应用ANSYS软件分析提篮拱桥锚下局部应力
- 格式:pdf
- 大小:279.34 KB
- 文档页数:4
ansys后处理该看的那些应力昨天看文献和论坛(有一些是老帖),发现一个问题,貌似有一些朋友在用ANSYS进行实体分析的时候,只是提供了各种各样的应力云图,有时说一说XYZ方向的应力,有时说等效应力、von misses应力……貌似语言说明部分也不是很明确。
这其实就是基础的材料力学问题,我来说说我的总结:什么时候可以查看某方向的应力应力的定义,没必要再重复了。
我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。
那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。
也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。
所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x 等,是有意义的。
但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。
回顾–材料力学中的四种强度理论1、第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。
其中,某点的最大拉应力数值,就是其第一主应力数值。
2、第二强度理论:最大拉应变理论该理论认为,引起材料破坏的主要因素,是最大拉应变。
无论何种状态,只要最大拉应变达到材料拉伸断裂时的最大应变值,则材料断裂。
此时,形式上将主应力的某一综合值与材料单向拉伸轴向拉压许用应力比较,这个综合值就是等效应力——equivalent stress。
相关公式:3、第三强度理论:最大切应力理论该理论认为,引起材料屈服的主要因素是最大切应力,不论何种状态,只要最大切应力达到材料单向拉伸屈服时的最大切应力,则认为材料屈服。
相关公式:4、第四强度理论:畸变能理论该理论认为,弹性体在外力作用下产生变形,荷载做功、弹性体变形储能,称之为应变能(分为畸变能和体积的改变能)。
ANSYS梁单元如何提取应力(转载)ANSYS梁单元如何提取应力(转载)我用的188单元作谐响应分析,求解结束后,我想取出模型中的最大应力值作为参数,然后在接下来的优化当中用该最大应力作为状态变量,请问我应该怎么做啊,注意优化时,对应于每组参数值,最大应力点的位置都可能不同.请高手指点一下谢谢以下程序段分别得到目标变量(总体积),约束变量SV的最大应力值。
/POST1SET,NSORT,U,Y*GET,DMAX,SORT,,MAXETABLE,VOLU,VOLUETABLE,SMAX_I,NMISC,1ETABLE,SMAX_J,NMISC,3ssum*GET,VOLUME,SSUM,,ITEM,VOLUESORT,ETAB,SMAX_I,,1 !按照单元SMAX_I的绝对值大小进行排序*GET,SMAXI,SORT,,MAXESORT,ETAB,SMAX_J,,1*GET,SMAXJ,SORT,,MAXSMAX=SMAXI>SMAXJ !约束变量SV:SMAX=最大应力值FINISH===============你这个程序段是针对beam3 吧,对beam188好像不行。
对beam188,要求所有单元的最大、最小应力可以用命令allsel*GET,ZDYL_MAX,SECR,ALL,S,X,MAX*GET,ZDYL_MIN,SECR,ALL,S,X,MAX但是虽然能用图形显示最大、最小应力截面,却不清楚怎么用命令流提取出这个截面和他所在的单元来,盼高手提示!另外也可以用单元表求出轴应力和弯曲应力,然后求最大、最小应力SMAX=Maximum stress (direct stress + bending stress)SMIN=Minimum stress (direct stress - bending stress)命令流ETABLE,SDIR,SMISC,31ETABLE,SBZT,SMISC,34SADD,YL_MAX,SDIR,SBZTSADD,YL_MIN,SDIR,SBZT,,-1*do,K,1,单元数,1*GET,YLMAX(K),ELEM,K,ETABLE,YL_MAX*GET,YLMIN(K),ELEM,K,ETABLE,YL_MIN*ENDDO2、BEAM188单元剪应力怎么查看?BEAM188单元输出中帮助文件的输出序号如下:Table 188.2. BEAM188 Item and Sequence Numbers for the ETABLE and ESOL Commands Name Item I JFX SMISC 1 14MY SMISC 2 15MZ SMISC 3 16MX SMISC 4 17SFZ SMISC 5 18SFY SMISC 6 19EX SMISC 7 20KY SMISC 8 21KZ SMISC 9 22KX SMISC 10 23SEZ SMISC 11 24SEY SMISC 12 25Area SMISC 13 26BM SMISC 27 29BK SMISC 28 30请教:怎么没有剪应力SX,SXZ,SXY的输出序号?怎么查看计算结果的剪应力?------------------不需要到ETABLE 定义sx是正应力sy,sz剪应力。
Ansys后处理-如何看应力点击数:3091 更新时间:2012-4-20 16:29:47SX:X-Component ofstress;SY:Y-Component of stress;SZ:Z-Component ofstress--X,Y,Z轴方向应力。
SXY:XY Shear stress;SYZ:YZ Shearstress;SXZ:XZ Shear stress--X,Y,Z三个方向的剪应力。
S1:1stPrincipal stress;S2:2st Principal stress;,S3:3st Principalstress--第一、二、三主应力。
区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1F2F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。
SINT:stress intensity--应力强度,是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。
SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。
Ansys 后处理中'VonMises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。
我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。
那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。
也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。
所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。
但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。
材料力学中的四种强度理论1.第一强度理论:最大拉应力强度理论该理论认为,材料破坏的主要因素是最大拉应力,无论何种状态,只要最大拉应力达到材料的单向拉伸断裂时的最大拉应力,则材料断裂。
第6章ANSYS桥梁工程应用实例分析本章重点结构分析具体步骤结构静力分析桁架结构建模方法结构模态分析本章典型效果图6.1 引言ANSYS通用有限元软件在土木工程应用分析中可发挥巨大的作用。
我们用它来分析桥梁工程结构,可以很好的模拟各种类型桥梁的受力、施工工况、动荷载的耦合等。
ANSYS程序有丰富的单元库和材料库,几乎可以仿真模拟出任何形式的桥梁。
静力分析中,可以较精确的反应出结构的变形、应力分布、内力情况等;动力分析中,也可精确的表达结构的自振频率、振型、荷载耦合、时程响应等特性。
利用有限元软件对桥梁结构进行全桥模拟分析,可以得出较准确的分析结果。
本章介绍桥梁结构的模拟分析。
作为一种重要的工程结构,桥梁的精确分析具有较大的工程价值。
桥梁的种类繁多,如梁桥、拱桥、钢构桥、悬索桥、斜拉桥等等,不同类型的桥梁可以采用不同的建模方法。
桥梁的分析内容又包括静力分析、施工过程模拟、动荷载响应分析等。
可以看出桥梁的整体分析过程比较复杂。
总体上来说,主要的模拟分析过程如下:(1)根据计算数据,选择合适的单元和材料,建立准确的桥梁有限元模型。
(2)施加静力或者动力荷载,选择适当的边界条件。
(3)根据分析问题的不同,选择合适的求解器进行求解。
(4)在后处理器中观察计算结果。
(5)如有需要,调整模型或者荷载条件,重新分析计算。
桥梁的种类和分析内容众多,不同类型桥梁的的分析过程有所不同,分析侧重点也不一样。
在这里仅仅给出大致的分析过程,具体内容还要看具体实例的情况。
6.2 典型桥梁分析模拟过程6.2.1 创建物理环境建立桥梁模型之前必须对工作环境进行一系列的设置。
进入ANSYS前处理器,按照以下6个步骤来建立物理环境:1、设置GUT菜单过滤2、定义分析标题(/TITLE)3、说明单元类型及其选项(KEYOPT选项)4、设置实常数和单位制5、定义材料属性31.设置GUI 菜单过滤如果你希望通过GUI 路径来运行ANSYS ,当ANSYS 被激活后第一件要做的事情就是选择菜单路径:Main Menu>Preferences ,执行上述命令后,弹出一个如图6-1所示的对话框出现后,选择Structural 。
ANSYS基础教程——应力分析关键字:ANSYS应力分析ANSYS教程信息化调查找茬投稿收藏评论好文推荐打印社区分享应力分析是用来描述包括应力和应变在内的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要内容有:分析步骤、几何建模、网格划分。
应力分析概述·应力分析是用来描述包括应力和应变在内的结果量分析的通用术语,也就是结构分析。
ANSYS 的应力分析包括如下几个类型:●静态分析●瞬态动力分析●模态分析●谱分析●谐响应分析●显示动力学本文以一个线性静态分析为例来描述分析步骤,只要掌握了这个分析步骤,很快就会作其他分析。
A. 分析步骤每个分析包含三个主要步骤:·前处理–创建或输入几何模型–对几何模型划分网格·求解–施加载荷–求解·后处理–结果评价–检查结果的正确性·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入;·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。
也可以使用前处理器PREP7 施加载荷。
·通常先定义分析对象的几何模型。
·典型方法是用实体模型模拟几何模型。
–以CAD-类型的数学描述定义结构的几何模型。
–可能是实体或表面,这取决于分析对象的模型。
B. 几何模型·典型的实体模型是由体、面、线和关键点组成的。
–体由面围成,用来描述实体物体。
–面由线围成,用来描述物体的表面或者块、壳等。
–线由关键点组成,用来描述物体的边。
–关键点是三维空间的位置,用来描述物体的顶点。
·在实体模型间有一个内在层次关系,关键点是实体的基础,线由点生成,面由线生成,体由面生成。
·这个层次的顺序与模型怎样建立无关。
⽤ANSYS进⾏桥梁结构分析..⽤ANSYS进⾏桥梁结构分析宝来华龙海引⾔:我院现在进⾏桥梁结构分析主要⽤桥梁博⼠和BSACS,这两种软件均以平⾯杆系为计算核,多⽤来解决平⾯问题。
近来偶然接触到ANSYS,发现其结构分析功能强⼤,现将⼀些研究⼼得写出来,并⽤⼀个很好的学习例⼦(空间钢管拱斜拉桥)作为引⽟之砖,和同事们共同研究讨论,共同提⾼我院的桥梁结构分析⽔平⽽努⼒。
【摘要】本⽂从有限元的⼀些基本概念出发,重点介绍了有限元软件ANSYS平台的特点、使⽤⽅法和利⽤APDL语⾔快速进⾏桥梁的结构分析,最后通过⼯程实例来更近⼀步的介绍ANSYS进⾏结构分析的⼀般⽅法,同时进⾏归纳总结了各种单元类型的适⽤围和桥梁结构分析最合适的单元类型。
【关键词】ANSYS有限元APDL结构桥梁⼯程单元类型⼀、基本概念有限元分析(FEA)是利⽤数学近似的⽅法对真实物理系统(⼏何和载荷⼯况)进⾏模拟。
还利⽤简单⽽⼜相互作⽤的元素,即单元,就可以⽤有限数量的未知量去逼近⽆限未知量的真实系统。
有限元模型是真实系统理想化的数学抽象。
真实系统有限元模型⾃由度(DOFs)⽤于描述⼀个物理场的响应特性。
节点和单元1、每个单元的特性是通过⼀些线性⽅程式来描述的。
2、作为⼀个整体,单元形成了整体结构的数学模型。
3、信息是通过单元之间的公共节点传递的。
4、节点⾃由度是随连接该节点单元类型变化的。
单元形函数1、FEA 仅仅求解节点处的DOF 值。
2、单元形函数是⼀种数学函数,规定了从节点DOF 值到单元所有点处DOF 值的计算⽅法。
3、因此,单元形函数提供出⼀种描述单元部结果的“形状”。
4、单元形函数描述的是给定单元的⼀种假定的特性。
5、单元形函数与真实⼯作特性吻合好坏程度直接影响求解精度。
6、DOF 值可以精确或不太精确地等于在节点处的真实解,但单元的平均值与实际情况吻合得很好。
7、这些平均意义上的典型解是从单元DOFs 推导出来的(如,结构应⼒,热梯度)。
ANSYS桥梁受力分析命令流ANSYS是一款广泛应用于工程领域的有限元分析软件,它可以帮助工程师、设计师、科学家等进行各种力学或结构分析。
在工程领域中,桥梁是一种比较常见的结构,因此本文将介绍在ANSYS中进行桥梁受力分析的命令流。
1. 建立桥梁模型首先,我们需要建立桥梁模型。
在ANSYS中,可以使用多种模型建立工具,例如现在比较流行的三维CAD软件,如SolidWorks、CATIA等,均可以建立出桥梁模型。
建立好桥梁模型后,需要导入到ANSYS中进行后续分析。
2. 分配材料属性桥梁模型建立完后,需要根据实际情况为它分配材料属性。
以混凝土桥梁为例,我们可以使用“MP(材料属性)”命令为桥梁定义混凝土的相应属性。
比如,定义混凝土的弹性模量、泊松比等。
3. 设定支座约束桥梁的受力分析需要考虑桥梁的支座约束情况。
在ANSYS中,我们可以通过使用“SUPPORT”命令设定不同类型的支座约束。
4. 设定荷载桥梁承受的荷载对于力学分析至关重要,因此在进行桥梁受力分析时,必须设定荷载的种类和大小。
ANSYS提供了多种荷载设定方式,如集中荷载、分布荷载、自重荷载等。
5. 载荷应用载荷应用是桥梁受力分析中的一个关键步骤,它能够准确模拟桥梁所受荷载。
在ANSYS中,可以使用“D”命令定义荷载的应用方式,如定义一个位移荷载、力荷载等。
6. 求解过程ANSYS中提供了多种求解器,可以快速准确地解析桥梁模型受力情况。
在进行桥梁受力分析时,需要选择合适的求解器并进行计算。
ANSYS中提供了两种类型求解器,一种是基于传统矩阵进行计算的Direct Solver求解器,另一种是基于有限元模型优化的Iterative Solver求解器。
7. 结果分析在桥梁受力分析计算完成后,需要对应力和位移等结果进行分析并产生可视化的输出。
在ANSYS中,可以使用“POST1”命令来输出结果,并对结果进行后处理。
8.经过以上步骤进行受力分析后,可以得到桥梁受力的详细情况,也可以对桥梁的结构进行合理的优化。
计算分析模型如图所示, 习题文件名: scf材料参数:E=205GPa, v = 0.3力载:4500N注意单位的一致性:使用N, mm, MPa单位制建模教程在ANSYS工作文件夹内新建“stress concentration factor”目录,以存放模型文件。
注意定期保存文件,注意不可误操作,一旦误操作,不可撤销。
1.1 进入ANSYS开始→程序→ANSYS 14.5→Mechanical APDL Product Launcher14.5→然后在弹出的启动界面输入相应的working directory及文件名scf如通过Mechanical APDL 14.5进入,则进入预设的working directoryworking directory必须设置在电脑最后一个分区(因为教学用电脑只有最后一个分区不受系统保护)至此ANSYS静力学分析模块启动,ANSYS在“stress concentration factor”目录下自动创建了.log、.err等必要的文件。
2.2设置计算类型ANSYS Main Menu: Preferences →select Struc tural → OK2.3选择单元类型ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4 node 182 →OK (back to Element Types window)→Options… →select K3: Plane Strs w/thk →OK→Close (the Element Type window)2.4定义实常数ANSYS Main Menu: Preprocessor →Real Constants →Add/Edit/Delete →Add →OK→THK 1.2 →OK2.5定义材料参数ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear→Elastic→Isotropic→input EX:205e3, PRXY:0.3→ OK2.6生成几何模型✓生成特征点(8个)ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input:1(0,0,0) ,2(75,0,0) ,3(75,4.5,0) ,4(120,4.5,0) ,5(120,19.5,0),6(75, 19.5,0) ,7(75, 24,0) ,8(0, 24,0)→Apply/OK(开始点Apply,最后一个点OK)Tips:如何用ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →On Working Plane →又该如何操作才能生成同样的点??✓直线(8条)ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →Lines →Straight Lines→跳出对话框,用鼠标(左键)依次选择点1、2生成直线1,依次类推生成直线2-8。
ANSYS后处理中应力查看总结-------------------------------------------------------------------------------------------------------SX:X-Component of stress;SY:Y-Component of stress;SZ:Z-Component of stress,X,Y,Z轴方向应力SXY:XY Shear stress;SYZ:YZ Shear stress;,SXZ:XZ Shear stress,X,Y,Z三个方向的剪应力。
S1:1st Principal stress;S2:2st Principal stress;,S3:3st Principal stress第一、二、三主应力。
区分:首先把一个微元看成是一个正方体,那么假设三个主应力分别是F1 F2 F3,那么如果三个力中哪个力最大,就是F1,也是最大主应力,也叫第一主应力,第二大的叫第二主应力,最小的叫第三主应力,因此,是根据大小来定的。
SINT:stress intensity(应力强度),是由第三强度理论得到的当量应力,其值为第一主应力减去第三主应力。
SEVQ:Von Mises是一种屈服准则,屈服准则的值我们通常叫等效应力。
Ansys后处理中'Von Mises Stress'我们习惯称Mises等效应力,它遵循材料力学第四强度理论(形状改变比能理论)。
我们分析后查看应力,目的就是在于确定该结构的承载能力是否足够。
那么承载能力是如何定义的呢?比如混凝土、钢材,应该就是用万能压力机进行的单轴破坏试验吧。
也就是说,我们在ANSYS计算中得到的应力,总是要和单轴破坏试验得到的结果进行比对的。
所以,当有限元模型本身是一维或二维结构时,通过查看某一个方向,如plnsol,s,x等,是有意义的。
但三维实体结构中,应力分布要复杂得多,不能仅用单一方向上的应力来代表结构此处的确切应力值——于是就出现了强度理论学说。
第31卷 第3期2005年6月四川建筑科学研究Sichuan Building Science 收稿日期:2004205210作者简介:段 凯(1979-),男,湖北武汉人,工学硕士,主要从事桥梁结构及有限元数值计算方面的研究。
用ANS YS 软件计算桥梁结构的温度应力段 凯1,杨新华1,杨文兵1(华中科技大学土木工程与力学学院,湖北武汉 430074)摘 要:温度应力是混凝土桥梁开裂的主要因素,曾造成多座预应力混凝土桥梁结构严重损害,所以在进行桥梁结构设计时,必须考虑温度应力的影响。
本文在分析桥梁结构温度应力基本特点和ANSYS 软件特性的基础上,利用ANSYS 软件及其提供的二次开发工具开发了一个计算模块,实现了桥梁结构温度应力的求解。
关键词:温度应力;ANSYS 软件;桥梁结构中图分类号:TU311141 文献标识码:A 文章编号:1008-1933(2005)03-0055-051 概 述暴露在自然环境中的混凝土结构,受到周围环境气温以及日照等因素影响,外表面温度可能发生急变(升高或降低)。
由于混凝土材料的导热系数小(一般仅为黑色金属的几十分之一),混凝土内部的温度变化非常缓慢,从而产生明显的滞后现象,并且在混凝土结构内部形成较大的温度梯度。
当由此产生的温度变形被结构的内、外约束阻碍时,会产生相当大的温差应力。
在混凝土桥梁结构中,温度应力有时甚至比活载产生的应力还要大,不少预应力混凝土桥梁因此发生严重裂损。
随着大跨度预应力混凝土箱形桥梁结构的发展,温度应力对桥梁结构的影响和危害越来越大,因此在桥梁结构设计中,必须考虑温度应力的影响。
目前,桥梁结构温度应力的计算基本上采用力等效原理,由于过于简化,在处理复杂温度场时面临很大困难;计算使用的桥梁专用程序大多基于二维有限元理论,难以考虑梁的空间效应。
近十几年来,随着计算机技术的日益发展和有限元法的广泛应用,出现了一些大型通用的有限元分析程序,但是这些程序应用于桥梁结构温度应力计算有一定的局限性,操作过程复杂。
利用ANSY S软件对压力容器进行应力分析韩 敏(西安科技大学,西安710054)摘要:利用ANSY S有限元软件对压力容器进行应力分析,获得了压力容器的应力分布图。
经分析发现,ANSY S软件分析的结果与真实情况基本一致。
整个建模、分析过程充分说明ANSY S 软件为压力容器的结构设计提供了可靠、高效的理论依据。
关键词:压力容器;ANSY S;有限元;应力分析中图分类号:TH49 文献标志码:A 文章编号:100320794(2008)0120073202Stress Analysis of Pressure Contain with ANSY S Softw areH AN Min(X i’an University of Science and T echnology,X i’an710054,China)Abstract:The static force im paction of a pressure contain with ANSY S s oftware was analysed and the stress distribution drafts of them were g otten.Through theories analysis,the result of finite-element analysis is proved to be acceptable,and it provides the theories support to today’s machine optimize design.K ey w ords:pressure contain;ANSY S;finite-element;stress analysis计方法,得出的结构强度结果比较保守,这就限制了容器整体性能的提高和材料的有效利用。
分析设计依据标准JB4732《钢制压力容器—分析设计标准》,它是基于“塑性失效”与“弹塑性失效”准则,其理论基础是板壳力学、弹性与塑性理论及有限元法,是根据具体工况,对容器各部位进行详细地应力计算与分析,在不降低设备安全性的前提下选取相对较低的安全系数,从而降低了结构的厚度,使材料得到了有效的利用。