则ac b KD IK KI AK ID AI +===; (5)设I 为△ABC 的内心,,,,c AB b AC a BC ===I 在AB AC BC ,,上的射影分别为F E D ,,,内切圆半径为r ,令)(21c b a p ++=,则①pr S ABC =∆;②c p CD CE b p BF BD a p AF AE -==-==-==;;;③CI BI AI p abcr ⋅⋅⋅=.26. 外心:三角形的三条中垂线的交点——外接圆圆心,即外心到三角形各顶点距离相等;)2sin 2sin 2sin 2sin 2sin 2sin ,2sin 2sin 2sin 2sin 2sin 2sin (CB A Cy By AyC B A Cx Bx Ax O C B A C B A ++++++++ 外心性质:(1)外心到三角形各顶点距离相等;(2)设O 为△ABC 的外心,则A BOC ∠=∠2或A BOC ∠-︒=∠2360;(3)∆=S abcR 4;(4)锐角三角形的外心到三边的距离之和等于其内切圆与外接圆半径之和.27. 旁心:一内角平分线与两外角平分线交点——旁切圆圆心;设△ABC 的三边,,,c AB b AC a BC ===令)(21c b a p ++=,分别与AB AC BC ,,外侧相切的旁切圆圆心记为C B A I I I ,,,其半径分别记为C B A r r r ,,.旁心性质:(1),21,2190A C BI C BI A C BI C B A ∠=∠=∠∠-︒=∠(对于顶角B ,C 也有类似的式子);(2))(21C A I I I C B A ∠+∠=∠; (3)设A AI 的连线交△ABC 的外接圆于D ,则DC DB DI A ==(对于C B CI BI ,有同样的结论);(4)△ABC 是△I A I B I C 的垂足三角形,且△I A I B I C 的外接圆半径'R 等于△ABC 的直径为2R .28. 三角形面积公式:C B A R R abc C ab ah S a ABC sin sin sin 24sin 21212====∆)cot cot (cot 4222C B A c b a ++++= ))()((c p b p a p p pr ---==,其中a h 表示BC 边上的高,R 为外接圆半径,r 为内切圆半径,)(21c b a p ++=. 29. 三角形中内切圆,旁切圆和外接圆半径的相互关系:;2sin 2cos 2cos 4,2cos 2sin 2cos 4,2cos 2cos 2sin 4;2sin 2sin 2sin 4C B A R r C B A R r C B A R r C B A R r c b a ==== .1111;2tan 2tan ,2tan 2tan ,2tan 2tan r r r r r r r r r r c b a c b a =++=== 30. 梅涅劳斯(Menelaus )定理:设△ABC 的三边BC 、CA 、AB 或其延长线和一条不经过它们任一顶点的直线的交点分别为P 、Q 、R 则有 1=⋅⋅RBAR QA CQ PC BP .(逆定理也成立) 31. 梅涅劳斯定理的应用定理1:设△ABC 的∠A 的外角平分线交边CA 于Q ,∠C 的平分线交边AB 于R ,∠B 的平分线交边CA 于Q ,则P 、Q 、R 三点共线.32. 梅涅劳斯定理的应用定理2:过任意△ABC 的三个顶点A 、B 、C 作它的外接圆的切线,分别和BC 、CA 、AB 的延长线交于点P 、Q 、R ,则P 、Q 、R 三点共线.33. 塞瓦(Ceva )定理:设X 、Y 、Z 分别为△ABC 的边BC 、CA 、AB 上的一点,则AX 、BY 、CZ 所在直线交于一点的充要条件是AZ ZB ·BX XC ·CY YA=1. 34. 塞瓦定理的应用定理:设平行于△ABC 的边BC 的直线与两边AB 、AC 的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中点M.35.塞瓦定理的逆定理:(略)36.塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点,三角形的三条高线交于一点,三角形的三条角分线交于一点.37.塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB 分别相切于点R、S、T,则AR、BS、CT交于一点.38.西摩松(Simson)定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线Simson line).39.西摩松定理的逆定理:(略)40.关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上.41.关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点.42.史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC 的点P的西摩松线通过线段PH的中心.43.史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上.这条直线被叫做点P关于△ABC的镜象线.44.牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三点共线.这条直线叫做这个四边形的牛顿线.45.牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线.46.笛沙格定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.47.笛沙格定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线.48.波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2 ) .49.波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点.50.波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点.51.波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC 的西摩松线,如设QR为垂直于这条西摩松线该外接圆的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点.52.波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点.53.卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线.54.奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆上取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.55.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.56.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线.(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP则称P、Q 两点关于圆O互为反点)57.朗古来定理:在同一圆周上有A1、B1、C1、D1四点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上.58.从三角形各边的中点,向这条边所对的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心.59.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点.60.康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点.61.康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N 点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松线的交点在同一直线上.这条直线叫做M、N两点关于四边形ABCD的康托尔线.62.康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点.这个点叫做M、N、L三点关于四边形ABCD的康托尔点.63.康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上.这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线.64.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切.65.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形.这个三角形常被称作莫利正三角形.66. 布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B和E 、C 和F ,则这三线共点.67. 帕斯卡(Paskal )定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC和EF 、CD 和FA 的(或延长线的)交点共线.68. 阿波罗尼斯(Apollonius )定理:到两定点A 、B 的距离之比为定比m :n (值不为1)的点P ,位于将线段AB 分成m :n 的内分点C 和外分点D 为直径两端点的定圆周上.这个圆称为阿波罗尼斯圆.69. 库立奇*大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆.70. 密格尔(Miquel )点: 若AE 、AF 、ED 、FB 四条直线相交于A 、B 、C 、D 、E 、F 六点,构成四个三角形,它们是△ABF 、△AED 、△BCE 、△DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点.71. 葛尔刚(Gergonne )点:△ABC 的内切圆分别切边AB 、BC 、CA 于点D 、E 、F ,则AE 、BF 、CD 三线共点,这个点称为葛尔刚点.72. 欧拉关于垂足三角形的面积公式:O 是三角形的外心,M 是三角形中的任意一点,过M 向三边作垂线,三个垂足形成的三角形的面积,其公式: 222AB C D 4||R d R S S EF -=∆∆.。
共边比例定理摘要:1.共边比例定理的概念2.共边比例定理的证明方法3.共边比例定理的应用4.总结正文:一、共边比例定理的概念共边比例定理,又称共边定理,是指在平面几何中,两条直线被一条第三条直线所截,所形成的四个三角形中,对应边之间的比例关系。
具体来说,设直线AB 与PQ 交于点M,那么有SP/AB = SM/PM 和SP/PQ =SM/MQ,其中SP、SM、MQ分别为三角形SPM、SAM、MQP的高。
二、共边比例定理的证明方法共边比例定理的证明方法有多种,这里我们介绍两种比较常见的证明方法:证法1:分别作三角形高,由相似三角形可证。
证法2:等高底共线,面积比底长比。
三、共边比例定理的应用共边比例定理在几何学中有广泛的应用,例如在解决相似三角形问题、比例线段问题、面积问题等。
以下是一个典型的应用例子:已知直线AB 与PQ 相交于点M,且SP/AB = 2/3, PM/MQ = 3/4,求SM的长度。
解:由共边比例定理,我们可以得到两个等式:SP/AB = SM/PM,即SM = SP * PM / ABPM/MQ = SM/MQ,即SM = PM * MQ / AB将已知条件带入上述两个等式,得到:SM = SP * PM / AB = (2/3) * PMSM = PM * MQ / AB = (3/4) * MQ所以,我们可以得到PM * MQ = (3/4) * SP再根据面积比的性质,我们有:(SP * AM) / (PQ * BM) = (SP * PM) / (AB * MQ)代入已知条件,得到:(2/3) * (AM / BM) = (SP * PM) / (AB * MQ) = (2/3) * (PM / MQ)化简后,得到:AM / BM = PM / MQ = 3 / 4所以,我们可以得到SM 的长度为:SM = SP * PM / AB = (2/3) * PM = (2/3) * (AM / BM) * AB = (2/3) * (3/4) * AB = (1/2) * AB四、总结共边比例定理是平面几何中的一个基本定理,它为我们解决直线与直线相交时对应边之间的比例关系提供了有力的工具。