浙教版七年级数学下期末复习试卷 (2634)
- 格式:pdf
- 大小:279.93 KB
- 文档页数:6
浙教版七年级(下)期末数学试卷附答案(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--浙教版初中数学七年级下册期末试卷一、选择题(本题共10小题,每小题3分,共30分)1.下列现象属于平移的是()A.足球在草地上沿一条直线向前滚动B.钟摆的摆动C.投影仪将图片投影转换到屏幕上D.水平运输带上砖块的运动2.计算(﹣3x3)2的结果正确的是()A.﹣6x5B.9x6C.9x5D.﹣6x63.如图,与∠1是同旁内角的是()A.∠2 B.∠3 C.∠4 D.∠54.下列多项式中,能用公式法分解因式的是()A.a2﹣a B.a2+b2C.﹣a2+9b2D.a2+4ab﹣4b25.下列分式中是最简分式的是()A.B.C.D.6.一组数据的最大值是44,最小值是9,制作频数分布表时取组距为5,为了使数据不落在边界上,应将这组数据分成()A.6组B.7组C.8组D.9组7.方程3x+2y=18的正整数解的个数是()A.1 B.2 C.3 D.48.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°9.某校举行少先队“一日捐”活动,七、八年级学生各捐款3000元,八年级学生比七年级学生人均多捐2元,“…”,求七年级学生人数?解:设七年级学生有x人,则可得方程=2,题中用“…”表示缺失的条件,根据题意,缺失的条件是()A.七年级学生的人数比八年级学生的人数少20%B.七年级学生的人数比八年级学生的人数多20%C.八年级学生的人数比七年级学生的人数多20%D.八年级学生的人数比七年级学生的人数少20%10.已知(2018+m)(2016+m)=n,则代数式(2018+m)2+(2016+m)2的值为()A.2 B.2n C.2n+2 D.2n+4二、填空题(本题有6小题,每小题2分,共12分)11.当x=﹣2时,代数式的值是.12.某校为开展“每天运动一小时”活动,对80名学生各自最喜爱的一项体育活动进行调查,制成了如图所示的扇形统计图,则在被调查的学生中,最喜爱打羽毛球的学生人数是人.13.若关于x的多项式x2﹣4mx+16能用完全平方公式进行因式分解,则常数m的值为.14.如图,∠AOB的一边OA为平面镜,∠AOB=α,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是.(用含α的代数式表示)15.若关于x的分式方程=2﹣有增根,则常数a的值是.16.如图,直线MN∥PQ,点A在直线MN与PQ之间,点B在直线MN上,连结AB.∠ABM的平分线BC交PQ于点C,连结AC,过点A作AD⊥PQ交PQ于点D,作AF⊥AB交PQ于点F,AE平分∠DAF交PQ于点E,若∠CAE=45°,∠ACB =∠DAE,则∠ACD的度数是.三、解答题(共8小题,满分58分)17.(6分)因式分解:(1)1﹣x2(2)3x3﹣6x2y+3xy218.(6分)先化简,再求值:x(x﹣1)﹣(x﹣2)2,其中x=﹣119.(6分)(1)解方程组(2)解分式方程:=﹣120.(6分)阅读材料并回答问题:我们可以用平面几何图形的面积来表示一些代数恒等式,如(a+b)(a+2b)=a2+3ab+2b2,就可以用图1的几何图形的面积表示.(1)请写出图2的几何图形的面积所表示的代数恒等式;(2)试画一个几何图形,使它的面积所表示的代数恒等式为(2a+b)(a+2b)=2a2+5ab+2b2.21.(6分)如图,直线a∥b∥c,直线AC与直线a交于点C,与直线b交于点A,过点A作直线AB交直线c于点B,若AP平分∠CAB,且∠1=30°,∠2=70°,求∠3的度数.22.(8分)人工智能(ArtificialIntelligence),英文缩写为AI.它是研究、开发用于模拟、延伸和扩展人的智能的理沦、方法、技术及应用系统的一门新的技术科学.某科学小组抽取了本校50名学生进行问卷调查:您是否了解人工智能(AI)的发展状况?A.非常了解B.了解C.基本了解D.不了解将调查结果制成了如图1所示的条形统计图.(1)回答“基本了解”的学生有名.请补全条形统计图;(请画在答题卷相对应的图上)(2)若该校共有600名学生,则估计该校全体学生中回答“非常了解”和“了解”的一共有多少人?(3)为进一步提高大家对人工智能的认识,科学小组举办了一次关于人工智能的宣传活动,活动结束后按同样的方式抽取了与第一次样本容量相等的学生数进行第二次问卷调查,将调查结果制成了如图2所示的扇形统计图,求前后两次调查中回答“非常了解”的学生人数的增长率.23.(10分)2018年,浙江省开始推广垃圾分类,分类垃圾桶成为我们生活中的必备工具.某环保公司接到A型垃圾桶和B型垃圾桶各1600只的订单,已知一只A型垃圾桶的成本比一只B型垃圾桶的成本多10元,这份订单总成本为176000元.(1)问该份订单中A型垃圾桶和B型垃圾桶的单只成本各是多少元?(2)该公司有甲、乙两个车间,甲车间生产A型垃圾桶,乙车间生产B型垃圾桶,已知乙车间每天生产的垃圾桶数是甲车间每天生产的垃圾桶数的2倍,这样乙车间比甲车间提前2天完成订单任务.问甲乙两个车间每天各生产多少只垃圾桶?24.(10分)如图1,已知两条直线AB,CD被直线EF所截,分别交于点E,点F,EM平分∠AEF交CD于点M,且∠FEM=∠FME.(1)判断直线AB与直线CD是否平行,并说明理由;(2)如图2,点G是射线MD上一动点(不与点M,F重合),EH平分∠FEG交CD于点H,过点H作HN⊥EM于点N,设∠EHN=α,∠EGF=β.①当点G在点F的右侧时,若β=50°,求α的度数;②当点G在运动过程中,α和β之间有怎样的数量关系?请写出你的猜想,并加以证明.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.D 2.B 3.A 4.C 5.A 6.C 7 .B 8.B 9.D 10.D 二、填空题(本题有6小题,每小题2分,共12分)11. 12. 28 13.±2 14. 2α. 15. 5 16. 27°三、解答题(共8小题,满分58分)17.解:(1)原式=(1+x)(1﹣x);(2)原式=3x(x2﹣2xy+y2)=3x(x﹣y)2.18.解:原式=x2﹣x﹣x2+4x﹣4=3x﹣4,当x=﹣1时,原式=﹣3﹣4=﹣7.19.解:(1),①×2﹣②得:3x=12,解得:x=4,把x=4代入②得:y=﹣1,则方程组的解为;(2)去分母得:2=﹣x﹣x+1,解得:x=﹣,经检验x=﹣是分式方程的解.20.解:(1)由图可得:(a+b)(3a+b)=3a2+4ab+b2;(2)根据题意得:.21.解:如图,∵a∥b,∠1=30°,∴∠DAC=∠1=30°,∵b∥c,∠2=70°,∴∠DAB=∠2=70°,∴∠CAB=∠CAD+∠DAB=30°+70°=100°,∵AP平分∠CAB,∴∠CAP=∠BAP=∠CAB=50°,∴∠3=∠CAP﹣∠CAD=50°﹣30°=20°.22.解:(1)回答“基本了解”的学生有50﹣(5+15+10)=20人,补全图形如下:(2)估计该校全体学生中回答“非常了解”和“了解”的一共有600×=240人;(3)第二次“非常了解”的人数为50×(1﹣56%﹣12%﹣8%)=12人,则前后两次调查中回答“非常了解”的学生人数的增长率×100%=14%.23.解:(1)设B型垃圾桶的成本为x元/只,则A型垃圾桶的成本为(x+10)元/只,根据题意得:1600x+1600(x+10)=176000,解得:x=50,则x+10=50+10=60,答:该份订单中A型垃圾桶单只成本是60元,B型垃圾桶单只成本是50元,(2)设甲车间每天生产y只垃圾桶,则乙车间每天生产2y只垃圾桶,根据题意得:﹣=2,解得:y=400,经检验:y=400是原方程的解且符合题意,则2y=800,答:甲车间每天生产400只垃圾桶,则乙车间每天生产800只垃圾桶.24.解:(1)∵EM平分∠AEF∴∠AEF=∠FME,又∵∠FEM=∠FME,∴∠AEF=∠FEM,∴AB∥CD;(2)①如图2,∵AB∥CD,β=50°∴∠AEG=130°,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=65°,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣65°=25°,即α=25°;②分两种情况讨论:如图2,当点G在点F的右侧时,α=.证明:∵AB∥CD,∴∠AEG=180°﹣β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠AEG=(180°﹣β),又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH=90°﹣(180°﹣β)=,即α=;如图3,当点G在点F的左侧时,α=90°﹣.证明:∵AB∥CD,∴∠AEG=∠EGF=β,又∵EH平分∠FEG,EM平分∠AEF∴∠HEF=∠FEG,∠MEF=∠AEF,∴∠MEH=∠MEF﹣∠HEF=(∠AEF﹣∠FEG)=∠AEG=β,又∵HN⊥ME,∴Rt△EHN中,∠EHN=90°﹣∠MEH,即α=90°﹣.。
浙教版数学七年级下册期末考试试卷一、选择题:(本大题共10个小题,每小题3分,共30分)1.下列方程中,为二元一次方程的是()A .210a +=B .32x y z +=C .9xy =D .325x y -=2.下列运算正确的是()A .236m m m = B .842m m m ÷=C .325m n mn +=D .326()m m =3.分式34x x --无意义的条件是()A .4x =B .4x ≠±C .4x ≠-D .4x >4.下列统计活动中不宜用问卷调查的方式收集数据是()A .七年级同学家中电脑的数量B .星期六早晨同学们起床的时间C .各种手机在使用时所产生的辐射D .学校足球队员的年龄和身高5.下列各项变形式,是因式分解的是()A .2(2)2m m n m mn+=+B .2244(2)a a a -+=-C .211()y y y y -=-D .222438xy x y =⋅6.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A .20B .22C .24D .307.已知12x y =-⎧⎨=⎩是关于x 、y 的二元一次方程组382x ny mx y +=⎧⎨-=⎩的解,则2m n +的值为()A .52-B .1C .7D .118.如图,已知直线//AB CD ,GEB ∠的平分线EF 交CD 于点F ,130∠=︒,则2∠等于()A .135︒B .145︒C .155︒D .165︒9.暑假期间,某科幻小说的销售量急剧上升.某书店分别用600元和800元两次购进该小说,第二次购进的数量比第一次多40套,且两次购书时,每套书的进价相同.若设书店第一次购进该科幻小说x 套,由题意列方程正确的是()A .60080040x x =-B .60080040x x =-C .60080040x x =+D .60080040x x=+10.设m xy =,n x y =+,22p x y =+,22q x y =-,其中20202018x t y t =+⎧⎨=+⎩,①当3n =时,6q =.②当292p =时,214m =.则下列正确的是()A .①正确②错误B .①正确②正确C .①错误②正确D .①错误②错误二.填空题(本大题共8个小题,每小题3分,共24分)11.当x 的值为时,分式4x x +的值为0.12.因式分解:24a a -=.13.对于方程238x y +=,用含x 的代数式表示y ,则可以表示为.14.若等式222(1)3x x a x -+=--成立,则a =.15.已知二元一次方程3510x y -=,请写出它的一个整数解为.16.若方程组213212x y x y -=⎧⎨+=⎩的解也是二元一次方程511x my -=-的一组解,则m 的值等于.17.如图所示,12//l l ,点A ,E ,D 在直线1l 上,点B ,C 在直线2l 上,满足BD 平分ABC ∠,BD CD ⊥,CE 平分DCB ∠,若136BAD ∠=︒,那么AEC ∠=.18.如图,把三张边长相等的小正方形甲、乙、丙纸片按先后顺序放在一个大正方形ABCD 内,丙纸片最后放在最上面.已知小正方形的边长为a ,如果斜线阴影部分的面积之和为b ,空白部分的面积和为4,那么2b a 的值为.三.解答题(共7小题)19.(6分)计算:(1)322(124)(2)x y x x -÷-(2)2(21)(23)(23)x x x --+-20.(6分)解方程或方程组:(1)24342x y x y +=⎧⎨-=⎩(2)33233x x x-=--21.(6分)如图,已知1BDC ∠=∠,23180∠+∠=︒.(1)AD 与EC 平行吗?试说明理由.(2)若DA 平分BDC ∠,CE AE ⊥于点E ,180∠=︒,试求FAB ∠的度数.22.(6分)我区的数学爱好者申请了一项省级课题--《中学学科核心素养理念下渗透数学美育的研究》,为了了解学生对数学美的了解情况,随机抽取部分学生进行问卷调查,按照“理解、了解、不太了解、不知道”四个类型,课题组绘制了如图两幅不完整的统计图,请根据统计图中提供的信息,回答下列问题:(1)本次调查共抽取了多少名学生?并补全条形统计图;(2)在扇形统计图中,“理解”所占扇形的圆心角是多少度?(3)我区七年级大约8000名学生,请估计“理解”和“了解”的共有学生多少名?23.(7分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x 的正方形,乙种纸片是边长为y 的正方形,丙种纸片是长为y ,宽为x 的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知2210a b +=,6a b +=,求ab 的值;②已知(2021)(2019)1c c --=,求22(2021)(2019)c c -+-的值.24.(7分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙一次可运走10吨;用1辆A型车和2辆B型车载满脐橙一次可运走11吨.现有脐橙31吨,计划同时租用A 型车a辆,B型车b辆,一次运完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该物流公司设计租车方案;(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费.25.(8分)已知,如图①,点D,E,F,G是ABCFG AC,∆三边上的点,且//(1)若EDC FGC∠=∠,试判断DE与BC是否平行,并说明理由.(2)如图②,点M、N分别在边AC、BC上,且//∠=︒,CMN AB,连接GM,若60∠=︒,55A∠的度数.∠=∠,求GMN4FGM MGC(3)点M、N分别在射线AC、BC上,且//∠=,MN AB,连接GM.若Aα∠=,ACBβ∠的度数(用含α,β,n的代数式表示)FGM n MGC∠=∠,直接写出GMN参考答案一.选择题(共10小题)1.解:A .是一元一次方程,不是二元一次方程,故本选项不符合题意;B .是三元一次方程,不是二元一次方程,故本选项不符合题意;C .是二元二次方程,不是二元一次方程,故本选项不符合题意;D .是二元一次方程,故本选项符合题意;故选:D .2.解:23235m m m m +== ,因此选项A 不正确;84844m m m m -÷==,因此选项B 不正确;3m 与2n 不是同类项,因此选项C 不正确;32326()m m m ⨯==,因此选项D 正确;故选:D .3.解: 分式34x x --无意义,40x ∴-=,4x ∴=,故选:A .4.解:A .七年级同学家中电脑的数量,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;B .星期六早晨同学们起床的时间,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确;C .各种手机在使用时所产生的辐射,利用问卷调查不能准确得到辐射情况,不适合问卷调查,故此选项错误;D .学校足球队员的年龄和身高,利用问卷调查比较直接简单而且比较准确,适合问卷调查,故此选项正确.故选:C .5.解:A .等式从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .等式从左到右的变形属于因式分解,故本选项符合题意;C .等式的右边不是整式的积的形式,不属于因式分解,故本选项不符合题意;D .等式从左到右的变形不属于因式分解,故本选项不符合题意;故选:B .6.解: 一组数据共100个,第5组的频率为0.20,∴第5组的频数是:1000.2020⨯=,一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100201014162020-----=.故选:A .7.解:把1x =-,2y =代入方程组,得32822n m -+=⎧⎨--=⎩解得4m =-,112n =,24117m n ∴+=-+=.故选:C .8.解://AB CD ,130GEB ∴∠=∠=︒,EF 为GEB ∠的平分线,1152FEB GEB ∴∠=∠=︒,2180165FEB ∴∠=︒-∠=︒.故选:D .9.解:若设书店第一次购进该科幻小说x 套,由题意列方程正确的是60080040x x =+,故选:C .10.解:当3n =时,即3x y +=,由20202018x t y t =+⎧⎨=+⎩可得,2x y -=,因此,52x =,12y =,22251246444q x y ∴=-==-==,因此①正确;当292p =时,即22292x y +=,又2x y ∴-=,2224x xy y ∴-+=,∴29242xy -=,214m xy ∴==,因此②正确;故选:B .二.填空题(共8小题)11.解:由题意得:40x +=,且0x ≠,解得:4x =-,故答案为:4-.12.解:原式(4)a a =-.故答案为:(4)a a -.13.解:方程238x y +=,解得:823xy -=.故答案为:823xy -=.14.解:22(1)322x x x --=-- ,22222x x a x x ∴-+=--,2a ∴=-.故答案为:2-.15.解:3510x y -=,5310y x -=-,325y x =-,方程的一个整数解是51x y =⎧⎨=-⎩,故答案为:51x y =⎧⎨=-⎩.16.解:根据题意得213212x y x y -=⎧⎨+=⎩①②,∴由①得:21y x =-,代入②用x 表示y 得,32(21)12x x +-=,解得:2x =,代入①得,3y =,∴将2x =,3y =,代入511x my -=-解得,7m =.故答案为:7.17.解:12//l l ,180BAD ABC ∴∠+∠=︒,136BAD ∠=︒ ,44ABC ∴∠=︒,BD 平分ABC ∠,22DBC ∴∠=︒,BD CD ⊥ ,90BDC ∴∠=︒,68BCD ∴∠=︒,CE 平分DCB ∠,34ECB ∴∠=︒,12//l l ,180AEC ECB ∴∠+∠=︒,146AEC ∴∠=︒,故答案为:146︒.18.解:将乙正方形平移至AB 边,如图所示:设AB x =,∴乙的宽()x a =-;甲的宽()x a =-;又 斜线阴影部分的面积之和为b ,2()a x a b ∴-=,空白部分的面积和为4,2()4x a ∴-=,2x a ∴-=,即22a b ⋅=,∴22ba =.三.解答题(共7小题)19.解:(1)原式322(124)431x y x x xy =-÷=-;(2)原式2244149410x x x x =-+-+=-+.20.解:(1)24342x y x y +=⎧⎨-=⎩①②,①2⨯+②得:510x =,解得:2x =,把2x =代入①得:1y =,则方程组的解为21x y =⎧⎨=⎩;(2)分式方程整理得:33233xx x -=---,去分母得:32(3)3x x --=-,去括号得:3263x x -+=-,解得:9x =-,经检验9x =-是分式方程的解.21.(1)AD 与EC 平行,证明:1BDC ∠=∠ ,//AB CD ∴(同位角相等,两直线平行),2ADC ∴∠=∠(两直线平行,内错角相等),23180∠+∠=︒ ,3180ADC ∴∠+∠=︒(等量代换),//AD CE ∴(同旁内角互补,两直线平行);(2)解:1BDC ∠=∠ ,180∠=︒,80BDC ∴∠=︒,DA 平分BDC ∠,1402ADC BDC ∴∠=∠=︒(角平分线定义),240ADC ∴∠=∠=︒(已证),又CE AE ⊥ ,90AEC ∴∠=︒(垂直定义),//AD CE (已证),90FAD AEC ∴∠=∠=︒(两直线平行,同位角相等),2904050FAB FAD ∴∠=∠-∠=︒-︒=︒.22.解:(1)本次调查共抽取学生为:204005%=(名),∴不太了解的学生为:40012016020100---=(名),补全条形统计图如下:(2)“理解”所占扇形的圆心角是:120360108400⨯︒=︒;(3)1208000(40%)5600400⨯+=(名),所以“理解”和“了解”的共有学生5600名.23.解:(1)222()2x y x y xy +=+-.(2)①由题意得:222()()2a b a b ab +-+=,把2210a b +=,6a b +=代入上式得,2610132ab -==.②由题意得:2222(2021)(2019)(20212019)2(2021)(2019)2212c c c c c c -+-=-+----=-⨯=.24.解:(1)设1辆A 型车载满脐橙一次可运送x 吨,1辆B 型车载满脐橙一次可运送y 吨,依题意,得:210211x y x y +=⎧⎨+=⎩,解得:34x y =⎧⎨=⎩.答:1辆A 型车载满脐橙一次可运送3吨,1辆B 型车载满脐橙一次可运送4吨.(2)依题意,得:3431a b +=,a ,b 均为正整数,∴17a b =⎧⎨=⎩或54a b =⎧⎨=⎩或91a b =⎧⎨=⎩.∴一共有3种租车方案,方案一:租A 型车1辆,B 型车7辆;方案二:租A 型车5辆,B 型车4辆;方案三:租A 型车9辆,B 型车1辆.(3)方案一所需租金为10011207940⨯+⨯=(元);方案二所需租金为10051204980⨯+⨯=(元);方案三所需租金为100912011020⨯+⨯=(元).9409801020<< ,∴最省钱的租车方案是方案一,即租A 型车1辆,B 型车7辆,最少租车费为940元.25.解:(1)//DE BC ,理由如下://FG AC ,FGB C ∴∠=∠,180EDC ADE ∠+∠=︒ ,180FGC FGB ∠+∠=︒,EDC FGC ∠=∠,ADE FGB ∴∠=∠,ADE C ∴∠=∠,//DE BC ∴;(2)60A ∠=︒ ,55C ∠=︒,180180605565B A C ∴∠=︒-∠-∠=︒-︒-︒=︒,//FG AC ,55FGB C ∴∠=∠=︒,4FGM MGC ∠=∠ ,555180FGM MGC FGB MGC ∴∠+∠+∠=∠+︒=︒,25MGN ∴∠=︒,//MN AB ,65MNC B ∴∠=∠=︒,MNC MGN GMN ∠=∠+∠,652540GMN MNC MGN ∴∠=∠-∠=︒-︒=︒;(3)①如图②所示:A α∠= ,ACB β∠=,180180B A ACB αβ∴∠=︒-∠-∠=︒--,//FG AC ,FGB C β∴∠=∠=,FGM n MGC ∠=∠ ,(1)180FGM MGC FGB n MGC β∴∠+∠+∠=+∠+=︒,1801MGN n β︒-∴∠=+,//MN AB ,180MNC B αβ∴∠=∠=︒--,MNC MGN GMN ∠=∠+∠,180180(180)11nGMN MNC MGN n n βαββα︒-∴∠=∠-∠=︒---=︒--++.②如图③所示:设MGN x ∠=,则180GMN GMA NMC nx α∠=∠+∠=+︒-,(1)180n x β-+=︒ ,111801x n β︒-∴=-,18018018018011n GMN nx n n n ββααα︒--︒∴∠=+︒-=+︒-⋅=+--.。
浙教版数学七年级下册期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分。
)1. 3-2等于()A. -9B. -6C. 9D. 192.下列调查中,最适合采用全面调查的是()A. 对全国中学生睡眠时间的调查B. 对我市各居民日平均用水量的调查C. 对光明中学七(1)班学生身高的调查D. 对某批次灯泡使用寿命的调查3.化简:(﹣2)2003+(﹣2)2002所得的结果为()A. 22002B. ﹣22002C. ﹣22003D. 24.下列运算正确的是()A. a5+a2=a7B. (−a6)3=a18C. a0÷a−3=a3D. a6−a2=a45.下面式子从左边到右边的变形是因式分解的是()A. x2﹣x﹣2=x(x﹣1)﹣2B. x2﹣4x+4=(x﹣2)2C. (x+1)(x﹣1)=x2﹣1D. x﹣1=x(1﹣1x)6.如图,己知AB∥CD,DB⊥BC,∠1=40°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°7.已知方程组{x+y=3mx−y=5的解是方程x﹣y=1的一个解,则m的值是()A. 1B. 2C. 3D. 48.如图,若△DEF是由△ABC经过平移后得到,已知A,D之间的距离为1,CE=2,则EF是()A. 1B. 2C. 3D. 49.现要装配30台机器,在装配好6台以后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务,求原来每天装配机器的台数x,下列所列方程中正确的是()A. 6x +242x=3 B. 6x+24x+2=3 C. 6x+302x=3 D. 30x+302x=310.某商店搞促销活动,同时购买一个篮球和一个足球可以打八折,需花费1280元.己知篮球标价比足球标价的3倍多15元,若设足球的标价是x元,篮球的标价为y元,根据题意,可列方程组为( )A. {y−3x=150.2(x+y)=1280 B. {y−3x=150.8(x+y)=1280C. {3x−y=150.2(x+y)=1280 D. {3x−y=150.8(x+y)=1280二、填空题(本大题共6小题,每小题4分,共24分。
浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,现将一块含有60°角的三角板的顶点放在直尺的一边上,若∠2=50°,那么∠1的度数为()A.50°B.60°C.70°D.80°2、下列计算:①()2=2;②=2;③(–2 )2=12;④(+)(–)=–1.其中正确的有()A.1个B.2个C.3个D.4个3、若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a+b+c就是完全对称式.下列三个代数式:①(a﹣b)2;②(2a﹣b)(2a+b);③a(a+b).其中是完全对称式的是()A.③B.①③C.②③D.①4、下列式子中,不能用平方差公式计算的是()A.(m﹣n)(n﹣m)B.(x 2﹣y 2)(x 2+y 2)C.(﹣a﹣b)(a ﹣b)D.(a 2﹣b 2)(b 2+a 2)5、下列计算正确的是()A. B. C. D.6、下列运算正确的是( )A. B. C. D.7、如果方程组的解是方程3x+my=8的一个解,则m=()A.1B.2C.3D.48、下列生活中的现象,属于平移的是()A.升降电梯从底楼升到顶楼B.闹钟的钟摆的运动C.DVD片在光驱中运行D.秋天的树叶从树上随风飘落9、如图,已知AB∥CD,∠1=∠2,那么下列结论中不成立的是()A.∠3=∠2B.∠1=∠5C.∠3=∠5D.∠1+∠2+∠3=180°10、(﹣3)100×()100等于()A.﹣3B.3C.D.111、某微生物的直径用科学记数法表示为5035×10-9m.购连微生物的直径的原数可以是()A.0.000005035mB.0.00005035mC.503500000mD.0.05035m12、为满足学生业余时间读书,学校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书,已知科普书的单价比文学书的单价高出一半,所以购进的文学书比科普书多4本.若设这种文学书的单价为x元,下列所列方程正确的是( )A. B. C. D.13、下列运算结果为的是()A. B. C. D.14、下列运算,正确的是()A.x 3·x 3 = 2x 3B.x 5÷x = x 5C.x 2 = x 5 - x 3D.(-x 2)3 = -x 615、把分式中的a、b都扩大2倍,则分式的值是( )A.扩大4倍B.扩大2倍C.缩小2倍D.不变二、填空题(共10题,共计30分)16、小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.17、a,b,c是直线,且a∥b,b∥c,则________ .18、在半径为5的中,弦AB=8,弦CD=6,且AB||CD,则AB与CD间的距离为________.19、已知,(为正整数),则________.20、如图,写出一个能判定AD∥BC的条件:________.21、若的乘积中不含项,则m的值是________.22、王胖子在扬州某小区经营特色长鱼面,生意火爆,开业前5天销售情况如下:第一天46碗,第二天54碗,第三天69碗,第四天62碗,第五天87碗,如果要清楚地反映王胖子的特色长鱼面在前5天的销售情况,不能选择________统计图.23、化简:=________.24、如图,E为△ABC边CA延长线上一点,过点E作ED∥BC.若∠BAC=70°,∠CED=50°,则∠B=________°.25、如图,在△ABC中,CD平分∠ACB,∠1=∠2=36°,则∠3=________°.三、解答题(共5题,共计25分)26、先化简,再求值:(+ )•,其中x= ﹣3.27、已知二元一次方程:①x+y=4;②2x-y=2;③x-2y=1.请从这三个方程中选择你喜欢的两个方程,组成一个方程组,并求出这个方程组的解.28、已知y=ax2+bx+c.当x=﹣1时,y=0;当x=2时,y=﹣3;当x=3时,y=0.求a、b、c的值.29、随着柴静纪录片《穹顶之下》的播出,全社会对空气污染问题越来越重视,空气净化器的销量也大增,商社电器从厂家购进了A,B两种型号的空气净化器,已知一台A型空气净化器的进价比一台B型空气净化器的进价多300元,用7500元购进A型空气净化器和用6000元购进B型空气净化器的台数相同.(1)求一台A型空气净化器和一台B型空气净化器的进价各为多少元?(2)在销售过程中,A型空气净化器因为净化能力强,噪音小而更受消费者的欢迎.为了增大B型空气净化器的销量,商社电器决定对B型空气净化器进行降价销售,经市场调查,当B型空气净化器的售价为1800元时,每天可卖出4台,在此基础上,售价每降低50元,每天将多售出1台,如果每天商社电器销售B型空气净化器的利润为3200元,请问商社电器应将B型空气净化器的售价定为多少元?30、先化简,再求值:,其中m满足一元二次方程.参考答案一、单选题(共15题,共计45分)1、C2、D3、D4、A5、D6、D7、B8、A9、D10、D11、A12、C13、C14、D15、D二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、30、。
浙教版七年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,在中,点D,E分别在边AB,AC上,.已知DE=6,,那么BC的长是()A.4.5B.8C.10.5D.142、已知甲、乙两种商品的原价和为200元,因市场变化,甲商品降价10%,乙商品提高10%,调价后甲、乙两种商品的单价和比原单价和提高了5%,求甲、乙两种商品的原单价分别是()A.50元,150元B.150元,50元C.80元,120元D.120元,80元3、如图,OA是⊙O的半径,弦BC⊥OA,垂足为M,连接OB、AC,如果OB∥AC,OB=2,那么图中阴影部分的面积是()A. B. C. D.4、下列各式由左到右的变形中,属于分解因式的是()A.a(m+n)=am+anB.a 2﹣b 2﹣c 2=(a﹣b)(a+b)﹣c 2C.10x 2﹣5x=5x(2x﹣1)D.x 2﹣16+6x=(x+4)(x﹣4)+6x5、如图所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④6、下列解方程过程中,变形正确的是()A.由5x-1=3,得5x=3-1B.由,得C.由3- =0,得6-x+1=0D.由=1,得2x-3x=17、若关于,的二元一次方程组的解也是二元一次方程的解,则的值为()A.1B.-1C.2D.-28、已知,,,那么a、b、c之间满足的等量关系是()A. B. C. D.9、设、都是有理数,且满足方程,则的值为()A. B. C. D.10、设(5a+3b)2=(5a-3b)2+M,则M的值是( )A.30abB.60abC.15abD.12ab11、下列计算正确的是()A.x 3•x 3=x 9B.x 6÷x 2=x 3C. D.a 2b﹣2ba 2=﹣a 2b12、如图,利用直尺和三角尺作平行线,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等13、将△ABC沿BC方向平移3个单位得△DEF。
浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列命题正确的是( )A.在同一平面内,可以把半径相等的两个圆中的一个看成是由另一个平移得到的.B.两个全等的图形之间必有平移关系.C.三角形经过旋转,对应线段平行且相等.D.将一个封闭图形旋转,旋转中心只能在图形内部.2、当分式的值为0时,字母x的取值应为()A.﹣1B.1C.﹣2D.23、如图所示,AD⊥BC,DE∥AB,则∠ADE与∠B的关系是()A.相等B.互补C.互余D.不能确定4、在矩形ABCD中(AB<BC),四边形ABFE为正方形,G,H分别是DE,CF的中点,将矩形DGHC移至FB右侧得到矩形FBKL,延长GH与KL交于点M,以K为圆心,KM为半径作圆弧与BH交于点P,古代印度利用这个方法,可以得到与矩形ABCD面积相等的正方形的边长。
若矩形ABCD的面积为16,HP:PF=1:4,则CH的值为( )A. B.1 C. D.25、下列是分式方程的是()A. +1=0B. =0C.D.6x 2+4x+1=06、为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()A. B. C. D.7、下列运算正确的是()A.a 2•a 3=a 6B.(﹣2ab 3)2=﹣4a 2b 6C.(﹣a 2)3=﹣a6 D.2a+3b=5ab8、下列运算正确的是()A.(a3)2=a6B.a2•a4=a8C.a6÷a2=a3D.3a2-a2=39、如图,可以判定AD//BC的是( )A. B. C. D.10、已知:a+b=m,ab=-4, 化简(a-2)(b-2)的结果是A. -2 mB. 2 mC. 2 m-8D.611、太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辐射能功率为()千瓦.(用科学记数法表示,保留2个有效数字)A.1.9×10 14B.2×10 14C.76×10 15D.7.6×10 1412、下列计算中正确的是( )A.a 6÷a 2=a 3B.(a 4)2=a6C.3a 2-a 2=2D.a 2·a 3=a 513、一元一次方程组的解的情况是()A. B. C. D.14、下列关于x的方程中,是分式方程的是( ).A. B. C. D.3x-2y=115、为了保护生态环境,某地将一部分耕地改为林地,改变后,林地的面积和耕地的面积和共有180万公顷,耕地面积是林地面积的25%,已知改变后耕地面积为x万公顷,林地面积为y公顷,以下关于x、y的四个方程组,其中符合题意的是()A. B. C. D.二、填空题(共10题,共计30分)16、一个长、宽分别为m、n的长方形的周长为14,面积为8,则m2n+mn2的值为________.17、因式分解:=________.18、如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=________.19、已知方程x m-3+y2-n=6是二元一次方程,则m-n=________20、分解因式:m2+2m=________.21、计算:x(x﹣2)=________22、如图,在一块边长为a的正方形花圃中,两纵两横的4条宽度为的人行道把花圃分成9块,下面是四个计算花圃内种花土地总面积的代数式:① ;② ;③ ;④ .其中正确的有________.23、化简:= ________ 。
2022-2023学年浙教新版七年级下册数学期末复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列各式是二元一次方程的是( )A.x2+y=0B.x=C.D.y+x2.下列算式中,结果一定等于a6的是( )A.a3+a2B.a3•a2C.a8﹣a2D.(a2)33.含有新冠病毒的气溶胶直径通常小于5微米,其病原体含量非常少,携带新冠病毒的气溶胶在空气中被健康人群直接吸入的概率较低.人们更应该注意那些随气溶胶沉降在物体表面的冠状病毒,做到勤消毒、勤洗手,防止接触后造成感染.5微米转换成国际单位“米”为单位是0.000005米,将数字0.000005写成科学记数法得到( )A.0.5×105B.5×106C.0.5×10﹣5D.5×10﹣64.有下列变形:①a(x+y)=ax+ay;②12x2﹣6x=6x(2x﹣1);③2mR+2mr=2m (R+r).其中是因式分解的有( )A.3个B.2个C.1个D.0个5.下列问题中,不适合用普查的是( )A.了解全班同学每周体育锻炼时间B.旅客上飞机安检C.学生会选干部D.了解全市中学生的新年红包6.如图,直线a∥b,一块含45°角的直角三角板的直角顶点恰好在直线a上,若∠1=30°,则∠2的度数是( )A.55°B.65°C.75°D.80°7.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元.设刘刚买的两种贺卡分别为x张、y张,则下面的方程组正确的是( )A.B.C.D.8.若分式方程﹣=0有增根,则m的值是( )A.3B.2C.1D.﹣19.已知方程组的解满足x+y=2,则k的值为( )A.4B.﹣4C.2D.﹣210.当a=﹣1时,分式的值是( )A.2B.﹣2C.﹣4D.4二.填空题(共6小题,满分24分,每小题4分)11.当a 时,分式有意义.12.已知2x﹣y=﹣3,用含x的式子表示y,则 .13.78×73= .14.已知是方程组的解,则a+b= .15.如果(x+1)(x﹣2)=x2+mx+n,那么n m= .16.如图,图1,图2都是由8个一样的小长方形拼成的,且图2中的阴影部分(正方形)的面积为1.则小长方形的长为 .三.解答题(共8小题,满分66分)17.(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x2﹣12y2.18.先化简,再求值:(﹣1)÷,其中m=2.19.解方程(1)解分式方程:=﹣1;(2)解二元一次方程组.20.如图,在8×8的正方形网格中有△ABC,点A,B,C均在格点上.(1)画出点B到直线AC的最短路径BD;(2)过C点画出AB的平行线,交BD于点E;(3)将△ABC向左平移4格,再向下平移3格后得到△A1B1C1,画出△A1B1C1;(4)判断∠BAC和∠CED的数量关系 .21.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只能选一种),在全校范围内随机调查了部分学生,并将统计结果绘制了两幅不完整的统计图,请结合图中所给信息,解答下列问题:(1)本次调查问卷共调查了多少名学生,表示“其它”的扇形圆心角的度数是多少?(2)请你补充完整条形统计图;(3)如果该校有1000名学生,请估计该校最喜欢用“微信”进行沟通的学生约有多少名?22.如图,△ABC中,D是AC上一点,过D作DE∥BC交AB于E点,F是BC上一点,连接DF.若∠1=∠AED.(1)求证:DF∥AB.(2)若∠1=50°,DF平分∠CDE,求∠A的度数.23.某工厂生产某种型号的螺母和螺钉两种零件,每名工人平均每天生产的螺母比螺钉多800个,1个螺钉需要配2个螺母,生产50000个螺母和生产30000个螺钉所用的时间相同.(1)求每名工人平均每天生产螺母和螺钉各多少个?(2)若该车间有工人22名,如何分配使每天生产的螺钉和螺母刚好配套?24.如图,已知AM∥BN,点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)解答下列问题.①当∠A=50°时,∠ABN的度数是 .②∵AM∥BN,∴∠ACB=∠ .(2)当∠A=x°,求∠CBD的度数(用x的代数式表示).(3)当点P运动时,∠ADB与∠APB的度数之比是否随点P的运动而发生变化?若不变化,请求出这个比值,若变化,请写出变化规律.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A.该方程是二元二次方程,不符合二元一次方程的定义,不是二元一次方程,即A 选项不合题意;B.是分式方程,不符合二元一次方程的定义,不是二元一次方程,即B选项不合题意;C.符合二元一次方程的定义,是二元一次方程,即C选项符合题意;D.不是方程,即D选项不合题意.故选:C.2.解:A.a3与a2不能合并,故A不符合题意;B.a3•a2=a5,故B不符合题意;C.a8与a2不能合并,故C不符合题意;D.(a2)3=a6,故D符合题意;故选:D.3.解:将0.000005用科学记数法表示为5×10﹣6.故选:D.4.解:①a(x+y)=ax+ay,是整式的乘法,不是因式分解;②12x2﹣6x=6x(2x﹣1),是因式分解;③2mR+2mr=2m(R+r),是因式分解.其中是因式分解的有2个.故选:B.5.解:A、了解全班同学每周体育锻炼时间,调查范围小,适合普查;B、旅客上飞机安检是事关重大的调查,适合普查;C、学生会选干部,调查范围小,适合普查;D、了解全市中学生的新年红包,适合抽样调查;故选:D.6.解:如图,∵∠1=30°,∴∠3=∠1+45°=75°,∵直线a∥b,∴∠2=∠3=75°,故选:C.7.解:根据题意列方程组,得.故选:D.8.解:方程两边同时乘(x﹣2)得:m﹣1﹣x=0,∴x=m﹣1,∵方程有增根,∴x﹣2=0,∴x=2,∴m﹣1=2,∴m=3,故选:A.9.解:,①×2﹣②×3得:y=4﹣k,②×5﹣①×3得:x=2k﹣6,代入x+y=2中得:2k﹣6+4﹣k=2,解得:k=4,故选:A.10.解:当a=﹣1时,原式=,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:∵分式有意义,∴2a+1≠0,解得:a≠﹣.故答案为:a≠﹣.12.解:由2x﹣y=﹣3,解得:y=2x+3,故答案为:y=2x+313.解:78×73=78+3=711.故答案为:711.14.解:将代入得:,∴,∴a+b=﹣2,故答案为:﹣2.15.解:∵(x+1)(x﹣2)=x2﹣x﹣2,=x2+mx+n,∴m=﹣1,n=﹣2,∴n m=(﹣2)﹣1=﹣.故答案为:﹣.16.解:设小长方形的长为x,宽为y,依题意得:,解得:.故答案为:5.三.解答题(共8小题,满分66分)17.解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).18.解:(﹣1)÷====,当m=2时,原式==6.19.解:(1)方程两边都乘x﹣1,得2=﹣x﹣x+1,解得:x=﹣,检验:当x=﹣时,x﹣1≠0,所以x=﹣是原方程的解,即原方程的解是x=﹣;(2),①×3+②,得10x=20,解得:x=2,把x=2代入①,得4+y=3,解得:y=﹣1,所以方程组的解为.20.解:(1)如图,BD即为所求.(2)如图,直线CE即为所求.(3)如图,△A1B1C1即为所求.(4)∵CE∥AB,∴∠BAC=∠ECD,∵BD⊥AD,∴∠ADB=90°,∴∠DCE+∠DEC=90°,∴∠BAC+∠DEC=90°,即∠BAC和∠CED的数量关系为互余.故答案为:互余.21.解:(1)40÷20%=200(名),360°×=18°;答:本次调查问卷共调查了200名学生,表示“其它”的扇形圆心角的度数是18°;(2)短信的人数为:200×5%=10(名),微信人数为:200﹣40﹣10﹣60﹣10=80(名),补全条形统计图如图所示:(3)1000×=400(名),答:该校有1000名学生中,估计喜欢用“微信”进行沟通的学生有400名.22.解:(1)∵DE∥BC,∴∠B=∠AED,∵∠1=∠AED,∴∠1=∠B,∴DF∥AB.(2)∵DE∥BC,∴∠EDF=∠1=50°,∵DF平分∠CDE,∴∠EDC=2∠EDF=100°,∴∠A=∠EDC﹣∠AED=∠EDC﹣∠1=100°﹣50°=50°.23.解:(1)设每名工人平均每天生产螺母x个,螺钉(x﹣800)个,根据题意得:解得:x=2000当x=2000时,x(x﹣800)≠0,∴x﹣800=1200个,∴每名工人平均每天生产螺母2000个,螺钉1200个;(2)设x个工人生产螺钉,y个工人生产螺母,根据题意得:解得答:10个工人生产螺钉,12个工人生产螺母.24.解:(1)①∵AM∥BN,∴∠A+∠ABN=180°,∵∠A=50°,∴∠ABN=130°,故答案为:130°;②∵AM∥BN,∴∠ACB=∠CBN;故答案为:∠CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∵∠A=x°,∴∠ABN=180°﹣x°,∴∠ABP+∠PBN=180°﹣x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°﹣x°,∴∠CBD=∠CBP+∠DBP=(180°﹣x°)=90°﹣x°;(3)不变,∠ADB:∠APB=1:2,理由如下:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=1:2.。
浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列代数运算正确的是()A.(x 3)2=x 5B.(2x)2=2x 2C.(x+1)2=x 2+1D.x 3•x 2=x 52、已知多项式x2+kx+ 是一个完全平方式,则k的值为()A.±1B.﹣1C.1D.3、下列各式计算正确的是()A. (x﹣y)2=x2﹣y2B. x3﹣x=x2C. (x2)3=x5D. x5÷x4=x4、下列运算正确的是()A. B. C. D.5、下列各式变形中,正确的是()A.x 2•x 3=x 6B.(x﹣1)(﹣1﹣x)=1﹣x 2C.(x 2﹣)÷x=x﹣1 D.6、如图,AB∥CD,点E在CB的延长线上,若∠ABE=60°,则∠ECD的度数为()A.120°B.100°C.60°D.20°7、对50个数据整理所得的频率分布表中,各组的频数之和与频率之和分别为()A.50,1B.50,50C.1,50D.1,18、要使式子成为一个完全平方式,则需添上( )A. B. C. D.9、如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A.60°B.33°C.30°D.23°10、已知分式(m,n为常数)满足下列表格中的信息:则下列结论中错误的是()x的取值﹣1 1 p q分式的值无意义1 0 ﹣1A.m=1B.n=8C.p=D.q=﹣111、下来运算中正确的是()A. B.()2= C. D.12、如图,在△ABC中,∠C=30°,∠ABC=100°,将△ABC绕点A顺时针旋转至△ADE(点B与点D对应),连结BD,当BD平分∠ABC时,∠BAE的大小为( )A.130°B.135°C.140°D.145°13、下列计算结果为a5的是()A.a 2+a 3B.a 2·a 3C.(a 3)2D.14、方程组的解满足方程x+y﹣a=0,那么a的值是()A.5B.-5C.3D.-315、为了解全州近5万名考生的数学成绩,教研部门从中抽取800名考生的数学成绩进行统计分析,下列说法正确的是()A.5万名考生是总体B.800名考生是总体的一个样本C.每位考生的数学成绩是个体D.800名考生是样本容量二、填空题(共10题,共计30分)16、若m- =3,则m2+ =________.17、若(x-1)x+1=1,则x=________.18、小明从市环境监测网随机查阅了若干天的空气质量数据作为样本进行统计,分别绘制了如图的条形统计图和扇形统计图,根据图中提供的信息,可知扇形统计图中表示空气质量为轻度污染的扇形的圆心角度数为________;19、如图,AB CD,AD平分∠BAE,∠D=25°,则∠AEC的度数为________.20、计算:________.21、当=________时,分式的值为0;22、用换元法解方程时,如果设,那么原方程可化为关于y的整式方程是________.23、如图,在平行四边形ABCD中,AC=12,BD=8,AD=a,那么a的取值范围是________。
最新浙教版初中数学七年级下册期末试卷及答案一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.下列方程属于二元一次方程的是()A.4x﹣8=y B.x2+y=0C.x+=1D.4x+y≠22.下列计算正确的是()A.a3×a3=2a3B.s3÷s=s2C.(m4)2=m6D.(﹣x2)3=x63.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°5.某中学就周一早上学生到校的方式问题,对七年级的所有学生进行了一次调查,并将调查结果制作成了如图表格,则步行到校的学生频率为()七年级学生人数步行人数骑车人数乘公交车人数其他方式人数30060913299 A.0.2B.0.3C.0.4D.0.56.下列调查,适合用普查方式的是()A.了解义乌市居民年人均收入B.了解义乌市民对“低头族”的看法C.了解义乌市初中生体育中考的成绩D.了解某一天离开义乌市的人口流量7.若a、b、c是正数,下列各式,从左到右的变形不能用如图验证的是()A.(b+c)2=b2+2bc+c2B.a(b+c)=ab+acC.(a+b+c)2=a2+b2+c2+2ab+2bc+2acD.a2+2ab=a(a+2b)8.已知x+y=3,xy=2,则下列结论中①(x﹣y)2=1,②x2+y2=5,③x2﹣y2=3,④,正确的个数是()A.1B.2C.3D.49.对于两个不相等的实数a、b,我们规定符号Min{a,b}表示a、b中的较小的值,如Min{2,4}=2,按照这个规定,方程Min{,}=﹣1的解为()A.1B.﹣1C.1或﹣1D.﹣1或﹣210.如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离.要解开图一的链子至少要解开几个圈呢?()A.5个B.6个C.7个D.8个二、填空题(本题有6小题,每小题3分,共18分)11.分解因式:9x2﹣4y2=.12.某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a2+9ab﹣6a,已知这个长方形“学习园地”的长为3a,则宽为13.如图△ABC中,AB=BC=AC=5,将△ABC沿边BC向右平移4个单位得到△A'B'C′,则四边形AA′C'B的周长为14.明代数学读本《直接算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意即:100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完.则大和尚有人,小和尚有人.15.分式方程无解,则m的值为16.利用如图1的二维码可以进行身份识别,某校模仿二维码建立了一个七年级学生身份识别系统,图2是七年级某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20+1.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20+1=6表示该生为6班学生.则该系统最多能识别七年级的班级数是个.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.(6分)计算:(1)2a2b•(﹣3b2c)÷(4ab3)(2)(﹣1)2018﹣()0+()﹣218.(6分)解下列方程或方程组(1)(2)19.(6分)先化简,再求值,其中a=2019,b=201820.(6分)某校为加强学生的安全意识,每周通过安全教育APP软件,向家长和学生推送安全教育作业.在最近一期的防溺水安全知识竞赛中,从中抽取了部分学生成绩进行统计.绘制了图中两幅不完整的统计图.请回答如下问题:(1)m=,a=(2)补全频数直方图;(3)该校共有1600名学生.若认定成绩在60分及以下(含60分)的学生安全意识不强,有待进一步加强安全教育,请估计该校安全意识不强的学生约有多少人?21.(6分)如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,如果是请证明,如果不是,请说明理由.22.(6分)甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.23.(8分)【提出问题】(1)如图1,已知AB∥CD,证明:∠1+∠EPF+∠2=360°;【类比探究】(2)如图2,已知AB∥CD,设从E点出发的(n﹣1)条折线形成的n个角分别为∠1,∠2……∠n,探索∠1+∠2+∠3+……+∠n的度数可能在1700°至2000°之间吗?若有可能请求出n的值,若不可能请说明理由.【拓展延伸】(3)如图3,已知AB∥CD,∠AE1E2的角平分线E1O与∠CE n E n的角平分线E n O﹣1交于点O,若∠E1OE n=m°.求∠2+∠3+∠4+…+∠(n﹣1)的度数.(用含m、n的代数式表示)24.(8分)某市为创建生态文明建设城市,对公路旁的绿化带进行全面改造.现有甲、乙两个工程队,甲队单独完成这项工程,刚好如期完成,每施工一天,需付工程款1.5万元;乙工程队单独完成这项工程要比规定工期多用a天,乙工程队每施工一天需付工程款1万元.若先由甲、乙两队一起合作b天,剩下的工程由乙队单独做,也正好如期完工(1)当a=6,b=4时,求工程预定工期的天数.(2)若a﹣b=2.a是偶数①求甲队、乙队单独完成工期的天数(用含a的代数式表示)②工程领导小组有三种施工方案:方案一:甲队单独完成这项工程;方案二:乙队单独完成这项工程;方案三:先由甲、乙两队一起合作b天,剩下的工程由乙队单独做.为了节省工程款,同时又能如期完工,请你选择一种方案,并说明理由.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.A 2.B 3.D 4.D 5.A 6.C 7.D 8.B 9.C 10.C二、填空题(本题有6小题,每小题3分,共18分)11.(3x+2y)(3x﹣2y).12.a+3b﹣2.13.23 14.25;75.15.或116.16.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.解:(1)原式=﹣6a2b3c÷(4ab3)=﹣ac;(2)原式=1﹣1+25=25.18.解:(1)①×2得:4x﹣6y=14③②﹣③得:11y=﹣11y=﹣1将y=﹣1代入①得:x=2∴方程组的解为(2)x+3=5xx=经检验:x=是原方程的解19.解:当a=2019,b=2018时,原式=÷=•==120.解:(1)∵被调查的总人数为30÷15%=200,∴m=200×25%=50,B组人数为200×10%=20,则C组的人数为200﹣(30+20+50+60)=40,∴a=360×=72,故答案为:50、72;(2)补全频数直方图如下:(3)估计该校安全意识不强的学生约有1600×15%=240人.21.解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.22.解:设将x千克甲种糖果和y千克乙种糖果混合,混合后糖果的售价恰好保持不变,根据题意得:20x+25y=20×(1+10%)x+25×(1﹣20%)y,整理得:2x=5y,∴x:y=5:2.答:甲、乙两种糖果的混合比例应为5:2.23.解:(1)如图所示,过P作PG∥AB,则∠1+∠GPE=180°,∵AB∥CD,∴PG∥CD,∴∠2+∠FPG=180°,∴∠1+∠GPE+∠GPF+∠2=360°,即∠1+∠EPF+∠2=360°;(2)可能在1700°至2000°之间.如图过G作GH∥AB,…,过P作PQ∥AB,∵AB∥CD,∴AB∥GH∥…∥PQ∥CD,∴∠1+∠EGH=180°,…,∠QPF+∠n=180°,(有(n﹣1)对同旁内角)∴∠1+∠2+…∠n﹣1+∠n=180°(n﹣1),当1700°<180°(n﹣1)<2000°时,n=11,12,∴n的值为11或12;(3)如图所示,过O作OP∥AB,∵AB∥CD,∴OP∥CD,∴∠AE1O=∠POE1,∠CE n O=∠POE n,∴∠AE1O+∠CE n O=∠POE1+∠POE n=∠E1OE n=m°,的角平分线E n O交于点O,又∵∠AE1E2的角平分线E1O与∠CE n E n﹣1=2(∠AE1O+∠CE n O)=2m°,∴∠AE1E2+∠CE n E n﹣1由(2)可得,∠AE1E2+∠2+…+∠(n﹣1)+∠CE n E n=180°(n﹣1),﹣1∴∠2+∠3+∠4+…+∠(n﹣1)=180°(n﹣1)﹣2m°.24.解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+6)天.依题意,得(+)×4+×(x﹣4)=1,解得:x=12,经检验:x=12是原分式方程的解.答:工程预定工期的天数是12天;(2)①∵a﹣b=2,∴b=a﹣2,设甲队单独完成此项工程需y天,则乙队单独完成此项工程需(y+a)天,由题意得,+=1,解得:y=,经检验:y=是原分式方程的解,∴y+a=,答:甲队、乙队单独完成工期的天数分别为天,天;②方案一需付工程款:×a2﹣a,方案三需付工程款:1.5b+a2=×(a﹣2)+a2,∵:×a2﹣a﹣(a﹣3+a2)=(a﹣3)2﹣<0,故此时方案一比较合算.。
浙教版数学七年级下册期末考试试卷一、选择题(每小题3分,共30分) 1.若分式1xx -有意义,则实数x 的取值范围是( ) A .=1x B . 1x ≠ C .=0x D .0x ≠2.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为( ) A .8810-⨯ B .7810-⨯ C .98010-⨯ D .70.810-⨯ 3.下列运算正确的是( )A .236a a a ⋅=B .235()a a =C .236(2)8a a =D .263+a a a = 4.下列调查中,适宜采用普查方式的是( ) A .了解一批圆珠笔的寿命 B .了解全国七年级学生身高的现状 C .了解市民对“垃圾分类知识”的知晓程度 D .检查一枚用于发射卫星的运载火箭的各零部件 5.下列各式从左到右的变形是因式分解的是( ) A .6933(23)x y x y ++=+ B .221(1)x x -=- C .22()()x y x y x y +-=- D .2222(1)(1)x x x -=-+6.若21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程50ax by +-=的一组解,则22a b --的值为()A .3-B .3C .7-D .7 7.关于x ,y 的二元一次方程2312x y +=的非负整数解有( )组. A .0 B .1 C .2 D .3 8.下列图形中,周长最长的是( )A .B .C .D .9.甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.若设甲的速度为3x 千米/时,乙的速度为4x 千米/时.则所列方程是( ) A .6102034x x += B .6102034x x =+C .620103604x x += D .610203460x x =+10.将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是( )A .6B .7C .8D .9 二、填空题(每小题3分,共24分) 11.计算:01(1)2---= .12.有50个数据,把它们分成五组,第一、二、三、四、五组的数据个数分别是3,7,14、x 、6,则第四组的频率为 .13.一个长方形,它的面积为2693a ab a -+,已知这个长方形的长为3a ,则宽为 . 14.如图,点B 、C 在直线AD 上,70ABE ∠=︒,BF 平分DBE ∠,//CG BF ,则DCG ∠= .15.若长方形的长为x ,宽为y ,周长为16,面积为15,则22x y xy +的值为 .16.若关于x 的分式方程3222x m mx x++=--有增根,则m 的值为 . 17.已知2214a a +=,则1+a a的值是 . 18.两块不同的三角板按如图所示摆放,两个直角顶点C 重合,60A ∠=︒,45D ∠=︒.接着保持三角板ABC 不动,将三角板CDE 绕着点C 旋转,但保证点D 在直线AC 的上方,若三角板CDE 有一条边与斜边AB 平行,则ACD ∠= .三、解答题(共46分) 19.因式分解:3 (1) 16m m- 22(2)44.x xy y -+-20.先化简,再求值:2(1)()(3)(3),2, 1. x y x y x y x y ++-+==其中221(2),0,1,2111x x x x x x --÷+--从中选一个合适的数作为的值代入求值.21.解下列方程(组)328(1)1x y x y +=⎧⎨-=⎩13(2)122x x x x -++=--22. 学校七年级学生即将参加期末的体育考试,为了了解同学们考试项目之一“长跑”的准备情况,某学校随机抽取了若干学生,并测试了他们的长跑成绩(男子1000米,女子800米),统计结果如下:被调查学生长跑成绩情况条形和扇形统计图(1)补全条形统计图,并算出扇形统计图中“不合格”所对的圆心角度数;(2)若该校初2020届共有1500名学生,请你估计该校学生长跑达到良好以上的人数.23.如图,//∠=︒,130∠=︒.EFB∠=︒,20EF AB,70DCBCBF(1)直线CD与AB平行吗?为什么?(2)若68∠的度数.∠=︒,求ACBCEF24.学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A 型卡片,6张C 型卡片,则应取 张B 型卡片才能用它们拼成一个新的正方形,新的正方形的边长是 (请用含a ,b 的代数式表示);(2)选取4张C 型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D 型卡片,由此可验证的等量关系为 ;(3)选取1张D 型卡片,3张C 型卡片按图3的方式不重叠地放在长方形MNPQ 框架内,已知MQ 的长度为10,MN 的长度可以变化,若图中两阴影部分(长方形)的周长差为10,求此时C 型卡片的面积.参考答案与试题解析一、选择题(每小题3分,共30分) 1.若分式1xx -有意义,则实数x 的取值范围是( ) A .=1x B . 1x ≠ C .=0x D .0x ≠【考点】分式有意义的条件 【解答】解:分式1xx -有意义, 10x ∴-≠,∴实数x 的取值范围是1x ≠,故选:B .2.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为( ) A .8810-⨯B .7810-⨯C .98010-⨯D .70.810-⨯【考点】1J :科学记数法-表示较小的数 【解答】解:80.00000008810-=⨯; 故选:A .3.下列运算正确的是( ) A .236a a a ⋅=B .235()a a =C .236(2)8a a =D .263+a a a =【考点】同底数幂的除法;幂的乘方与积的乘方;同底数幂的乘法 【解答】解:A 、235a a a ⋅=,故本选项不合题意;B 、236()a a =,故本选项不合题意;C 、236(2)8a a =,故本选项符合题意;D 、263+a a a ≠,故本选项不合题意.故选:C .4.下列调查中,适宜采用普查方式的是( ) A .了解一批圆珠笔的寿命 B .了解全国七年级学生身高的现状 C .了解市民对“垃圾分类知识”的知晓程度 D .检查一枚用于发射卫星的运载火箭的各零部件 【考点】2V :全面调查与抽样调查【解答】解:A .了解一批圆珠笔的寿命,适合抽样调查;B .了解全国七年级学生身高的现状,适合抽样调查;C .了解市民对“垃圾分类知识”的知晓程度,适合抽样调查;D .检查一枚用于发射卫星的运载火箭的各零部件,适合全面调查;故选:D .5.下列各式从左到右的变形是因式分解的是( ) A .6933(23)x y x y ++=+B .221(1)x x -=-C .22()()x y x y x y +-=-D .2222(1)(1)x x x -=-+【考点】因式分解的意义【解答】解:A 、6933(231)x y x y ++=++,因式分解错误,故本选项不符合题意;B 、21(1)(1)x x x -=-+,因式分解错误,故本选项不符合题意;C 、是整式的乘法,不是因式分解,故本选项不符合题意;D 、是正确的因式分解,故本选项符合题意;故选:D .6.若21x y =⎧⎨=-⎩是关于x 、y 的二元一次方程50ax by +-=的一组解,则22a b --的值为() A .3-B .3C .7-D .7【考点】92:二元一次方程的解【解答】解:把21x y =⎧⎨=-⎩代入方程得:250a b --=,即25a b -=,则原式523=-=, 故选:B .7.关于x ,y 的二元一次方程2312x y +=的非负整数解有( )组. A .0B .1C .2D .3【考点】92:二元一次方程的解【解答】解:当0x =时,方程变形为312y =,解得4y =; 当3x =时,方程变形为6312y +=,解得2y =; 当6x =时,方程变形为12312y +=,解得0y =;∴关于x ,y 的二元一次方程2312x y +=的非负整数解有3组:04x y =⎧⎨=⎩、32x y =⎧⎨=⎩和60x y =⎧⎨=⎩.故选:D .8.下列图形中,周长最长的是( )A .B .C .D .【考点】1Q :生活中的平移现象【解答】解:A 、由图形可得其周长为:12cm ,B 、由图形可得其周长大于12cm ,C 、由图形可得其周长为:12cm ,D 、由图形可得其周长为:12cm ,故最长的是B . 故选:B .9.甲、乙两人分别从距目的地6千米和10千米的两地同时出发,甲、乙的速度比是3:4,结果甲比乙提前20分钟到达目的地,求甲、乙的速度.若设甲的速度为3x 千米/时,乙的速度为4x 千米/时.则所列方程是( ) A .6102034x x +=B .6102034x x =+C .620103604x x+=D .610203460x x =+【考点】6B :由实际问题抽象出分式方程【解答】解:设甲的速度为3x 千米/时,则乙的速度为4x 千米/时, 根据题意得:620103604x x+=. 故选:C .10.将大小不同的两个正方形按图1,图2的方式摆放.若图1中阴影部分的面积是20,图2中阴影部分的面积是14,则大正方形的边长是( )A .6B .7C .8D .9【考点】4A :单项式乘多项式【解答】解:设大正方形的边长为a ,小正方形的边长为b ,根据题意可得:11()2022ab b a b +-=,1142ab =, 解得:7a =. 故选:B .二、填空题(每小题3分,共24分) 11.计算:01(1)2---= .【考点】负整数指数幂;实数的运算;零指数幂 【解答】 故答案为:12. 12.有50个数据,把它们分成五组,第一、二、三、四、五组的数据个数分别是3,7,14、x 、6,则第四组的频率为 .【考点】6V :频数与频率 【解答】解:根据题意,得第四组数据的个数50(37146)20x =-+++=, 故第四组的频率为20500.4÷=. 故答案为:0.4.13.一个长方形,它的面积为2693a ab a -+,已知这个长方形的长为3a ,则宽为 . 【考点】4H :整式的除法【解答】解:根据题意,宽为2(693)3231a ab a a a b -+÷=-+, 故答案为:231a b -+.14.如图,点B 、C 在直线AD 上,70ABE ∠=︒,BF 平分DBE ∠,//CG BF ,则DCG ∠= .【考点】JA :平行线的性质 【解答】解:如图所示:180ABE EBD ∠+∠=︒,70ABE ∠=︒, 180********EBD ABE ∴∠=︒-∠=︒-︒=︒,又BF 平分DBE ∠,111105522DBF EBD ∴∠=∠=⨯︒=︒,又//CG BF , DCG DBF ∴∠=∠, 55DCG ∴∠=︒,故答案为:55︒.15.若长方形的长为x ,宽为y ,周长为16,面积为15,则22x y xy +的值为 . 【考点】53:因式分解-提公因式法【解答】解:由题意得:8x y +=,15xy =, 则原式()120xy x y =+=, 故答案为:12016.若关于x 的分式方程3222x m mx x++=--有增根,则m 的值为 . 【考点】分式方程的增根【解答】解:方程两边同时乘以2x -,得 32(2)x m m x +-=-,解得:42x m =-, 分式方程有增根, 2x ∴=, 422m ∴-=, 1m ∴=,故答案为:1. 17.已知2214a a +=,则1+a a的值是 .【考点】一元一次方程的解【解答】故答案为:.18.两块不同的三角板按如图所示摆放,两个直角顶点C重合,60∠=︒.接D∠=︒,45A着保持三角板ABC不动,将三角板CDE绕着点C旋转,但保证点D在直线AC的上方,若三角板CDE有一条边与斜边AB平行,则ACD∠=.【考点】平行线的判定与性质【解答】解:如图,//CD AB,30∠=∠=︒,BCD B∠=∠+∠=︒+︒=︒;9030120ACD ACB BCD如图2,//DE AB时,延长EC交AB于F,则45AFC E∠=∠=︒,在ACF∠=︒-∠-∠,ACF A AFC∆中,180=︒-︒-︒=︒,180604575则90907515∠=︒-∠=︒-︒=︒.BCF ACF∴∠=︒-∠=︒-︒=︒;ACD BCF180********如图3,//CD AB 时,30ACD ∠=︒,故答案为:30︒或120︒或165︒.三、解答题(共46分)19.因式分解:3 (1) 16m m - 22(2)44.x xy y -+-【考点】因式分解【解答】解:2(1)(4)(4);(2)(2)m m m x y =+-=--原式原式20.先化简,再求值:2(1)()(3)(3),2, 1. x y x y x y x y ++-+==其中221(2),0,1,2111 xx x x x x --÷+--从中选一个合适的数作为的值代入求值.【考点】化简求值【解答】解:22222222(429228.2, 1 , 2)2221181x xy y x y x xy y x y =+++-=+-===⨯+⨯⨯-⨯=将代入得原式原式.(22)2(1)1(1)(1)=112=120 , 2; 2 , 3x x x x x x x x x x x x x -=-⋅-++---+++====当原式当式原式原21.解下列方程(组)328(1)1x y x y +=⎧⎨-=⎩13(2)122x x x x -++=-- 【考点】解二元一次方程组;解分式方程【解答】解:2(1)1x y =⎧⎨=⎩(2)0x = 22. 学校七年级学生即将参加期末的体育考试,为了了解同学们考试项目之一“长跑”的准备情况,某学校随机抽取了若干学生,并测试了他们的长跑成绩(男子1000米,女子800米),统计结果如下:被调查学生长跑成绩情况条形和扇形统计图(1)补全条形统计图,并算出扇形统计图中“不合格”所对的圆心角度数;(2)若该校初2020届共有1500名学生,请你估计该校学生长跑达到良好以上的人数.【考点】5V :用样本估计总体;VC :条形统计图;VB :扇形统计图【解答】解:(1)抽取的总人数有:(4530)25%300+÷=(人),良好的人数有30050%150⨯=(人),良好的男生有1507080-=(人),合格的人数有30020%60⨯=(人),合格的女生有604020-=(人),补图如下:(2)根据题意得:⨯+=(人),1500(50%25%)1125答:估计该校学生长跑达到良好以上的人数有1125人.23.如图,//∠=︒,130∠=︒.EFBCBFEF AB,70DCB∠=︒,20(1)直线CD与AB平行吗?为什么?(2)若68∠的度数.∠=︒,求ACBCEF【考点】平行线的判定与性质【解答】解:(1)平行,理由如下:∠=︒,EFBEF AB,130//∴∠=︒-︒=︒,18013050ABF20∠=︒,CBFCBA ABF CBF∴∠=∠+∠=︒,70DCB∠=︒,70∴∠=∠,CBA DCB∴.//CD AB(2)//∠=︒,EF AB,68CEF∴∠=︒,68A由(1)知,//CD AB,ACD A∴∠+∠=︒,180∴∠=︒-∠=︒-︒=︒,ACD A180********又70∠=︒,DCB1127042∴∠=∠-∠=︒-︒=︒.ACB ACD DCB∴∠的度数为42︒.ACB24.学习整式乘法时,老师拿出三种型号卡片,如图1.(1)选取1张A型卡片,6张C型卡片,则应取张B型卡片才能用它们拼成一个新的正方形,新的正方形的边长是(请用含a,b的代数式表示);(2)选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可验证的等量关系为;(3)选取1张D型卡片,3张C型卡片按图3的方式不重叠地放在长方形MNPQ框架内,已知MQ的长度为10,MN的长度可以变化,若图中两阴影部分(长方形)的周长差为10,求此时C型卡片的面积.【考点】4D:完全平方公式的几何背景【解答】解:(1)A型卡片的面积为2a,B型卡片的面积为2b,C型卡片的面积为ab,题中已经选择1张A型卡片,6张C型卡片,面积之和为26+,a ab由完全平方公式的几何背景可知一个正方形的面积可以表达成一个完全平方公式,可以很轻易得知22269(3)a ab b a b ++=+,故应取9张B 型卡片才能用它们拼成一个新的正方形,新的正方形的边长是3a b + 故答案为:9;3a b +(2)选取4张C 型卡片在纸上按图2的方式拼图,可以得到一个边长为()a b +的正方形, 剪出中间正方形作为第四种D 型卡片,可知D 型卡片的面积为一个边长为()a b +的正方形的面积减去4张C 型卡片的面积,即:2()4a b ab +-,由图可得D 型卡片是一个边长为()a b -的正方形,由正方形的面积为边长的平方可知:22()()4a b a b ab -=+-故答案为:22()()4a b a b ab -=+-(3)设MN 长为m ,则()122,23C m C m a b ==-+∵MQ 的长度为10,∵310a b b -+=,即210a b +=①.∵两长方形周长之差为10,∵1221-10-10C C C C ==或(1)当12-10C C =,有2310a b -=(),即35a b -=②,∵和∵组成方程组210, 35,a b a b +=⎧⎨-=⎩ 解得8,1a b =⎧⎨=⎩此时C 型卡片面积为8ab =; (2)当12-10C C =-,有2310a b -=-(),即35a b -=-③,∵和∵组成方程组210, 35,a b a b +=⎧⎨-=-⎩ 解得4,3a b =⎧⎨=⎩此时C 型卡片面积为12ab =; 综上可得,C 型卡片的面积为8或12.。
浙教2012-2013学年度第二学期期末教课质量检测试题 (卷)七年级数学考生注意:本试卷共 25道小题,时量90分钟,满分 100分.题次一二三 总分212219-20232425得分一﹑仔细填一填,你必定能行(每空2分,共20分)1.多项式x 2-kx +9是完好平方式,则k=_______。
2.如图,将三角板的直角极点放在直尺的一边上,∠1=300,∠2=500,则∠3等于 度..假如2x3my是二元一次方程,则m=.34.19922-19912=____________.5.若x2y3z10 ,4x3y2z 15,则x +y +z 的值是.6.一个容量为80的样本最大值为 143,最小值为50,取组距为 10,则能够分成组.7.足球联赛得分规定胜一场得 3分,平一场得1分,负一场得0分,大地足球队在足球联赛的 5 场竞赛中得8分,则这个队竞赛的胜、平、负的状况是.x 4 y . 8.若方程组y中的x 是y 的2倍,则a 等于2x2a9.计算xyx 2xyy.x10.如图①是一块瓷砖的图案,用这类瓷砖来铺设地面,假如铺成一个2×2的正方形图案(如图②),此中完好的圆共有5个,假如铺成一个3×3的正方形图案(如图③),此中完好的圆共有13个,假如铺成一个4×4的正方形图案(如图④),此中完好的圆共有25个,若这样铺成一个10×10的正方形图案,则此中完好的圆共有 个.二﹑精心选一选,你必定很棒(每题3分,共24分)题号1112131415161718答案11..在1、1x2 A.2个、x21、3xy、3、a1中分式的个数有()2x y mB.3个C.4个D.5个12..多项式6ab2x-3a2by+12a2b2的公因式是()A、abB、3a2b2xyC、3a2b2D、3ab13.多项式4x2+1加上一个单项式后,使它能成为一个整式的完好平方,则加上的单项式不能够是()(A)4x(B)-4x(C)4x4(D)-4x4A D31 14.如右图,以下能判断AB∥CD的条件有()个.425(1)B BCD180(2)12;(3)34;(4)B5.B C EA.1B.2C.3D.415.以下检查合适作普查的是A.认识在校大学生的主要娱乐方式B.认识阳泉市居民对废电池的办理状况C.日光灯管厂要检测一批灯管的使用寿命D.对甲型H1N1流感患者的同一车厢乘客进行医学检查16..如图是九(2)班同学的一次体验中每分钟心跳次数的频数散布直方图(次数均为整数).已知该班只有5位同学的心跳每分钟75次.依据直方图,以下说法错误的选项是().A)数据75落在第二小组B)第四小组的频次为0.11(C)心跳在每分钟75次的人数占该班体检人数的12(D)数据75必定是中位数。
浙教版初一下册期末数学试卷(含答案) 七年级下册期末数学试卷一、选择题(每小题3分,共30分)1.下列各图案中,是由一个基本图形通过平移得到的是()。
A。
B。
C。
D。
2.已知空气的单位体积质量为1.24×10^-3克/厘米^3,1.24×10^-3用小数表示为()。
A。
0.B。
0.0124C。
-0.D。
0.3.下列四个多项式中,能因式分解的是()。
A。
a^2+1B。
a^2-6a+9C。
x^2+5yD。
x^2-5y4.若3x=4,9y=7,则3x-2y的值为()。
A。
4/7B。
7/4C。
-3D。
2/75.下列统计中,适合用“全面调查”的是()。
A。
某厂生产的电灯使用寿命B。
全国初中生的视力情况C。
某校七年级学生的身高情况D。
“XXX”产品的合格率6.下列分式中不管x取何值,一定有意义的是()。
A。
x^2/xB。
(x-1)/(x^2-1)C。
(x+3)/(x^2+1)D。
(x-1)/(x+1)7.能使分式 (4x+7)/(2x-3) 的值为整数的整数x有()个。
A。
2B。
3C。
4D。
无解8.2^2018-2^2019的值是()。
A。
1/2B。
-1/2C。
-2^2018D。
-29.如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()。
图略)A。
∠D+∠BB。
∠B-∠DC。
180°+∠D-∠BD。
180°+∠B-∠D10.XXX在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);XXX看见了,说:“我也来试一试.”结果XXX七拼八凑,拼成了XXX(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()。
图略)A。
120mm^2B。
135mm^2C。
108mm^2D。
96mm^2二、填空题(每小题3分,共24分)11.当x=1时,分式 x^2-1/(x+3)(x-1) 的值是 0.12.当x^2+kx+25是一个完全平方式,则k的值是 -10.13.若关于x的方程 (ax^3)/(x-1)^2+1=0 无解,则a的值是0.14.已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,10,6,7,第五组的频率是0.2,故第六组的频数是 12.15.3x+2y=20的正整数解有 5 组。
浙教版七年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A. B. C. D.2、下列运算,其中正确的有()A.1个B.2个C.3个D.4个3、方程组的解为()A. B. C. D.4、下列运算正确的是()A.3a•4a=12aB.(a 3)2=a 6C.(﹣2a)3=﹣2a 3D.a 12÷a 3=a 45、下列运算正确的是()A.a 2•a 3=a 6B.(a 2)3=a 6C.(a+b)2=a 2+b 2D. +=6、下列计算中,正确的是( )A.(a 3b)2=a 6b 2B.a•a 4=a 4C.a 6÷a 2=a 3D.3a+2b=5a7、下列各等式成立的是()A.a 2+a 5=a 5B.(﹣a 2)3=a 6C.a 2﹣1=(a+1)(a﹣1) D.(a+b)2=a 2+b 28、下列等式从左到右的变形,属于因式分解是A. B. C.D.9、方程2x-3y=5、xy=3、3x-y+2z=0、x2+y=6中是二元一次方程的有()个.A.1B.2C.3D.410、已知a m=5,a n=2,则a m+n的值等于()A.25B.10C.8D.711、若分式的值为0,则的值等于()A.1B.2C.1或2D.312、若关于x的分式方程无解,则a的值为()A.1B.-1C.1或0D.1或-113、下列调查中,适宜全面调查方式的是()A.了解广州市空气质量B.调查某批次的灯泡的使用寿命C.了解珠江中生物的种类D.了解某班学生对“中国梦”内涵的知晓率14、若分式中的xy的值都变为原来的3倍,则此分式的值()A.是原来的3倍B.不变C.是原来的D.不能确定15、计算2a2•a3的结果是()A.2a 5B.2a 6C.4a 5D.4a 6二、填空题(共10题,共计30分)16、若x+y=6,xy=5,则x2+y2=________.17、某手机店今年1-4月的手机销售总额如图1,其中一款音乐手机的销售额占当月手机销售总额的百分比如图2.有以下四个结论:①从1月到4月,手机销售总额连续下降②从1月到4月,音乐手机销售额在当月手机销售总额中的占比连续下降③音乐手机4月份的销售额比3月份有所下降④今年1-4月中,音乐手机销售额最低的是3月其中正确的结论是________(填写序号).18、初中阶段我们学习了两个乘法公式,分别是:平方差公式:(a+b)(a﹣b)=________ ;完全平方公式:(a+b)2=________ 或(a﹣b)2=________ .请推导上面公式(从上面三个公式中任选一个进行推导).19、已知,则= ________ .(用含的代数式表示)20、(x﹣y)(x+y)(x2+y2)(x4+y4)(x8+y8)=________ .21、若x2+y2=10,xy=3,则(x﹣y)2=________.22、 ________.23、将一个等腰直角三角形的直角顶点和一个锐角顶点按如图方式分别放在直线a,b上,若a∥b,∠1=24°,则∠2的度数为________°.24、为了了解我市6000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,样本容量是________.25、计算(﹣)3÷(﹣)2的结果是________三、解答题(共5题,共计25分)26、先化简,再选一个合适的数代入求值:(x+1﹣)÷.27、先化简再求值:-,其中x=2.28、若(2x a)2•(3y b x4)与x8y是同类项,求这两个单项式的乘积.29、如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.30、如图,已知AD⊥BC,EG⊥BC,垂足分别为D、G、AD平分∠BAC,求证:∠E=∠4.证明:∵AD⊥BC,EG⊥BC(已知)∴AD∥EG( )∴∠2=∠3( )∠1= (两直线平行,同位角相等)∵AD平分∠BAC(已知)∴∠1=∠2( )∴∠E=∠3( )∵∠3=∠4( ) ∴∠E=∠4(等量代换)参考答案一、单选题(共15题,共计45分)1、C2、B3、D4、B5、B6、A7、C8、B9、A10、B11、B12、D13、D14、B二、填空题(共10题,共计30分)16、17、18、19、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
一、选择题1.若关于x ,y 的二元一次方程组432x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( )A .2B .10C .2-D .4 2.方程组125x y x y +=⎧⎨+=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .43x y =⎧⎨=-⎩ D .23x y =-⎧⎨=⎩3.解为12x y =⎧⎨=⎩的方程组是( ) A .135x y x y -=⎧⎨+=⎩B .135x y x y -=-⎧⎨+=-⎩C .331x y x y -=⎧⎨-=⎩D .2335x y x y -=-⎧⎨+=⎩ 4.若二元一次方程3x ﹣y=﹣7,x+3y=1,y=kx+9有公共解,则k 的取值为( )A .3B .﹣3C .﹣4D .4 5.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > 6.如图,将一颗小星星放置在平面直角坐标系中第二象限内的甲位置,先将它绕原点O 旋转180︒到乙位置,再将它向上平移2个单位长到丙位置,则小星星顶点A 在丙位置中的对应点A '的坐标为( )A .()3,1-B .()1,3C .()3,1D .()3,1- 7.在平面直角坐标系中,将点A (﹣2,﹣2)先向右平移6个单位长度再向上平移5个单位长度得到点A ',则点A '的坐标是( )A .(4,5)B .(4,3)C .(6,3)D .(﹣8,﹣7) 8.下列说法正确的有( )(1)带根号的数都是无理数;(2)立方根等于本身的数是0和1;(3)a -一定没有平方根;(4)实数与数轴上的点是一一对应的;(5)两个无理数的差还是无理数;(6)若面积为3的正方形的边长为a ,a 一定是一个无理数.A .1个B .2个C .3个D .4个9.下列选项中,不是运用“垂线段最短”这一性质的是( )A .立定跳远时测量落点后端到起跳线的距离B .从一个村庄向一条河引一条最短的水渠C .把弯曲的公路改成直道可以缩短路程D .直角三角形中任意一条直角边的长度都比斜边短10.若0a <,则关于x 的不等式221ax x -<+的解集为( )A .32x a <-B .32x a >-C .32x a >-D .32x a <- 11.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a- 12.若关于x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<- B .a 4=-C .a 4?≥-D . a 4>- 二、填空题13.不等式组2x a x >⎧⎨>⎩的解为2x >,则a 的取值范围是______. 14.已知关于x 、y 的方程组2326324x y k x y k +=+⎧⎨+=+⎩的解满足2x y +=,则k 的值为__. 15.已知方程组2237x ay x y +=⎧⎨+=⎩的解是二元一次方程1x y -=的一个解,则a =________________.16.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如()1,0,()2,0,()2,1,()1,1,1,2,()2,2根据这个规律,第2020个点的坐标为______.17.在平面直角坐标系中,有点A (a ﹣2,a ),过点A 作AB ⊥x 轴,交x 轴于点B ,且AB =2,则点A 的坐标是___.18.若2(1)10a b -++=,则20132014a b +=___________.19.如图,点A 在直线m 上,点B 在直线l 上,点A 到直线l 的距离为a ,点B 到直线m 的距离为b ,线段AB 的长度为c ,通过测量等方法可以判断在a ,b ,c 三个数据中,最大的是_____________.20.若关于x 的不等式2x ﹣m≥1的解集如图所示,则m =_____.三、解答题21.某电器经销商计划同时购进一批甲、乙两种型号的微波炉,若购进1台甲型微波炉和2台乙型微波炉,共需要资金2600元;若购进2台甲型微波炉和3台乙型微波炉,共需要资金4400元.(1)求甲、乙型号的微波炉每台进价为多少元?(2)该店计划购进甲、乙两种型号的微波炉销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两种型号的微波炉共20台,请问有几种进货方案?请写出进货方案; (3)甲型微波炉的售价为1400元,售出一台乙型微波炉的利润率为45%.为了促销,公司决定甲型微波炉九折出售,而每售出一台乙型微波炉,返还顾客现金m 元,要使(2)中所有方案获利相同,则m 的值应为多少?22.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天? 23.解方程组:(1)1367x y x y -=⎧⎨=-⎩;(2)414531x y x y -=⎧⎨+=⎩. 24.如图所示,若()34A ,,按要求回答下列问题:(1)在图中建立正确的平面直角坐标系.(2)将ABC 向右平移3个单位,再向下平移2个单位得111A B C ,在图中画出111A B C ,并写出1B 点坐标.(3)求ABC 的面积.25.计算:201()( 3.14)20|25|.2π---+--26.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF ⊥CD ,垂足为O ,若∠BOF=38°.(1)求∠AOC 的度数;(2)过点O 作射线OG ,使∠GOE=∠BOF ,求∠FOG 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值.【详解】432x y k x y k +=⎧⎨-=⎩①②,①-②得:5k y =, 把5k y =代入②得:115k x =, 把115k x =,5k y =代入2310x y +=,得:11231055k k ⨯+⨯= 解得:2k =, ∴225x =,25y =, ∴222455x y -=-=. 【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.2.C解析:C【分析】根据解二元一次方程组的方法可以解答本题.【详解】解:125x y x y +=⎧⎨+=⎩①② ②﹣①,得x=4,将x=4代入①,得y=﹣3,故原方程组的解为43x y =⎧⎨=-⎩, 故选:C .【点睛】本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法. 3.D解析:D【分析】根据方程组的解的定义,只要检验12x y =⎧⎨=⎩是否是选项中方程的解即可. 【详解】 A 、把12x y =⎧⎨=⎩代入方程x-y=-1,左边=1≠右边,把12x y =⎧⎨=⎩代入方程y+3x=5,左边=5=右边,故不是方程组的解,故选项错误;B 、把12x y =⎧⎨=⎩代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误; C 、把12x y =⎧⎨=⎩代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误; D 、把12x y =⎧⎨=⎩代入方程x-2y=-3,左边=-3=右边=-3,把12x y =⎧⎨=⎩代入方程3x+y=5,左边=5=右边,故是方程组的解,故选项正确.故选D .【点睛】本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.4.D解析:D【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入y=kx+9中,即可求得k 的值.【详解】解:解方程组3731x y x y -=-⎧⎨+=⎩得: 21x y =-⎧⎨=⎩, 代入9y kx =+得:129k =-+,解得:4k =.故选:D .【点睛】本题考查了二元一次方程组,解决本题的关键是掌握解二元一次方程组的解法. 5.C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b ,∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C、∵a>b,∴a+b>2b,故本选项符合题意;D、∵a>b,且a>0时,∴a2>ab,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.C解析:C【分析】根据图示可知A点坐标为(-3,1),它绕原点O旋转180°后得到的坐标为(3,-1),根据平移“上加下减”原则,向上平移2个单位得到的坐标为(3,1).【详解】解:根据图示可知A点坐标为(-3,1)根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,-1)根据平移“上加下减”原则∴向下平移2个单位得到的坐标为(3,1)故选C.【点睛】本题考查平面直角坐标系中点的对称点的坐标,掌握与原点对称和平移原则是解题的关键.7.B解析:B【分析】利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律求解可得.【详解】解:将点A(﹣2,﹣2)先向右平移6个单位长度,再向上平移5个单位长度,得到点A',其坐标为(﹣2+6,﹣2+5),即(4,3),故选:B.【点睛】本题考查了坐标与图形变化-平移,在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)8.B解析:B【分析】根据无理数的定义、立方根与平方根、实数与数轴的关系逐个判断即可得.【详解】(12=是有理数,说法错误;(2)立方根等于本身的数是0和±1,说法错误;(3)当a -为非负数时,a -有平方根,说法错误;(4)实数与数轴上的点是一一对应的,说法正确;(50=,说法错误;(6)由正方形的面积公式得:a =是无理数,说法正确;综上,说法正确的有2个,故选:B .【点睛】本题考查了无理数、实数的运算、立方根与平方根,掌握理解各概念和运算法则是解题关键. 9.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A .立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质; B .从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C .把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D .直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质; 故选:C .【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.10.B解析:B【分析】先移项,再合并,最后把系数化为1,即可求出答案.【详解】移项,得:212ax x -<+,合并同类项得:(2)3a x -<,∵0a <,∴20a -<, ∴32x a >-, 故选:B .【点睛】 本题主要考查了一元一次不等式的解法,要注意系数化为1时,因为0a <,所以不等号的方向要改变.11.D解析:D【分析】由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A 错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误;由a<-1可知-a>1,因此101a<-<,∴D 正确. 故选D .【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键. 12.C解析:C【分析】先解出第一个不等式的解集,再根据题意确定a 的取值范围即可.【详解】解:2x 1x 3x a +<-⎧⎨>⎩①②解①的:x ﹤﹣4,∵此不等式组无解,∴a≥﹣4,故选:C .【点睛】本题考查一元一次不等式组的解法,熟知不等式组解集应遵循的原则“同大取大,同小取小,大小小大取中间,大大小小无解”是解答的关键.二、填空题13.【分析】根据不等式组的公共解集即可确定a 的取值范围【详解】由不等式组的解为可得故答案为:【点睛】本题主要考查了不等式组的解法关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大 解析:2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围.【详解】由不等式组2x a x >⎧⎨>⎩的解为2x >, 可得2a ≤.故答案为:2a ≤.【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.14.0【分析】根据x+y=2求出5x+5y=10方程组的两方程的两边分别相加得出5x+5y=3k+10得出方程3k+10=10求出方程的解即可【详解】解:①②得:故答案为:0【点睛】本题考查了二元一次方解析:0【分析】根据x+y=2求出5x+5y=10,方程组的两方程的两边分别相加得出5x+5y=3k+10,得出方程3k+10=10,求出方程的解即可.【详解】解:2326324x y k x y k +=+⎧⎨+=+⎩①②, ①+②得:55310x y k +=+,2x y +=,5510x y ∴+=,31010k ∴+=,0k ∴=,故答案为:0.【点睛】本题考查了二元一次方程组的解,解一元一次方程和解二元一次方程组等知识点,能得出关于k 的一元一次方程是解此题的关键.15.【分析】由题意建立关于xy 的新的方程组求得xy 的值再代入求解即可;【详解】由得:由得:将代入得:方程组的解为又方程组的解是的一个解经检验是的解【点睛】本题主要考查了二元一次方程组的解准确分析计算是解解析:0【分析】由题意建立关于x ,y 的新的方程组,求得x ,y 的值,再代入求解即可;【详解】2237x ay x y +=⎧⎨+=⎩①②, 由2①×得:224x ay +=③,由②-③得:()323a y -=,332y a=-, 将332y a=-代入②得: 92372a x =--, 1214232a x a -=-, 6732a x a--=, 方程组的解为6732332a x a y a -⎧=⎪⎪-⎨⎪=⎪-⎩, 又方程组的解是1x y -=的一个解,36173322a a a∴---=-, 13732a a--=, 3732,a a -=-0,a =经检验,0a =是13732a a--=的解, 0a ∴=.【点睛】本题主要考查了二元一次方程组的解,准确分析计算是解题的关键.16.【分析】根据题意得到点的总个数等于轴上右下角的点的横坐标的平方由于所以第2020个点在第45个矩形右下角顶点向上5个单位处【详解】根据图形以最外边的矩形边长上的点为准点的总个数等于轴上右下角的点的横 解析:()45,5【分析】根据题意,得到点的总个数等于x 轴上右下角的点的横坐标的平方,由于22025=45,所以第2020个点在第45个矩形右下角顶点,向上5个单位处.【详解】根据图形,以最外边的矩形边长上的点为准,点的总个数等于x 轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,211=右下角的点的横坐标为2时,共有2个,242=,右下角的点的横坐标为3时,共有3个,293=,右下角的点的横坐标为4时,共有16个,2164=,右下角的点的横坐标为n 时,共有2n 个,2452025=,45是奇数,∴第2025个点是()45,0,第2020个点是()45,5,故答案为:()45,5.【点睛】本题考查了规律的归纳总结,重点是先归纳总结规律,然后在根据规律求点位的规律. 17.(02)(﹣4﹣2)【分析】由点A (a-2a )及AB ⊥x 轴且AB=2可得点A 的纵坐标的绝对值从而可得a 的值再求得a-2的值即可得出答案【详解】解:∵点A (a ﹣2a )AB ⊥x 轴AB =2∴|a|=2∴a解析:(0,2)、(﹣4,﹣2).【分析】由点A (a-2,a ),及AB ⊥x 轴且AB=2,可得点A 的纵坐标的绝对值,从而可得a 的值,再求得a-2的值即可得出答案.【详解】解:∵点A (a ﹣2,a ),AB ⊥x 轴,AB =2,∴|a|=2,∴a =±2,∴当a =2时,a ﹣2=0;当a =﹣2时,a ﹣2=﹣4.∴点A 的坐标是(0,2)、(﹣4,﹣2).故答案为:(0,2)、(﹣4,﹣2).【点睛】本题考查了平面直角坐标系中的坐标与图形性质,熟练掌握平面直角坐标中的点的坐标特点是解题的关键.18.2【分析】先根据算术平方根的非负性绝对值的非负性求出ab 的值再代入计算有理数的乘方运算即可得【详解】由算术平方根的非负性绝对值的非负性得:解得则故答案为:2【点睛】本题考查了算术平方根的非负性绝对值 解析:2【分析】先根据算术平方根的非负性、绝对值的非负性求出a 、b 的值,再代入计算有理数的乘方运算即可得.【详解】由算术平方根的非负性、绝对值的非负性得:10a -=,10b +=,解得1a =,1b =-,则()201420132014201311112a b +=+-=+=,故答案为:2.【点睛】本题考查了算术平方根的非负性、绝对值的非负性、有理数的乘方,熟练掌握算术平方根和绝对值的非负性是解题关键. 19.【分析】过点A 作AD 垂直于垂足为D 过点B 作BH 垂直于垂足为H 连接AB 根据点到直线垂线段最短可知AB >ADAB >BH 可得最大【详解】过点A 作AD 垂直于垂足为D 过点B 作BH 垂直于垂足为H 连接AB 由题意得解析:c【分析】过点A 作AD 垂直于l 垂足为D ,过点B 作BH 垂直于m 垂足为H,连接AB ,根据点到直线垂线段最短,可知AB >AD ,AB >BH ,可得c 最大.【详解】过点A 作AD 垂直于l 垂足为D ,过点B 作BH 垂直于m 垂足为H,连接AB ,由题意得:AD=a , BH=b ,AB=c ;根据点到直线垂线段最短,可知AB >AD ,AB >BH∴c >a ,c >b ;∴c 最大故答案:c【点睛】本题主要考查了垂线段最短的性质,熟记性质是解题的关键.20.3【分析】根据不等式的解集可得关于m 的方程根据解方程可得答案【详解】解:解不等式得x≥由不等式的解集是x≥2得=2解得m =3故答案为:3【点睛】本题主要考查的是一元一次不等式的解法将数轴和不等式结合 解析:3【分析】根据不等式的解集,可得关于m 的方程,根据解方程,可得答案.【详解】解:解不等式得 x≥12+m , 由不等式的解集是x≥2,得12+m =2, 解得m =3,故答案为:3.【点睛】本题主要考查的是一元一次不等式的解法,将数轴和不等式结合起来观察是解题的关键.三、解答题21.(1)甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元;(2)有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台;(3)要使(2)中所有方案获利相同,则m 的值应为100元【分析】(1)设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,然后由题意可列方程组进行求解;(2)设购进甲型号微波炉为a 台,则乙型号微波炉为()20a -台,然后根据题意可列不等式组进行求解a 的范围,然后根据a 为正整数可求解;(3)设总利润为w ,则由(2)可得()()()()14000.910008004520100720020w a m a m a m =⨯-+⨯--=-+-%,进而根据题意可求解.【详解】解:(1)设甲型号微波炉每台进价为x 元,乙型号微波炉每台进价为y 元,根据题意得:22600234400x y x y +=⎧⎨+=⎩, 解得:1000800x y =⎧⎨=⎩, 答:甲型号微波炉每台进价为1000元,乙型号微波炉每台进价为800元.(2)设购进甲型号微波炉为a 台,则乙型号微波炉为()20a -台,由(1)及题意得: ()()1000800201800010008002017400a a a a ⎧+-≤⎪⎨+-≥⎪⎩, 解得:710a ≤≤,∵a 为正整数,∴a 的值为7、8、9、10,∴有4种进货方案,分别为:甲型号7台则乙型号13台;甲型号8台则乙型号12台;甲型号9台则乙型号11台;甲型号10台则乙型号10台.(3)设总利润为w ,则由(2)可得:()()()()14000.910008004520100720020w a m a m a m =⨯-+⨯--=-+-%, ∵(2)中方案利润要相同,∴1000m -=,解得:100m =,答:要使(2)中所有方案获利相同,则m 的值应为100.【点睛】本题主要考查二元一次方程组及不等式组的应用,熟练掌握二元一次方程组及不等式组的应用是解题的关键.22.(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a 天,根据不等量关系,列出一元一次不等式,即可求解.【详解】(1)设甲工程队每天施工x 米,乙工程队每天施工y 米,根据题意得:3555024420x y x y +=⎧⎨+=⎩,解得:5080x y =⎧⎨=⎩, 答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米; (2)设乙工程队施工a 天,根据题意得:80a+50(90-a )≥6000,解得:a≥50,答:乙工程队至少施工50天【点睛】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.23.(1)174x y =⎧⎨=⎩;(2)56x y =⎧⎨=⎩【分析】(1)利用代入消元法求解即可;(2)利用加减消元法求解即可.【详解】解:(1)1367x y x y -=⎧⎨=-⎩①② 把②代入①得: 6713y y --=,解得:4y =,把4y =代入②得: 64717x =⨯-=,∴原方程组的解为174.x y =⎧⎨=⎩, (2)414531x y x y -=⎧⎨+=⎩①② ①+②得, 945x =,解得:5x =,将5x =代入①得,2014y -=,解得:6y =,故原方程组的解为56x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法和加减消元法.24.(1)图见解析;(2)图见解析,B 1(3,-2);(3)5【分析】(1)根据点A 的坐标即可建立坐标系;(2)根据平移的性质解答;(3)利用割补法求面积.【详解】(1)建立平面直角坐标系如图:(2)如图,B1(3,-2);.(3)11144124234222ABCS=⨯-⨯⨯-⨯⨯-⨯⨯=5.【点睛】此题考查作图能力,根据点坐标确定直角坐标系,确定坐标系中的点坐标,作平移的图形,掌握平移的性质,割补法求网格中图形的面积,综合掌握各部分知识是解题的关键.255.【分析】直接利用负指数幂的性质以及零指数幂的性质和绝对值的性质分别化简得出答案.【详解】解:原式=4﹣1+2555.【点睛】此题主要考查了负指数幂的性质以及零指数幂的性质和绝对值的性质,正确化简各数是解题关键.26.(1)52°;(2)图见解析,26°或102°【分析】(1)依据OF⊥CD,∠BOF=38°,可得∠BOD=90°−38°=52°,依据对顶角相等得到∠AOC =52°;(2)分两种情况求解即可.【详解】(1)∵OF⊥CD,∠BOF=38°,∴∠BOD=90°−38°=52°,∴∠AOC=52°;(2)由(1)知:∠BOD=52°,∵OE平分∠BOD,∴∠BOE=26°,此时∠GOE=∠BOF=38°,分两种情况:如图:此时∠FOG=∠BOF+∠BOE-∠GOE=38°+26°-38°=26°;如图:此时∠FOG=∠BOF+∠BOE+∠GOE=38°+26°+38°=102°;综上:∠FOG的度数为26°或102°.【点睛】本题考查了对顶角,角平分线定义,角的有关定义的应用,主要考查学生的计算能力,并注意数形结合.。
浙教版七年级(下)期末数学试卷一.选择题(本题有10小题,每小题3分,共30分)1.(3分)下列方程中,是二元一次方程的是()A.4x=B.3x﹣2y=4z C.6xy+9=0 D.+4y=62.(3分)某校为了解七年级12个班级学生(每班4名)吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取6男6女,了解他们吃零食情况3.(3分)下列各式中,能用平方差公式计算的是()A.(3x+5y)(5y﹣3x)B.(m﹣n)(n﹣m)C.(p+q)(﹣p﹣q)D.(2a+3b)(3a﹣2b)4.(3分)下列运算正确的是()A.(﹣2a3)2=4a5B.(a﹣b)2=a2﹣b2C.=2a+1 D.5.(3分)如图所示,在下列四组条件中,能判定AB∥CD的是()A.∠1=∠2 B.∠ABD=∠BDCC.∠3=∠4 D.∠BAD+∠ABC=180°6.(3分)如果把分式中的x,y都扩大3倍,那么分式的值()A.缩小3倍B.不变C.扩大3倍D.扩大9倍7.(3分)如图,有正方形A类、B类和长方形C类卡片各若干张,如果要拼一个宽为(a+2b)、长为(2a+b)的大长方形,则需要C类卡片()A.6张B.5张C.4张D.3张8.(3分)把线段AB沿水平方向平移5cm,平移后的像为线段CD,则线段AB与线段CD之间的距离是()A.等于5cm B.小于5cmC.小于或等于5cm D.大于或等于5cm9.(3分)下列说法正确的是()A.两条直线被第三条直线所截,同位角相等B.垂直于同一条直线的两条直线互相平行C.经过一点,有且只有一条直线与已知直线平行D.在同一平面内,三条直线只有两个交点,则三条直线中必有两条直线互相平行10.(3分)若方程组的解是,则方程组的解是()A.B.C.D.二.填空题(本题有6小题,每小题4分,共24分)11.(4分)使分式有意义的x的取值范围是.12.(4分)已知某组数据的频数为56,频率为0.7,则样本容量为.13.(4分)设a=192×616,b=6462﹣302,c=10542﹣7462,将数a,b,c按从小到大的顺序排列,结果是.14.(4分)已知∠A与∠B的两边分别平行,其中∠A的度数为(3x+15)°,∠B的度数为(115﹣2x)°,则∠B=度.15.(4分)若a﹣b=﹣4,(a+b)2=9,则ab=.16.(4分)某商店经销一种旅游纪念品,4月的营业额为2000元.为扩大销售量,5月份该商店对这种纪念品打9折销售,结果销售量增加20件,营业额增加700元.若4月份销售这种纪念品获利1000元,5月份销售这种纪念品获利元.三.解答题(本题有7小题,共66分)17.(8分)解下列方程(组):(1)(2)18.(8分)计算:(1)(2a+5b)(2a﹣5b)﹣(4a+b)2;(2)(4c3d2﹣6c2d2)÷(﹣3c3d).19.(12分)因式分解:(1)x3﹣4x(2)(2x+y)2﹣6(2x+y)+9(3)4xy2﹣4x2y﹣y320.(10分)农历五月初五是我国传统佳节“端午节”民间历来有吃“粽子”的习俗,某区食品厂为了解市民对去年销售量较好的栗子粽、豆沙粽、红枣粽、蛋黄棕、大肉棕(以下分别用A,B,C,D,E表示)这五种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅不完整统计图.根据以上统计图解答问题:(1)本次被调查的市民有多少人,请补全条形统计图;(2)扇形统计图中大肉粽对应的圆心角是度;(3)若该区有居民约40万人,估计其中喜爱大肉粽的有多少人?21.(8分)(1)计算:(﹣)•,并求当x=﹣3时原式的值;(2)已知+=2,求代数式的值.22.(10分)如图,D是BC上一点,DE∥AB,交AC于点E,DF∥AC,交AB点F.(1)直接写出图中与∠BAC构成的同旁内角.(2)找出图中与∠BAC相等的角,并说明理由.(3)若∠BDE+∠CDF=234°,求∠BAC的度数.23.(10分)为节约用水,某市居民生活用水按阶梯式计算,水价分为三个阶梯,价格表如下表所示:(注:居民生活用水水价=供水价格+污水处理费)某市自来水销售价格表(1)当居民月用水量在18立方米及以下时,水价是元/立方米;(2)小明家2月份用水量为20立方米,付水费59.90元.4月份用水量为33立方米,付水费132.75元.求a,b的值;(3)小明家5月份交水费112.65元,试求小明家该月的用水量.参考答案一.选择题(本题有10小题,每小题3分,共30分)1.A2.D 3.A4.D5.B6.C7.B8.C9.D10.D 二.填空题(本题有6小题,每小题4分,共24分)11.x≠3 12.80 13.a<b<c14.75或15 15.16.1200三.解答题(本题有7小题,共66分)17.解:(1),①×3+②得:10a=14,解得:a=1.4,把a=1.4代入①得:b=0.2,则方程组的解为;(2)去分母得:x﹣2x+6=3,解得:x=3,经检验x=3是增根,分式方程无解.18.解:(1)原式=4a2﹣25b2﹣16a2﹣8ab﹣b2=﹣12a2﹣8ab﹣26b2;(2)原式=﹣d+.19.解:(1)原式=x(x2﹣4)=x(x+2)(x﹣2);(2)原式=(2x+y﹣3)2;(3)原式=﹣y(4x2﹣4xy+y2)=﹣y(2x﹣y)2.20.解:(1)本次被调查的市民:50÷25%=200(人),B的人数:200﹣40﹣10﹣50﹣70=30(人),补图如下:答:本次被调查的市民有200人.(2)扇形统计图中大肉粽对应的圆心角,故答案为126;(3)估计其中喜爱大肉粽的人数:(万人)答:估计其中喜爱大肉粽的有14万人.21.解:(1)原式=•==2x+8,当x=﹣3时,原式=2×(﹣3)+8=2(2)由已知+=2得x+y=2xy,原式====.22.解:(1)∠BAC的同旁内角有:∠AFD,∠AED,∠C,∠B;(2)∠BAC相等的角有:∠BFD,∠DEC,∠FDE,∵DE∥AB,∴∠BAC=∠DEC,∠BFD=∠FDE,∵DF∥AC,∴∠BAC=∠BFD,∴∠BAC=∠DEC=∠BFD=∠FDE.(3)∵∠BDE+∠CDF=234°,∴∠BDE+∠EDC+∠EDF=234°,即180°+∠EDF=234°,∴∠EDF=54°,∴∠BAC=54°.23.解:(1)1.90+1.00=2.90(元).故答案为:2.90.(2)18×2.90+2(a+1)=59.9,所以a=2.85,18×2.90+7(a+1)+8(b+1)=132.75,解得:b=5.7,(3)设小明家该月的用水量为x立方米,可得:18×2.90+7×3.85+6.7(x﹣25)=112.65,解得:x=30,答:小明家该月的用水量为30立方米.浙教版七年级(下)期末数学试卷一、细心选一选(本题有10小题,每小题3分,共30分)1.(3分)如图,直线m,n被直线l所截,则∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠52.(3分)可乐中含有大量的咖啡因,世界卫生组织建议青少年每天咖啡因的摄入量不能超过0.000085kg.则0.000085这个数字可用科学记数法表示为()A.8.5×10﹣5B.85×10﹣6C.8.5×10﹣6D.0.85×10﹣43.(3分)要使分式有意义,则x的取值应满足()A.x=﹣1 B.x=1 C.x≠1 D.x≠﹣14.(3分)下列选项中,运算正确的是()A.a2•a4=a8B.(a2)3=a5C.a6÷a3=a2D.(ab)3=a3b35.(3分)分式与的最简公分母是()A.ab B.2a2b2C.a2b2D.2a3b36.(3分)陈老师对56名同学的跳绳成绩进行了统计,跳绳个数140个以上的有28名同学,则跳绳个数140个以上的频率为()A.0.4 B.0.2 C.0.5 D.27.(3分)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bxB.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.a2+6a+10=(a+3)2+18.(3分)小明家1至6月份的用水量统计如图所示,则5月份的用水量比4月份增加的百分率为()A.25% B.20% C.50% D.33%9.(3分)若x+y=2z,且x≠y≠z,则的值为()A.1 B.2 C.0 D.不能确定10.(3分)如图,已知直线EC∥BD,直线CD分别与EC,BD相交于C,D两点.在同一平面内,把一块含30°角的直角三角尺ABD(∠ADB=30°,∠ABD=90°)按如图所示位置摆放,且AD平分∠BAC,则∠ECA=()A.15°B.2 C.25 D.30°二、精心填一填(本题有6小题,每小題3分,共18分)11.(3分)在二元一次方程y=6﹣2x中,当x=2时,y的值是.12.(3分)计算:(21a3﹣7a2)÷7a=.13.(3分)如果整式x2+10x+m恰好是一个整式的平方,则m的值是.14.(3分)如图,将一块长方形纸条折成如图的形状,若已知∠1=110°,则∠2=°.15.(3分)《九章算术》是中国古代的一本重要数学著作,其中有一道方程的应用题:“五只雀、六只燕,共重16两,雀重燕轻.互换其中一只,恰好一样重,问每只雀、燕的重量各为多少?”解:设雀每只x两,燕每只y两,则可列出方程组为.16.(3分)如图,用如图①中的a张长方形和b张正方形纸板作侧面和底面,做成如图②的竖式和横式两种无盖纸盒,若295<a+b<305,用完这些纸板做竖式纸盒比横式纸盒多30个,则a=,b=.三、专心练一练(本题有4小题,共28分)17.(8分)计算下列各题:(1)(3.14﹣π)0+(﹣1)2019+3﹣2(2)(m+1)2﹣m(m+3)﹣318.(8分)解下列方程(组):(1)(2)19.(6分)如图,已知∠B=∠D,∠E=∠F,判断BC与AD的位置关系,并说明理由.20.(6分)小明同学以“你最喜欢的运动项目“为主题对家附近的公园里参加运动的群众进行了随机调查(每名被调查者只能选一个项目,且被调查者都进行了选择),下面是小明根据调查结果列出的统计表和绘制的扇形统计图.男、女被调查者所选项目人数统计表根据以上信息回答下列问题:(1)m=,n=.(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为°;(3)若平均每天来该公园运动的人数有3600人,请你估计这3600人中最喜欢的运动项目是“跑步“的约有多少人?四、耐心做做(本题有3小题,共24分)21.(7分)某工厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,则每天应多做多少件?22.(8分)如图,一个长方形中剪下两个大小相同的正方形(有关线段的长如图所示),留下一个“T”型的图形(阴影部分)(1)用含x,y的代数式表示“T”型图形的面积并化简.(2)若y=3x=21米,“T”型区域铺上价格为每平方米20元的草坪,请计算草坪的造价.23.(9分)某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A种笔记本买20本,B本笔记本买30本,则钱还缺40元;若A种笔记本买30本,B 种笔记本买20本,则钱恰好用完.(1)求A,B两种笔记本的单价;(2)由于实际需要,需要增加购买单价为6元的C种笔记本若干本.若购买A,B,C三种笔记本共60本,钱恰好全部用完,任意两种笔记本之间的数量相差小于15本,则C种笔记本购买了本.(直接写出答案)参考答案一、细心选一选(本题有10小题,每小题3分,共30分)1.B 2.A 3.C 4.D 5.B 6.C 7.C 8.B 9.A 10.D二、精心填一填(本题有6小题,每小題3分,共18分)11.2 12.3a2﹣a 13.25 14.55 15.16.225,75.三、专心练一练(本题有4小题,共28分)17.(1)原式=1+(﹣1)+=.(2)原式=m2+2m+1﹣m2﹣3m﹣3=﹣m﹣2.18.解:(1),把②代入①得:2y﹣3y+3=1,解得:y=2,把y=2代入②得:x=1,则方程组的解为;(2)去分母得:x﹣1﹣2(x+1)=7,去括号得:x﹣1﹣2x﹣2=7,解得:x=﹣10,经检验x=﹣10是分式方程的解.19.解:BC∥AD,理由:∵∠E=∠F,∴BE∥FD,∴∠B=∠BCF,又∵∠B=∠D,∴∠BCF=∠D,∴BC∥AD.20.解:(1)总人数是:4÷10%=40(人),∵健步走占30%,∴健步走的人数是:40×30%=12(人),∴m=12﹣4=8,∴n=40﹣16﹣12﹣4﹣5=3,故答案为:8,3;(2)扇形统计图中“广场舞“项目所对应扇形的圆心角度数为×360°=144°,故答案为:144;(3)根据题意得:3600×=720(人),答:这3600人中最喜欢的运动项目是“跑步“的约有720人.四、耐心做做(本题有3小题,共24分)21.解:设每天应多做x件,则依题意得:=5,解之得:x=24.经检验x=24是方程的根,答:每天应多做24件.22.解:(1)(2x+y)(x+2y)﹣2y2=2x2+4xy+xy+2y2﹣2y2=2x2+5xy;(2)∵y=3x=21,∴x=7,2x2+5xy=2×49+5×7×21=833(平方米)20×833=16660(元)答:草坪的造价为16660元.23.解:(1)设A种笔记本的单价为x元,B种笔记本的单价为y元,依题意,得:,解得:.答:A种笔记本的单价为8元,B种笔记本的单价为12元.(2)设购买A种笔记本m本,B种笔记本n本,则购买C种笔记本(60﹣m﹣n)本,依题意,得:8m+12n+6(60﹣m﹣n)=480,∴m+3n=60,∴购买C种笔记本2n本.∵m,n均为正整数,且|m﹣n|<15,n<15,∴或或,∴2n=24,26,28.故答案为:24,26,28.浙教版七年级(下)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.下列方程属于二元一次方程的是()A.4x﹣8=y B.x2+y=0 C.x+=1 D.4x+y≠22.下列计算正确的是()A.a3×a3=2a3B.s3÷s=s2C.(m4)2=m6D.(﹣x2)3=x63.绿水青山就是金山银山.为了创造良好的生态生活环境,某省2017年建设城镇污水配套管网3100000米,数字3100000科学记数法可以表示为()A.3.1×105B.31×105C.0.31×107D.3.1×1064.如图,将三角形的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A.10°B.15°C.20°D.25°5.某中学就周一早上学生到校的方式问题,对七年级的所有学生进行了一次调查,并将调查结果制作成了如图表格,则步行到校的学生频率为()A.0.2 B.0.3 C.0.4 D.0.56.下列调查,适合用普查方式的是()A.了解义乌市居民年人均收入B.了解义乌市民对“低头族”的看法C.了解义乌市初中生体育中考的成绩D.了解某一天离开义乌市的人口流量7.若a、b、c是正数,下列各式,从左到右的变形不能用如图验证的是()A .(b +c )2=b 2+2bc +c 2B .a (b +c )=ab +acC .(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2acD .a 2+2ab =a (a +2b )8.已知x +y =3,xy =2,则下列结论中①(x ﹣y )2=1,②x 2+y 2=5,③x 2﹣y 2=3,④,正确的个数是( ) A .1B .2C .3D .49.对于两个不相等的实数a 、b ,我们规定符号Min {a ,b }表示a 、b 中的较小的值,如Min {2,4}=2,按照这个规定,方程Min {, }=﹣1的解为( ) A .1B .﹣1C .1或﹣1D .﹣1或﹣210.如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离.要解开图一的链子至少要解开几个圈呢?( )A .5个B .6个C .7个D .8个二、填空题(本题有6小题,每小题3分,共18分) 11.分解因式:9x 2﹣4y 2= .12.某班墙上布置的“学习园地”是一个长方形区域,它的面积为3a 2+9ab ﹣6a ,已知这个长方形“学习园地”的长为3a ,则宽为13.如图△ABC 中,AB =BC =AC =5,将△ABC 沿边BC 向右平移4个单位得到△A 'B 'C ′,则四边形AA ′C 'B 的周长为14.明代数学读本《直接算法统宗》里有一道算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意即:100个和尚分100个馒头,如果大和尚一人分3个,小和尚3人分一个,正好分完.则大和尚有人,小和尚有人.15.分式方程无解,则m的值为16.利用如图1的二维码可以进行身份识别,某校模仿二维码建立了一个七年级学生身份识别系统,图2是七年级某个学生的识别图案,黑色小正方形表示1,白色小正方形表示0.将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20+1.如图2第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20+1=6表示该生为6班学生.则该系统最多能识别七年级的班级数是个.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.(6分)计算:(1)2a2b•(﹣3b2c)÷(4ab3)(2)(﹣1)2018﹣()0+()﹣218.(6分)解下列方程或方程组(1)(2)19.(6分)先化简,再求值,其中a=2019,b=201820.(6分)某校为加强学生的安全意识,每周通过安全教育APP软件,向家长和学生推送安全教育作业.在最近一期的防溺水安全知识竞赛中,从中抽取了部分学生成绩进行统计.绘制了图中两幅不完整的统计图.请回答如下问题:(1)m=,a=(2)补全频数直方图;(3)该校共有1600名学生.若认定成绩在60分及以下(含60分)的学生安全意识不强,有待进一步加强安全教育,请估计该校安全意识不强的学生约有多少人?21.(6分)如图1,对于直线MN同侧的两个点A,B,若直线MN上的点P满足∠APM=∠BPN,则称点P为A,B在直线MN上的反射点.已知如图2,MN∥HG,AP∥BQ,点P为A,B在直线MN上的反射点,判断点B是否为P,Q在直线HG上的反射点,如果是请证明,如果不是,请说明理由.22.(6分)甲、乙两种糖果,售价分别为20元/千克和25元/千克,根据市场调查发现,将两种糖果按一定的比例混合后销售,取得了较好的销售效果.现只将糖果售价作如下调整:甲种糖果的售价上涨10%,乙种糖果的售价下降20%.若混合后糖果的售价恰好保持不变,求甲、乙两种糖果的混合比例应为多少.23.(8分)【提出问题】(1)如图1,已知AB∥CD,证明:∠1+∠EPF+∠2=360°;【类比探究】(2)如图2,已知AB∥CD,设从E点出发的(n﹣1)条折线形成的n个角分别为∠1,∠2……∠n,探索∠1+∠2+∠3+……+∠n的度数可能在1700°至2000°之间吗?若有可能请求出n 的值,若不可能请说明理由.【拓展延伸】(3)如图3,已知AB∥CD,∠AE1E2的角平分线E1O与∠CE n E n的角平分线E n O交﹣1于点O,若∠E1OE n=m°.求∠2+∠3+∠4+…+∠(n﹣1)的度数.(用含m、n的代数式表示)24.(8分)某市为创建生态文明建设城市,对公路旁的绿化带进行全面改造.现有甲、乙两个工程队,甲队单独完成这项工程,刚好如期完成,每施工一天,需付工程款1.5万元;乙工程队单独完成这项工程要比规定工期多用a天,乙工程队每施工一天需付工程款1万元.若先由甲、乙两队一起合作b天,剩下的工程由乙队单独做,也正好如期完工(1)当a=6,b=4时,求工程预定工期的天数.(2)若a﹣b=2.a是偶数①求甲队、乙队单独完成工期的天数(用含a的代数式表示)②工程领导小组有三种施工方案:方案一:甲队单独完成这项工程;方案二:乙队单独完成这项工程;方案三:先由甲、乙两队一起合作b天,剩下的工程由乙队单独做.为了节省工程款,同时又能如期完工,请你选择一种方案,并说明理由.参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分.请选出一个符合题意的正确选项不选、多选、错选,均不给分)1.A 2.B 3.D 4.D 5.A 6.C 7.D 8.B 9.C 10.C二、填空题(本题有6小题,每小题3分,共18分)11.(3x+2y)(3x﹣2y).12.a+3b﹣2.13.23 14.25;75.15.或1 16.16.三、解答题(本题有8小题,共52分.其中第17、18、19、20、21、22题每小题6分,第23、24题每小题6分)17.解:(1)原式=﹣6a2b3c÷(4ab3)=﹣ac;(2)原式=1﹣1+25=25.18.解:(1)①×2得:4x﹣6y=14③②﹣③得:11y=﹣11y=﹣1将y=﹣1代入①得:x=2∴方程组的解为(2)x+3=5xx=经检验:x=是原方程的解19.解:当a=2019,b=2018时,原式=÷=•==120.解:(1)∵被调查的总人数为30÷15%=200,∴m=200×25%=50,B组人数为200×10%=20,则C组的人数为200﹣(30+20+50+60)=40,∴a=360×=72,故答案为:50、72;(2)补全频数直方图如下:(3)估计该校安全意识不强的学生约有1600×15%=240人.21.解:点B是P,Q在直线HG上的反射点,理由:∵点P为A,B在直线MN上的反射点,∴∠APM=∠BPQ,又∵HG∥MN,∴∠APM=∠BAP,∠BPQ=∠PBA,∴∠PAB=∠PBA,又∵AP∥BQ,∴∠PAB=∠QBG,∴∠PBA=∠QBG,∴点B是P,Q在直线HG上的反射点.22.解:设将x千克甲种糖果和y千克乙种糖果混合,混合后糖果的售价恰好保持不变,根据题意得:20x+25y=20×(1+10%)x+25×(1﹣20%)y,整理得:2x=5y,∴x:y=5:2.答:甲、乙两种糖果的混合比例应为5:2.23.解:(1)如图所示,过P作PG∥AB,则∠1+∠GPE=180°,∵AB∥CD,∴PG∥CD,∴∠2+∠FPG=180°,∴∠1+∠GPE+∠GPF+∠2=360°,即∠1+∠EPF+∠2=360°;(2)可能在1700°至2000°之间.如图过G作GH∥AB,…,过P作PQ∥AB,∵AB∥CD,∴AB∥GH∥…∥PQ∥CD,∴∠1+∠EGH=180°,…,∠QPF+∠n=180°,(有(n﹣1)对同旁内角)∴∠1+∠2+…∠n﹣1+∠n=180°(n﹣1),当1700°<180°(n﹣1)<2000°时,n=11,12,∴n的值为11或12;(3)如图所示,过O作OP∥AB,∵AB∥CD,∴OP∥CD,∴∠AE1O=∠POE1,∠CE n O=∠POE n,∴∠AE1O+∠CE n O=∠POE1+∠POE n=∠E1OE n=m°,的角平分线E n O交于点O,又∵∠AE1E2的角平分线E1O与∠CE n E n﹣1=2(∠AE1O+∠CE n O)=2m°,∴∠AE1E2+∠CE n E n﹣1由(2)可得,∠AE1E2+∠2+…+∠(n﹣1)+∠CE n E n=180°(n﹣1),﹣1∴∠2+∠3+∠4+…+∠(n﹣1)=180°(n﹣1)﹣2m°.24.解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+6)天.依题意,得(+)×4+×(x﹣4)=1,解得:x=12,经检验:x=12是原分式方程的解.答:工程预定工期的天数是12天;(2)①∵a﹣b=2,∴b=a﹣2,设甲队单独完成此项工程需y天,则乙队单独完成此项工程需(y+a)天,由题意得,+=1,解得:y=,经检验:y=是原分式方程的解,∴y+a=,答:甲队、乙队单独完成工期的天数分别为天,天;②方案一需付工程款:×a2﹣a,方案三需付工程款:1.5b+a2=×(a﹣2)+a2,∵:×a2﹣a﹣(a﹣3+a2)=(a﹣3)2﹣<0,故此时方案一比较合算.浙教版七年级(下)期末数学试卷一、单选题(共10题,共30分)1.(3分)(x2y)3的结果是()A.x5y3B.x6y C.3x2y D.x6y32.(3分)如图,若∠A=∠D,则AB∥CD,判断依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行3.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2 B.(a+b)(a﹣b)=a2﹣b2C.x2﹣4=(x+2)(x﹣2)D.x﹣1=x(1﹣)4.(3分)若(x﹣3)(x+5)是x2+px+q的因式,则p为()A.﹣15 B.﹣2 C.8 D.25.(3分)如图,在网格中,每个小方格的边长均为1个单位,将图形E平移到另一个位置后能与图形F 组合成一个正方形,下面平移步骤正确的是()A.先把图形E向右平移4个单位,再向上平移3个单位B.先把图形E向右平移5个单位,再向上平移2个单位C.先把图形E向右平移5个单位,再向上平移3个单位D.先把图形E向右平移6个单位,再向上平移2个单位6.(3分)计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4 B.﹣3x2﹣2x+4 C.﹣3x2+2x+4 D.3x2﹣2x+47.(3分)某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生()名.A.20 B.21 C.22 D.238.(3分)根据2010~2014年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2012~2014年杭州市每年GDP增长率相同B.2014年杭州市的GDP比2010年翻一番C.2010年杭州市的GDP未达到5400亿元D.2010~2014年杭州市的GDP逐年增长9.(3分)A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D.+=3010.(3分)已知关于x,y的方程组,则下列结论中正确的个数有()①当a=10时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若3x﹣3a=35,则a=5.A.1个B.2个C.3个D.4个二、填空题(共10题,共30分)11.(3分)如图,若l1∥l2,∠1=x°,则∠2=°.12.(3分)计算:(﹣2a2)2=;2x2•(﹣3x3)=.13.(3分)禽流感病毒直径约为0.00000205cm,用科学记数法表示为cm.14.(3分)因式分解:x3﹣xy2=.15.(3分)在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为.16.(3分)计算÷(1﹣)的结果是.17.(3分)已知是方程组的解,则3a﹣b=.18.(3分)若方程有增根,则m的值为.19.(3分)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).20.(3分)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三、解答题(共6题,共40分)21.解方程(组):(1)(2).22.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.23.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是;(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.24.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?25.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.26.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1,c1位于图的上一行,a2,c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2﹣x﹣6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项﹣6也分解为两个因数的积,即﹣6=2×(﹣3);然后把1,1,2,﹣3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(﹣3)+1×2=﹣1,恰好等于一次项的系数﹣1,于是x2﹣x﹣6就可以分解为(x+2)(x﹣3).请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x﹣6=.【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:(1)2x2+5x﹣7;(2)6x2﹣7xy+2y2=.【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解,如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=.(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,请写出一组符合题意的x,y的值.参考答案与试题解析一、单选题(共10题,共30分)1.D 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.B 10.D 二、填空题(共10题,共30分)11.(180﹣x)°12.4a4;﹣6x5 13.2.05×10﹣6 14.x(x﹣y)(x+y)15.56 16..17.5 18.219.当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.20.30﹣.三、解答题(共6题,共40分)21.解:(1),由①×2,得4x﹣10y=24③,由③﹣②,并化简,得y=﹣2,把y=﹣2代入①,并化简,得x=1,则方程组的解为;(2)原式两边同时乘以3﹣x,得1﹣6+2x=x﹣2,解得:x=3,经检验:x=3是增根,舍去,∴原方程无解.22.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.23.解:(1)15÷30%=50人故答案为:50(2)踢毽子的人数:50×18%=9人,其它的人数为:50﹣15﹣9﹣16=10人,补全统计图如图:(3)其他”部分对应的圆心角的度数是:360°×=72°(4)2100×(1﹣30%﹣18%﹣20%)=672人答:估算“立定跳远”部分的学生人数672人.24.解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.25.解:(1)设每辆小客车能坐x名学生,每辆大客车能坐y名学生,根据题意得,解得:.答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300×20=6000(元),方案二租金:300×11+500×4=5300(元),方案三租金:300×2+500×8=4600(元),∴方案三租金最少,最少租金为4600元.26.解:【阅读与思考】分解因式:x2+x﹣6=(x+3)(x﹣2);故答案为:(x+3)(x﹣2);【理解与应用】(1)2x2+5x﹣7=(x﹣1)(2x+7);(2)6x2﹣7xy+2y2=(x﹣1)(2x+7);故答案为:(1)(x﹣1)(2x+7);(2)(x﹣1)(2x+7);【探究与拓展】(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=(x+2y﹣1)(3x﹣y+4);故答案为:(x+2y﹣1)(3x﹣y+4)(2)∵关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(﹣2)=﹣18,(﹣8)×3=﹣24;而7=1×(﹣2)+1×9,﹣5=1×(﹣8)+1×3,∴m=27+16=43或m=﹣72﹣6=﹣78,故m的值为43或﹣78;(3)x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,可以是x=﹣1,y=0(答案不唯一).浙教版七年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)下列各图案中,是由一个基本图形通过平移得到的是()A.B.C.D.2.(3分)已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001243.(3分)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y4.(3分)若3x=4,9y=7,则3x﹣2y的值为()A.B.C.﹣3 D.5.(3分)下列统计中,适合用“全面调查”的是()A.某厂生产的电灯使用寿命B.全国初中生的视力情况C.某校七年级学生的身高情况D.“娃哈哈”产品的合格率6.(3分)下列分式中不管x取何值,一定有意义的是()A.B.C.D.7.(3分)能使分式值为整数的整数x有()个.A..1 B.2 C.3 D..48.(3分)22018﹣22019的值是()A.B.﹣C.﹣22018D.﹣29.(3分)如图所示,把一根铁丝折成图示形状后,AB∥DE,则∠BCD等于()。
浙教版七年级(下)期末数学试卷一、单选题(共10题,共30分)1.(3分)(x2y)3的结果是()A.x5y3B.x6y C.3x2y D.x6y32.(3分)如图,若∠A=∠D,则AB∥CD,判断依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.同位角相等,两直线平行D.内错角相等,两直线平行3.(3分)下面式子从左边到右边的变形是因式分解的是()A.x2﹣x﹣2=x(x﹣1)﹣2B.(a+b)(a﹣b)=a2﹣b2C.x2﹣4=(x+2)(x﹣2)D.x﹣1=x(1﹣)4.(3分)若(x﹣3)(x+5)是x2+px+q的因式,则p为()A.﹣15B.﹣2C.8D.25.(3分)如图,在网格中,每个小方格的边长均为1个单位,将图形E平移到另一个位置后能与图形F组合成一个正方形,下面平移步骤正确的是()A.先把图形E向右平移4个单位,再向上平移3个单位B.先把图形E向右平移5个单位,再向上平移2个单位C.先把图形E向右平移5个单位,再向上平移3个单位D.先把图形E向右平移6个单位,再向上平移2个单位6.(3分)计算:(12x3﹣8x2+16x)÷(﹣4x)的结果是()A.﹣3x2+2x﹣4B.﹣3x2﹣2x+4C.﹣3x2+2x+4D.3x2﹣2x+47.(3分)某中学向西部山区一中学某班捐了若干本图书.如果该班每位同学分47本,那么还差3本;如果每位同学分45本,那么又多出43本,则该班共有学生()名.A.20B.21C.22D.238.(3分)根据2010~2014年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2012~2014年杭州市每年GDP增长率相同B.2014年杭州市的GDP比2010年翻一番C.2010年杭州市的GDP未达到5400亿元D.2010~2014年杭州市的GDP逐年增长9.(3分)A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30B.﹣=C.﹣=D.+=3010.(3分)已知关于x,y的方程组,则下列结论中正确的个数有()①当a=10时,方程组的解是;②当x,y的值互为相反数时,a=20;③不存在一个实数a使得x=y;④若3x﹣3a=35,则a=5.A.1个B.2个C.3个D.4个二、填空题(共10题,共30分)11.(3分)如图,若l1∥l2,∠1=x°,则∠2=°.12.(3分)计算:(﹣2a2)2=;2x2•(﹣3x3)=.13.(3分)禽流感病毒直径约为0.00000205cm,用科学记数法表示为cm.14.(3分)因式分解:x3﹣xy2=.15.(3分)在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为.16.(3分)计算÷(1﹣)的结果是.17.(3分)已知是方程组的解,则3a﹣b=.18.(3分)若方程有增根,则m的值为.19.(3分)在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项x4﹣y4,因式分解的结果是(x﹣y)(x+y)(x2+y2),若取x=9,y=9时,则各个因式的值是:(x+y)=18,(x﹣y)=0,(x2+y2)=162=162,于是就可以把“180162”作为一个六位数的密码,对于多项式9x3﹣xy2,取x=10,y=10时,用上述方法产生的密码是(写出一个即可).20.(3分)某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t千克,则第三天销售香蕉千克.(用含t的代数式表示.)三、解答题(共6题,共40分)21.解方程(组):(1)(2).22.如图,AB∥CD,∠A=60°,∠C=∠E,求∠E.23.在大课间活动中,同学们积极参加体育锻炼,小龙在全校随机抽取一部分同学就“我最喜爱的体育项目”进行了一次抽样调查,下面是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)小龙共抽取名学生;(2)补全条形统计图;(3)在扇形统计图中,“其他”部分对应的圆心角的度数是;(4)若全校共2100名学生,请你估算“立定跳远”部分的学生人数.24.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T恤衫商店共获利多少元?25.某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.26.【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式ax2+bx+c进行因式分解呢?我们已经知道,(a1x+c1)(a2x+c2)=a1a2x2+a1c2x+a2c1x+c1c2=a+(a1c2+a2c1)x+c1c2.反过来,就得到:a1a2x2+(a1c2+a2c1)x+c1c2=(a1x+c1)(a2x+c2).我们发现,二次项的系数a分解成a1a2,常数项c分解成c1c2,并且把a1,a2,c1,c2,如图①所示摆放,按对角线交叉相乘再相加,就得到a1c2+a2c1,如果a1c2+a2c1的值正好等于ax2+bx+c 的一次项系数b,那么ax2+bx+c就可以分解为(a1x+c1)(a2x+c2),其中a1,c1位于图的上一行,a2,c2位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子x2﹣x﹣6分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即1=1×1,把常数项﹣6也分解为两个因数的积,即﹣6=2×(﹣3);然后把1,1,2,﹣3按图②所示的摆放,按对角线交叉相乘再相加的方法,得到1×(﹣3)+1×2=﹣1,恰好等于一次项的系数﹣1,于是x2﹣x﹣6就可以分解为(x+2)(x﹣3).请同学们认真观察和思考,尝试在图③的虚线方框内填入适当的数,并用“十字相乘法”分解因式:x2+x﹣6=.【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:(1)2x2+5x﹣7;(2)6x2﹣7xy+2y2=.【探究与拓展】对于形如ax2+bxy+cy2+dx+ey+f的关于x,y的二元二次多项式也可以用“十字相乘法”来分解,如图④,将a分解成mn乘积作为一列,c分解成pq乘积作为第二列,f分解成jk乘积作为第三列,如果mq+np=b,pk+qj=e,mk+nj=d,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式=(mx+py+j)(nx+qy+k),请你认真阅读上述材料并尝试挑战下列问题:(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=.(2)若关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,求m 的值.(3)已知x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,请写出一组符合题意的x,y的值.参考答案与试题解析一、单选题(共10题,共30分)1.D 2.D 3.C 4.D 5.D 6.A 7.D 8.D 9.B 10.D 二、填空题(共10题,共30分)11.(180﹣x)°12.4a4;﹣6x5 13.2.05×10﹣6 14.x(x﹣y)(x+y)15.56 16..17.518.219.当x=10,y=10时,密码可以是104020或102040等等都可以,答案不唯一.20.30﹣.三、解答题(共6题,共40分)21.解:(1),由①×2,得4x﹣10y=24③,由③﹣②,并化简,得y=﹣2,把y=﹣2代入①,并化简,得x=1,则方程组的解为;(2)原式两边同时乘以3﹣x,得1﹣6+2x=x﹣2,解得:x=3,经检验:x=3是增根,舍去,∴原方程无解.22.解:∵AB∥CD,∠A=60°,∴∠DOE=∠A=60°,又∵∠C=∠E,∠DOE=∠C+∠E,∴∠E=∠DOE=30°.23.解:(1)15÷30%=50人故答案为:50(2)踢毽子的人数:50×18%=9人,其它的人数为:50﹣15﹣9﹣16=10人,补全统计图如图:(3)其他”部分对应的圆心角的度数是:360°×=72°(4)2100×(1﹣30%﹣18%﹣20%)=672人答:估算“立定跳远”部分的学生人数672人.24.解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,且符合题意,1.5x=60.答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)=160,160﹣30=130(元),130×60%×60+160×60%×(40÷2)﹣160×[1﹣(1+60%)×0.5]×(40÷2)=4680+1920﹣640=5960(元)答:售完这批T恤衫商店共获利5960元.25.解:(1)设每辆小客车能坐x名学生,每辆大客车能坐y名学生,根据题意得,解得:.答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:20m+45n=400,∴n=,∵m、n为非负整数,∴或或,∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300×20=6000(元),方案二租金:300×11+500×4=5300(元),方案三租金:300×2+500×8=4600(元),∴方案三租金最少,最少租金为4600元.26.解:【阅读与思考】分解因式:x2+x﹣6=(x+3)(x﹣2);故答案为:(x+3)(x﹣2);【理解与应用】(1)2x2+5x﹣7=(x﹣1)(2x+7);(2)6x2﹣7xy+2y2=(x﹣1)(2x+7);故答案为:(1)(x﹣1)(2x+7);(2)(x﹣1)(2x+7);【探究与拓展】(1)分解因式3x2+5xy﹣2y2+x+9y﹣4=(x+2y﹣1)(3x﹣y+4);故答案为:(x+2y﹣1)(3x﹣y+4)(2)∵关于x,y的二元二次式x2+7xy﹣18y2﹣5x+my﹣24可以分解成两个一次因式的积,∴存在其中1×1=1,9×(﹣2)=﹣18,(﹣8)×3=﹣24;而7=1×(﹣2)+1×9,﹣5=1×(﹣8)+1×3,∴m=27+16=43或m=﹣72﹣6=﹣78,故m的值为43或﹣78;(3)x,y为整数,且满足x2+3xy+2y2+2x+3y=﹣1,可以是x=﹣1,y=0(答案不唯一).。
浙教版初中数学试卷
2019-2020年七年级数学下册期末测试卷
学校:__________ 姓名:__________ 班级:__________ 考号:__________
题号 一 二 三 总分 得分
评卷人 得分
一、选择题
1.(2分)用 9根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( ) A . 1个
B . 2个
C .3个
D .4个
2.(2分)计算3223[()]()x x −÷所得的结果是( ) B .-1
B .10x −
C .0
D .12x −
3.(2分)如图,某同学把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块形状完全一样的玻璃.那么最省事的办法是带( ) A .①
B .②
C .③
D .①和②
4.(2分)如果把分式
b
a ab
2+中的a ,b 都扩大10倍,那么分式的值( ) A .扩大为原来的10倍 B .缩小为原来的
1
10
C .不变
D .无法确定 5.(2分) 将如图所示图形旋转 180。
后,得到的图形是( )
A .
B .
C .
D .
6.(2分)下列长度的三条线段,能组成三角形的是( ) A .1cm ,2 cm ,3cm B .2cm ,3 cm ,6 cm C .4cm ,6 cm ,8cm
D .5cm ,6 cm ,12cm
7.(2分)下列计算中,正确的是( )
A .1025m m m =⋅
B .(a 2)3=a 5
C .(2ab 2)3=6ab 6
D .(-m 2)3= -m 6
8.(2分)小明和哥哥并排站在镜子前,小明看到镜子中哥哥的球衣号码如图, ,那么
哥哥球衣上的实际号码是( ) A .25号 B .52号 C .55号 D .22号
9.(2分)如图,图形旋转多少度后能与自身重合( ) A .45°
B .60°
C .72°
D .90°
10.(2分)在多项式2
2
2x y +,2
2
x y −,2
2
x y −+,2
2
x y −−中,能用平方差公式分解的是( ) A .1个 B .2个
C .3个
D .4个
评卷人 得分
二、填空题
11.(2分)已知方程组5354x y mx y +=⎧⎨+=⎩与25
51
x y x ny −=⎧⎨+=⎩有相同的解,则222m mn n −+= .
12.(2分)将方程35x y −=写成用含x 的代数式表示y ,则y = .
13.(2分)若代数式24
2
x x −−的值为 0,则x = .
14.(2分)观察下列顺序排列的等式:1113a =−
,21124a =−,31135
a =−,411
46
a =
−,….试猜想第n 个等式(n 为正整数): . 15.(2分)如图,在△ABC 中,∠A=90°,BE 平分∠ABC ,DE ⊥BC ,垂足为 D ,若DE= 3cm ,则AE= cm.
16.(2分)已知:25,27a b b c +=−=,则代数式222a ac c ++的值是 . 17.(2分)如图,在△ABC 中,DE 是AC 的中垂线,AE=2.5cm ,△ABD 的周长是9cm ,则△ABC 的周长是 cm .
18.(2分)据研究,地面上空h(m)处的气温t (O C)与地面气温T(O C)有如下关系:
t T kh =−,现用气象气球测得某时离地面150(m)处的气温为8.8O C ,离地面400(m)处的
气温为6.8O C ,请你估算此时离地面2500(m)高空的气温是 .
19.(2分)如图,将△ABC 沿CA 方向平移CA 长,得△EFA ,若△ABC 的面积为3cm 2
,则四边形BCEF 的面积是__________cm 2.
20.(2分)分式1
22−+x x
x 中,当____=x 时,分式的值为零.
21.(2分)在数学兴趣小组活动中,小明为了求12+122+123+124+…+1
2
n 的值,在边长为1的
正方形中,设计了如图所示的几何图形.则12+122+123+124+…+1
2n 的值为__________(结
果用n 表示).
22.(2分)如图,AD 是线段BC 的垂直平分线.已知△ABC 的周长为14cm ,BC =4cm ,则AB =__________cm .
23.(2分)在243y x =-中,如果5.1=x ,那么y = ; 如果y =0,那么x = .
24.(2分)一个汽车牌照在镜子中的像为
,则该汽牌照号码为 .
25.(2分) 如图,在△ABC 中,AB 的垂直平分线交 AC 于 D ,如果AC= 7 cm ,BC=4 cm ,则△BDC 的周长为 cm .
评卷人 得分
三、解答题
26.(7分)已知:如图,AB=AD,AC=AE,∠BAD=∠CAE,则BC=DE ,请说明理由.
27.(7分)某校七年级甲、乙两个班共103人(其中甲班超过50人,乙班不足50人)去景点游玩,如果两班都以班为单位分别购票,那么一共需付486元.
购票人数(人) 1-50人
51-100人
100人以上
1.两班分别有多少名学生?
2.若两班联合起来,作为一个团体购票,可以节约多少钱?28.(7分)计算:
(1)(10x2y-5xy2)÷5xy (2)
x
x-1·
x2-1
x2
29.(7分)如图是2002 年 8 月在北京召开的第 24 届国际数学家大会会标中的图案,其中四边形 ABCD 和 EFGH 都是正方形,试说明:△ABF≌△DAE.
30.(7分)解方程:
11
3 22
x
x x
−
=−−−
【参考答案】***试卷处理标记,请不要删除
评卷人得分
一、选择题
每人门票单价5元 4.5元4元
1.C 2.A 3.C 4.A 5.D 6.C 7.D 8.A 9.C 10.B
二、填空题
11.144
12.35y x =−
13.-2
14.112n n −+
15.3
16.4 17.14 18.-10 O C 19.9 20.0
21.n
2
11−
22.5
23.-3 , 6 24.SM17963 25.11
三、解答题
26.证明△ABC ≌△ADE ,得BC=DE. 27.(1)设甲班有x 名学生,乙班有y 名学生. 根据题意得:⎩⎨⎧=+=+48655.4103y x y x ,解得:⎩⎨⎧==45
58
y x
(2)744103486=⨯− . 28.(1)y x −2;(2)x
x 1
+. 29.略 30.无解。