桥梁梁板锚下应力测试
- 格式:pdf
- 大小:174.13 KB
- 文档页数:10
重庆酉沿高速公路桥梁T梁锚下预应力专项质量检测实施方案招商局重庆交通科研设计院有限公司(重庆公路工程检测中心)二○一三年九月1.检测范围、内容、频率1.1 检测范围、内容检测对象为重庆酉沿高速公路桥梁T梁,检测范围与内容:预制20m、30m、40mT梁锚下预应力专项质量检测。
1.2 检测频率及原则按甲方要求进行检测,且总梁数不少于16片。
2.检测执行相关标准①《公路工程质量检验评定标准》(土建工程)(JTG F80/1-2004);②《公路桥涵施工技术规范》(JTG/T F50-2011);③《桥梁预应力及索力张拉施工质量检测验收规程》CQJTG/T F81—2009;④合同要求。
3.检测原理、方法预制T梁锚下预应力检测方法:预制T梁张拉后未割断张拉段钢绞线时,采用现场反张拉法检测锚下有效预应力情况。
对空心板的混凝土均匀密实等质量情况,采用超声波透视法或地质雷达进行检测。
3.1 检测原理现场反拉法的基本原理:拉拔试验也就是一次再张拉过程。
即:对已张拉的预应力筋施加荷载,从而确定锚下有效预应力。
现场拉拔试验法一般只能在灌浆前进行检测。
由于预应力筋张拉后为了防止锈蚀和预应力松弛,必须尽快灌浆。
3.2 检测方法现场反拉法检测锚下预应力的方法,一般情况下,只能在灌浆前进行拉拔试验检测。
采用现场检测,对已张拉预应力筋进行反张拉检测,通过施加短期分级荷载,通过力和位移间关系来判断和检测预应力筋工作预应力损失情况是否满足设计预应力要求,具体做法参照《锚杆喷射混凝土支护技术规范GB50086-2001》。
锚下预应力检测采用招商局重庆交通科研设计院有限公司研制的AP-10锚下预应力检测系统进行检测,AP-10锚下预应力检测系统目前已取得交通运输建设科技成果推广证书。
锚下预应力检测详细过程:通过穿心千斤顶、油泵、配套油压表和测力计,采取分级加载的方法进行检测,预应力筋工作有效预应力检测反张拉预应力筋直至达到1.0倍设计荷载为止。
公路桥梁锚下预应力检测技术规程一、引言公路桥梁是交通运输系统的重要组成部分,而桥梁安全则是保障交通运输顺畅的基础。
在桥梁的设计和施工过程中,预应力技术被广泛应用,以增强桥梁的承载能力和稳定性。
而预应力锚固部分是整个预应力系统的关键组成部分,对于桥梁的安全运行至关重要。
因此,对公路桥梁锚下预应力的检测技术规程的建立和实施至关重要,以确保桥梁的预应力系统安全可靠。
二、基本原理锚下预应力是指通过预先施加的拉力将桥梁的构件紧密连接在一起,以增加其整体强度和刚度。
锚固作为预应力系统的核心部分,其质量直接关系到桥梁的安全运行。
因此,对锚下预应力的检测技术要求高精度、高可靠性。
1.预应力锚固检测原理预应力锚固的检测主要基于以下原理:(1)延伸法:通过测量锚杆的长度和端部的横向位移,计算出其拉力值。
(2)变形法:通过监测锚固部位的应变变化,推算得出锚固的拉力大小。
(3)超声波检测法:利用超声波的传播速度和衰减规律,测定锚固部位的力学性能。
2.锚固检测指标对于公路桥梁锚固部位的检测,主要需要关注以下指标:(1)预应力锚杆的拉力大小和分布情况。
(2)锚固端部的应力状态和应变变化。
(3)锚固的变形情况和变形趋势。
(4)锚固部位的材料性能和力学特性。
三、检测方法与步骤在公路桥梁锚下预应力检测过程中,可以采用以下方法进行:1.延伸法对于预应力锚杆的延伸法检测,主要步骤如下:(1)确定测量点位和测量方向,确定锚杆的起点和终点。
(2)使用测长仪器和测量工具,测量锚杆的长度和锚杆头部的横向位移。
(3)根据测量得到的长度和位移数据,计算出锚杆的拉力值。
(4)将测得的拉力值与设计值进行比较,判断锚杆的质量和可靠性。
2.变形法对于预应力锚固的变形法检测,主要步骤如下:(1)安装应变片或应变计,固定在锚固部位。
(2)使用传感器测量应变片或应变计的应变数据,并记录下来。
(3)根据应变数据的变化情况,推算出锚固的拉力大小。
(4)将推算得到的拉力值与设计值进行比较,判断锚杆的质量和可靠性。
预应力混凝土梁锚下预应力质量检测摘要:分析阐述混凝土预应力梁锚下应力检测原理和检测方法,采用现场拉拔法对A0大桥7-2号预制箱梁的锚下有效应力进行专项质量检测,检测结果符合地方标准要求。
关键词:锚下有效预应力;检测;混凝土;质量前言预应力施工技术在当今桥梁建设中占有重要的地位,已经成为了桥梁施工中的关键课题。
如果预制混凝土梁的有效预应力过大,可能会导致梁的变形过大,如果预制梁的有效预应力过小,容易导致梁体出现下挠。
预应力筋的应力大小与不均匀度将影响梁体的线性和预应力筋自身的使用寿命。
1检测原理预制梁的施工分为三个阶段:第一阶段为钢筋的绑扎、立模,混凝土的浇筑、养护;第二阶段为预应力筋的安装、张拉;第三阶段为孔道灌浆、预应力筋的切割、封锚等。
对预制梁锚下预应力检测,采用现场反张拉法进行检测。
为了达到高精度检测,一般采用在第二阶段,预应力筋张拉后,且未割断钢绞线和灌浆前,采用反张拉法进行检测。
反张拉法检测预应力筋锚下应力的原理:拉拔试验是一次对预应力筋进行再次张拉的过程,对已张拉未灌浆的预应力筋进行张拉,从而确定并计算预应力筋的锚下有效应力。
预应力筋在张拉后若不尽快灌浆,可能会发生锈蚀,且预应力筋可能会松弛,而现场反张拉法锚下应力自动检测试验一般只能在张拉后灌浆前进行检测。
现场反张拉法锚下应力自动检测对已经张拉的预应力筋进行再次张拉,当锚下真实预应力(启动点A)、补偿孔道反向摩阻影响段内正向摩阻和克服孔道反向摩阻的力值和试验的张拉力达到平衡后,即预应力筋所受预应力即恢复到施工张拉锚固前,即达到检测张拉松动点,如图1 所示B点的状态。
对预应力筋施加张拉力,预应力筋的受力状态恢复到施工时的张拉锚固状态,继续张拉,达到图1所示的BC段,此时,施工(或理论计算)的P-S曲线的斜率和检测过程中BC的斜率相同。
再根据此斜率,寻找检测过程中的张拉松动点B,即可对预应力筋的锚下预应力标准值进行计算[1]。
图1 预应筋梁锚下应力检测原理图图1中的反张拉法锚下预应力检测的张拉应变P-S曲线,可以分为以下过程: 1)张拉力应变P-S曲线OA段,即当反张拉法检测张拉力Pj小于检测张拉启动张拉力PA时,而SA为检测张拉系统受力后的变形;2)张拉力应变P-S曲线AB段,即当反张拉法检测张拉力Pj在PA、PB之间时,表示锚固损失,即SB-SA表示预应力筋在张拉力作用下克服钢铰线和孔道间反向摩阻的变形量。
锚下有效预应力检测方案(1)背景预应力锚索技术在土木工程中(如桥梁工程、边坡工程等)得到了广泛应用。
对于预应力结构工程来说,有效预应力直接关系结构的变形和开裂,影响其使用性能和安全性能,是其质量控制核心和工程的长久生命线。
因此,对于预应力混凝土桥梁结构,需要通过有效手段检测和评估预应力施工质量,在很大程度上就能避免预应力结构出现承载力不足的问题,保证结构的安全运营。
(2)检测依据1、《桥梁预应力及索力张拉施工质量检测验收规程》(CQJTG/T F81-2009)2、《桥梁有效预应力检测技术规程》(DB53/T 810-2016)3、《公路混凝土桥梁预应力施工质量检测评定技术规程》(DB35/T 1638—2017)4、《公路桥梁锚下预应力检测技术规程》(T/CECS G:D31-01-2017)5、《公路混凝土桥梁预应力施工质量检测评定技术规程》(DB35/T 1638—2017)6、《重庆市市政基础设施工程预应力施工质量验收规范》(DBJ 50-134-2017)7、《公路桥梁后张法预应力施工技术规范》 (DB33/T 2154—2018)8、《公路桥梁锚口有效预应力检测技术规程》(DB14/T 1717-2018)9、《桥梁用预应力精轧螺纹钢筋张拉力检测方法》(JT/T 1265-2019)10、《公路水运工程预应力张拉有效应力检测技术规程》(DB36/T 1136-2019)11、《公路桥梁锚下有效预应力检测技术规程》(T/CECSG:J51-01-2020)12、《桥梁锚下预应力检测技术规程》(DBJ52/T 106-2021)13、《在用公路桥梁现场检测技术规程》(JTG/T 5214-2022)14、《公路桥梁混凝土结构预应力施工质量检测评价技术规程》(DB32/T 4649-2024)(3)测试原理在外露单根钢绞线上安装集成式智能前端,千斤顶启动后钢绞线被张拉,当反拉力小于原有预应力时,夹片对钢绞线有紧固力,内部钢绞线不会发生位移。
锚下预应力检测技术在现代工程建设中,预应力结构凭借其独特的优势得到了广泛应用。
而锚下预应力作为预应力结构中的关键部分,其质量的优劣直接关系到整个结构的安全性和耐久性。
因此,锚下预应力检测技术的重要性不言而喻。
锚下预应力是指在预应力构件中,通过锚固装置将预应力筋的拉力传递到混凝土中的力。
它的存在使得混凝土构件在承受荷载之前就预先处于受压状态,从而提高了构件的承载能力和抗裂性能。
然而,由于施工工艺、材料质量以及外部环境等因素的影响,锚下预应力可能会出现损失或不均匀分布的情况,这就给结构的安全带来了潜在的隐患。
目前,常用的锚下预应力检测技术主要包括以下几种:一、油压千斤顶法油压千斤顶法是一种传统且较为直接的检测方法。
其原理是通过在锚具外安装千斤顶,对预应力筋进行再次张拉,测量千斤顶的拉力和预应力筋的伸长量,然后根据相关公式计算出锚下预应力的大小。
这种方法的优点是操作简单、直观,但缺点是需要对结构进行局部破坏,而且测量结果容易受到千斤顶精度和操作人员经验的影响。
二、压力传感器法压力传感器法是在锚垫板与锚具之间安装压力传感器,直接测量锚下压力。
该方法能够实时监测锚下预应力的变化,准确性较高,但压力传感器的安装较为复杂,成本也相对较高。
三、应变片法应变片法是将应变片粘贴在预应力筋或混凝土表面,通过测量应变来推算锚下预应力。
这种方法具有较高的精度,但应变片的粘贴工艺要求较高,而且容易受到外界环境的干扰。
四、超声波法超声波法是利用超声波在预应力筋中的传播特性来检测锚下预应力。
当预应力筋受到拉力作用时,其内部的应力分布会发生变化,从而影响超声波的传播速度和波幅。
通过测量这些参数的变化,可以间接推算出锚下预应力的大小。
超声波法具有无损检测的优点,但检测结果的准确性受到多种因素的影响,如预应力筋的材质、直径等。
五、磁通量法磁通量法是基于铁磁性材料的磁弹效应来检测锚下预应力的。
当预应力筋受到拉力作用时,其磁导率会发生变化,通过测量磁通量的变化来计算锚下预应力。
桥梁连续箱梁锚下有效预应力检测及质量控制摘要:本文主要对桥梁连续箱梁锚下有效预应力检测及质量控制进行研究。
技术分析后,提出了施工过程的改进措施,并进一步加强了质量改进的检测和监测。
在质量总结过程中,应组织测试公司的专家咨询团队及时的解决测试过程中的问题,对预应力设计进行质量进行沟通和交流,然后进行下一阶段的测试和验证。
第一阶段试验完成后,应根据抽样检查的次数和各桥梁预制项目的进度,适当商定试验时间,并及时进行试验后评估。
关键词:桥梁连续箱梁;锚下有效预应力;预应力检测;质量控制引言省道S540线阳江雅韶至白沙段扩建工程项目起于西部沿海高速雅韶收费站出口,起点桩号K0+000,经雅韶、岗列、城西、止于平冈接规划国道234 线(现状省道S277 线),终点桩号K17+857.245,路线全长17.857km,按双向六车道一级公路标准建设,设计时速80km/h。
桥梁3331.8 米/10 座,其中特大桥1187m/1座(漠阳江特大桥),大桥 1951m/3 座(那龙河大桥、三洲河大桥及漠阳江西大桥),中小桥 248m/7座。
一、项目概况1、那龙河大桥拟建那龙河大桥位于阳江市雅韶镇,地势较平缓,采用桥梁的形式上跨那龙河,桥型布置为12×16+6×30+(55+80+55)+6×30+11×16;该桥梁上部结构采用装配式预应力混凝土小箱梁+预应力混凝土连续箱梁。
预应力系统:主桥采用三向预应力系统,纵向预应力钢梁设有腹板梁、顶板梁和底板梁。
横向预应力为3 F,S15.2,水平预应力钢梁沿桥梁设计线布置在1m外,并沿桥梁单端交替拉伸。
垂直预应力钢筋采用高强度轧制变形钢筋JL32和沿桥梁延伸0.5m的金属波纹管。
箱梁腹板竖向预应力筋的调整[1]。
图1 那龙河大桥主桥纵向预应力体系示意图图2 那龙河大桥主桥横向预应力体系示意图2、漠阳江特大桥拟建K12+577.186 漠阳江特大桥位于阳江市江城区城西镇,地势较平缓,采用桥梁的形式上跨漠阳江,桥型布置为10×16+11×30+(55+80+55)+5×30+25+4×30+13×16;该桥梁上部结构采用装配式预应力混凝土小箱梁+预应力混凝土连续箱梁。
附 录 A(资料性附录)锚下有效预应力检测试验方法A.1 锚下有效预应力检测试验的目的是检验施工质量是否达到设计要求。
A.2 锚下有效预应力检测的要求与数量按本标准执行,可参考 DBJ 50-134、CQJTG/T F81等标准执行。
A.3 锚下有效预应力检测内容包括锚下有效预应力的力值大小、同束不均度、同断面不均度等。
A.4 锚下有效预应力的检测方法宜采用反拉法。
A.5 锚下有效预应力检测的检测设备应满足,示值误差:±1%;测试准确度:±1.5%;重复准确度:1%。
A.6 锚下有效预应力检测的检测设备须双标定,并在计量校准合格后方可用于现场检测。
A.7 根据设计张拉控制应力确定锚下预应力范围,当检测岀的锚下有效预应力值在公差范围内,则判为合格;反之为不合格。
A.8 试验步骤:A.8.1 设备安装——限位装置千斤顶泵站系统安装。
A.8.2 参数设置——张拉控制应力及其对应的锚下有效预应力设置。
A.8.3 实施检测——计算机对泵站系统发出指令进行张拉,千斤顶咬紧预应力筋带动央片沿轴线移动,当夹片脱离锚杯时,计算机系统自动对所采集的数据进行分析处理,从而得出锚下有效预应力值。
A.9 当锚下有效预应力值检测不合格时,应具备分析不合格原因,并提供处理方案,待按更正后的方案施工后复检直至合格。
附 录 B(资料性附录)锚下有效预应力不均匀度计算方法B.1 有效预应力同束不均匀度是同一束中各单根预应力筋锚下有效预应力最大值和最小值的偏差程度,计算方法见公式(B.1):................................ (B.1)式中:U ——有效预应力同束不均匀度;P ——同一束中各单根预应力筋锚下有效预应力。
B.2 有效预应力同断面不均匀度是同一断面上同类、同批号张拉的各束有效预应力最大值和最小值得偏差程度,计算方法见公式(B.2):............................. (B.2)式中:U ——有效预应力同断面不均匀度;N ——同一断面中各单根预应力筋锚下有效预应力平均值。
桥梁锚下应力检测方法说实话桥梁锚下应力检测这事儿,我一开始也是瞎摸索。
我就知道这应力检测那肯定挺重要的,关系到桥梁的安全啥的,可咋检测,我当时是两眼一抹黑。
我试过用那种传统的压力传感器,心想这玩意儿测压力嘛,应力不也是一种力相关的东西,就应该能行呗。
我就吭哧吭哧跑到桥梁那儿,找个合适的锚下位置想把传感器装上。
结果呢,问题一大堆。
首先那安装就麻烦得很,你想啊,就像在一堆乱麻里找线头一样,周围到处都是各种构件,要找一个既不影响桥梁结构,又能准确测量的位置,真的是太难了。
而且这个传感器很容易受到外界干扰,像桥上的车辆啥的一经过,那测量数值就跟抽风似的上蹿下跳,根本就不准,这个尝试算是以失败告终。
后来我又在书上看到说可以用应变片来测量。
我觉得这听起来挺靠谱的呀,就像给桥梁锚下的位置贴上一片小皮肤,它能感受到微小的变形,然后根据这个变形来算出应力。
我吸取了之前的教训,在选择应变片的时候特别小心,选那种质量好的、精度高的。
安装的时候也费了好大的劲儿,要把那个表面打磨光滑,还要用特殊的胶水粘得死死的,就像给娃娃粘眼睛,一点都不能歪,稍微有一点没处理好,得到的数据就不对。
在测量的时候吧,我还发现这个环境温度影响可大了。
就像我们人天气热了会烦躁,冷了会缩手缩脚一样,应变片在不同温度下表现也不一样。
刚开始我没太注意这个问题,测出来的数据奇奇怪怪的。
后来我就每次测量的时候都带上温度补偿的设置,就好像给应变片穿上了一层恒温衣,这样测量的数据就稳定多了。
还有就是数据采集这一块,我一开始用的仪器老笨了,采集速度超级慢,就像一个老爷爷走路一样。
结果一些瞬间的应力变化就被错过了。
后来换了一个高科技点的仪器,采集速度杠杠的,这样就不会漏记数据了。
总之呢,桥梁锚下应力检测真不是一件容易的事儿,要考虑很多细节,每个步骤都必须小心翼翼的。
像我开始就太想当然了,后来才知道每一步都得严谨对待啊。
我现在觉得呢,积累经验很重要,多做几次测试,多犯点小错误,以后遇到问题就能更从容地应对了,还有就是一定要多参考一些成熟的技术方法和实例,这就像站在巨人的肩膀上,能少走好多弯路呢。
预应力梁锚下有效预应力的快速检测方法分析在现代建筑和桥梁工程中,预应力梁因其能够提高结构的承载能力、减小裂缝和变形等优点而得到广泛应用。
然而,要确保预应力梁的安全性和可靠性,准确检测锚下有效预应力至关重要。
锚下有效预应力不足可能导致结构性能下降,甚至引发安全事故;而过大的预应力则可能造成材料浪费和结构的不利影响。
因此,寻找快速、准确且可靠的检测方法成为了工程领域的重要研究课题。
目前,常见的预应力梁锚下有效预应力检测方法主要包括:一、油压表法油压表法是一种传统且较为直接的检测方法。
在预应力施加过程中,通过安装在千斤顶油路中的油压表测量压力,并结合千斤顶的活塞面积计算出施加的预应力大小。
这种方法操作相对简单,但精度容易受到油压表精度、千斤顶摩阻以及油路泄漏等因素的影响。
而且,油压表法只能在施工过程中进行检测,对于已经建成的预应力梁难以实施。
二、应变片法应变片法是通过在预应力筋或混凝土表面粘贴应变片,测量其在预应力作用下的应变,然后根据材料的力学性能计算出预应力大小。
该方法具有较高的精度,但安装应变片的过程较为复杂,需要专业人员操作,且应变片容易受到外界环境的干扰,影响测量结果的准确性。
三、超声波法超声波法是利用超声波在预应力筋中的传播速度与预应力大小之间的关系来进行检测。
当预应力筋受到拉伸时,其内部的微观结构发生变化,从而导致超声波传播速度的改变。
通过测量超声波的传播速度,可以推算出锚下有效预应力。
这种方法具有无损检测的优点,但检测结果的准确性受到多种因素的影响,如预应力筋的材质、直径、混凝土的质量等。
四、磁弹法磁弹法是基于铁磁性材料在磁场中磁导率随应力变化的特性来检测预应力。
预应力筋通常为钢绞线,具有铁磁性。
通过在预应力筋表面施加磁场,并测量磁导率的变化,可以间接得到预应力的大小。
磁弹法具有快速、非接触测量的优点,但对于复杂的现场环境和多根预应力筋的情况,测量结果可能会受到干扰。
近年来,一些新的快速检测方法也逐渐崭露头角:一、光纤光栅法光纤光栅传感器具有体积小、精度高、抗干扰能力强等优点。
预应力混凝土梁锚下预应力质量检测.docx 一:正文:1. 概述预应力混凝土梁锚下预应力质量检测是一项重要的工程质量检验工作,旨在确保预应力混凝土梁的强度和稳定性。
本文档详细介绍了预应力混凝土梁锚下预应力质量检测的目的、方法、步骤和注意事项,为工程施工和质量监督部门提供参考。
2. 目的预应力混凝土梁锚下预应力质量检测的目的是评估预应力混凝土梁的质量,包括梁体的强度和稳定性。
通过检测,可以及时发现和纠正质量问题,确保梁体符合设计要求和使用要求。
3. 方法预应力混凝土梁锚下预应力质量检测的方法包括以下几个方面:3.1 预应力钢筋的检测:检测预应力钢筋的种类、规格和布置是否符合设计要求,并检测钢筋的锚固质量。
3.2 混凝土强度的检测:采用取样和试验的方法,检测混凝土的抗压强度和抗折强度是否符合设计要求。
3.3 梁体的几何尺寸和平整度的检测:检测梁体的几何尺寸和平整度是否符合设计要求。
3.4 梁体的锚固质量的检测:采用无损检测技术,检测梁体的锚固质量,包括锚板的质量和锚固长度的质量。
4. 步骤预应力混凝土梁锚下预应力质量检测的步骤包括以下几个方面:4.1 计划和准备:根据工程施工进度和质量监督要求,制定检测计划,并准备相应的检测设备和材料。
4.2 预应力钢筋的检测:对预应力钢筋进行检测,包括检测钢筋的种类、规格和布置,以及钢筋尺寸的测量。
4.3 混凝土强度的检测:采取取样和试验的方法,对混凝土的抗压强度和抗折强度进行检测。
4.4 梁体的几何尺寸和平整度的检测:采用测量仪器和工具,对梁体的尺寸和平整度进行测量。
4.5 梁体的锚固质量的检测:采用无损检测技术,对梁体的锚固质量进行检测。
4.6 结果评定和报告编写:根据检测结果,评定梁体的质量,并编写检测报告。
5. 注意事项在进行预应力混凝土梁锚下预应力质量检测时,需要注意以下几个事项:5.1 检测的精确性和可靠性:检测过程中,需要确保测量仪器的精确性和准确性,以及试验设备和材料的可靠性。
关于桥梁锚下有效预应力检测中存在问题的分析摘要:桥梁预应力是一座桥的流通血脉,他的好坏直接影响桥梁的使用寿命,桥梁后张法预应力混凝土工程建设中,对预制T梁(箱梁)、现浇段(挂篮)和节段拼装特大桥的预应力张拉有效预应力值的检测尤为重要,本文简述整束单根锚下预应力筋在检测过程中存在问题并进行分析和相应的处理,结合作者实践工作中遇到的问题,希望能给同行提供帮助。
关键词:锚下有效预应力;检测;常见问题;分析1引言在桥梁预应力混凝土结构中,钢筋就像人的骨骼,混凝土就像人的肉体,而预应力就像人的经脉,如果预应力混凝土没有预应力筋的受力就像人失去经脉一样而无法正常生活,故预应力混凝土中钢绞线在正常工作中受到的力是否处于正常力值至关重要,对预应力检测的仪器和人员在工程建设中也逐渐体现其价值,对工程质量的提高用数据说话更有说服力。
2现有预应力检测中存在的问题2.1检测人员:检测人员是否正确了解锚下预应力检测的意义;检测人员是否持证上岗,是否含有桥梁检测专业证书;检测人员应基本了解检测仪器的操作性能,尤其在安全方面,检测前项目负责人应认真进行检测技术安全交底,最好是师带徒的形式学习3个月。
2.2检测仪器:检测仪器是否在正常有效标定时间内工作;一般仪器在半年一次标定,如果出现大修或异常情况后应立即标定,检测仪器日常维修保养是否做到位了;一般每次检测后对仪器进行简单保养,检测仪器的油、电在检测前是否满足检测要求;仪器的液压油一般6个月进行一次全部更换,如果进水或者出现乳白色现象也应进行更换,检测仪器的千斤顶里的夹片是否满足检测要求,如果夹片出现滑丝和损伤应及时更换,检测仪器最好是专人专用,不要交叉使用,最好每天检测前对夹片进行清洗并涂上退锚灵等润滑剂,检测后及时填写仪器使用记录,并每月做好维护记录。
2.3现场准备:后张法预应力检测(已张拉但未灌浆),张拉后24小时内检测(超过不予检测);张拉外露段未切割且长度宜大于75cm(关键是满足检测要求);清理已张拉预应力筋、工具锚板及夹片等张拉用部件;把限位板、千斤顶依次套在工作段的预应力筋上;连接电源及位移传感器并设置检测参数;在部分检测中圆锚最中间一根钢绞线检测起来不太方便,穿插比较困难,故需要一根有硬度需要且能经受住25T力以上的钢管,长度一般约5~15cm左右,不宜过长。
引言概述锚下预应力检测技术是一种用于判断锚固效果和预应力损失情况的关键技术。
在建筑、桥梁、道路等工程中,预应力技术被广泛应用,而对于锚下预应力的可靠性检测则成为确保结构安全和性能的关键。
本文将通过概述锚下预应力检测技术的作用和重要性,详细阐述其在实际应用中的五个大点以及每个大点中的相关小点。
正文内容第一大点:锚下预应力检测的意义1. 锚下预应力技术的作用和重要性是确保锚固效果和预应力损失情况的关键。
2. 通过锚下预应力检测,可以及时发现并修复锚固系统中的问题,防止结构的失效和事故的发生。
3. 预应力损失是造成结构强度和稳定性下降的主要原因之一,锚下预应力检测可以及时监测并采取措施减小预应力损失。
第二大点:锚下预应力检测的方法1. 非破坏性检测方法:如应力波法、声发射法和电磁法等,可以在不破坏结构的情况下判断锚下预应力的状态。
2. 破坏性检测方法:如截面法和荷载法等,需要在局部破坏结构的情况下获取锚下预应力的信息。
3. 综合应用多种技术手段:结合不同的检测方法可以提高检测的准确性和可靠性。
第三大点:锚下预应力检测的影响因素1. 锚下预应力检测结果受到预应力锚固深度、预应力水平和预应力锚固长度等因素的影响。
2. 材料因素:预应力锚固材料的强度、变形和腐蚀等情况会对锚下预应力的检测结果产生影响。
3. 温度和湿度变化:温度和湿度的变化会引起结构的膨胀和收缩,从而影响锚下预应力的状态。
第四大点:锚下预应力检测的应用案例1. 大跨度桥梁:通过锚下预应力检测技术,及时发现桥墩锚固系统的问题,确保桥梁的安全性和稳定性。
2. 高层建筑:锚下预应力检测技术可以帮助监测和防止预应力损失,确保高层建筑的结构安全。
3. 地铁隧道:锚下预应力技术可用于监测地铁隧道中锚固系统的工作状态,提前发现并修复问题,确保地铁的正常运行。
第五大点:锚下预应力检测技术的发展趋势1. 微波检测技术:利用微波的特性进行锚下预应力检测,可以实现快速、无损和实时的检测。
锚下有效预应力检测技术在某桥梁工程预制箱梁中的应用摘要:预应力混凝土桥梁预制小箱梁锚下的有效预应力直接关系到预应力张拉的质量,锚下有效预应力检测技术能准确测出单根和整束预应力筋的锚下有效预应力,对同束有效预应力、同断面有效预应力大小和不均匀度进行检测,并根据检测结果综合评价预制小箱梁的总体质量状况。
关键词:锚下有效预应力; 预制箱梁;张拉;检测1、概述预应力施工是桥梁施工生命线的重要组成部分,而锚下有效预应力的检测能直接反映出桥梁预应力张拉的实际效果,锚下有效预应力检测技术能准确测出单根和整束预应力筋的锚下有效预应力,对同束有效预应力、同断面有效预应力大小和不均匀度进行检测,直接反映出预应力张拉施工中梳编穿束质量和重复张拉的精度。
2、检测技术原理2.1传统的有效预应力测试方法主要为应变片法(测试单根钢绞线)和传感器法(测试整束钢绞线),但其精度、可靠性、安全性以及经济性较低。
为能准确测出预应力筋锚下有效预应力,可利用新型的有效预应力测试技术,该检测设备包含一体化系统、计算机系统和千斤顶系统。
2.2锚下有效预应力检测技术根据弹模效应与最小应力跟踪原理研发。
当千斤顶带动绞线与夹片沿轴线移动0.5mm时,即测出锚下有效预应力值。
利用本技术检测会对钢绞线进行检测张拉,但不会对已经形成的锚下有效预应力产生影响。
因为检测张拉,夹片只随钢绞线轴线移动0.5mm,远低于限位板的限位面,夹片仍牢牢咬住钢绞线,力放开后,夹片与钢绞线相对位置不发生变化,由于钢绞线是弹性体,在比例极限内,力放松后,钢绞线会恢复原状,其锚下有效预应力也不会发生变化。
2.3本技术能准确测出单根和整束预应力筋的锚下有效预应力,对同束有效预应力、同断面有效预应力大小和不均匀度进行检测。
对比传统方法,本技术具有如下特点:1)无损、高效,不需要对锚固系统埋设应力传感器等测试原件,可真正体现抽检的随机性与代表性。
2)准确,检测精度达1.5%FS。
3)已形成预应力张拉控制的成套体系,可对工艺流程进行全面控制,真正达到少量工程抽检从而全面控制预应力张拉质量的工程目的。
锚下预应力检测报告1概述受陕西铜旬高速公路建设管理处委托,我公司于2014年 7 月 5 在铜旬高速公路 3 合同段 1 号梁场金马大桥 2#左幅 16—3梁锚下预应力质量进行检测。
2检测内容、抽检频率及执行的技术标准2.1 检测内容桥梁工程梁(板)质量检测内容为:预制梁(板)锚下有效预应力检测。
2.2 执行的技术标准1《公路桥涵施工技术规范》 JTG/T F50-2011;2《公路工程质量检验评定标准》 JTGF80/1-2004;以及本工程经批准的施工图、设计文件、变更设计和业主下发的相关文件。
3检测方法、原理及仪器设备采用锚下预应力检测仪,智能千斤顶施加与锚下预应力方向相反的拉力,单根单向张拉,在二维坐标系内建立拉伸位移——拉力曲线,分析曲线斜率变化过程,如果斜率相对稳定,继续施加拉力,如果斜率突变,曲线上突变点对应的拉力数值即为锚下预应力数值。
4质量评定标准及处治方法4.1 质量评定标准《公路桥涵施工技术规范》(JTG/T F50- 2011)“张拉锚固后,预应力筋在锚下的有效应力符合设计张拉控制应力,两者的相对偏差应不超过±5%,且同一断面中的预应力束其有效预应力的不均匀度应不超过±2%”。
4.2 检测控制检测值小于设计值的95%在检测过程中均将钢绞线补张到设计值的 100%。
检测值在设计值的95%和设计值的 100%之间的在检测过程中均将钢绞线补张到设计值的100%检测值在设计值的100%和设计值的 105%之间的,将不进行张拉。
检测结果钢绞线超张超过设计值的105%,上报委托单位通知施工方将钢绞线放张,并且重新穿钢绞线且重新张拉。
5检测结果及建议5.1 检测结果1 N1右单根锚下有效预应力大小较差;同束不均匀度 2.7%,整束预应力偏差 2.6%,合格;2 N1左单根锚下有效预应力大小较差;同束不均匀度 2.43%,整束预应力偏差 2.6%,合格;3 N2左单根锚下有效预应力大小优良;同束不均匀度 3.65%,整束预应力偏差 -0.69%,合格;4 N2右单根锚下有效预应力大小较差;同束不均匀度 6.98%,整束预应力偏差 1.27%,合格;5 N3左单根锚下有效预应力大小优良;同束不均匀度0.97%,整束预应力偏差 -1.93%,合格;6 N3右单根锚下有效预应力大小较差;同束不均匀度 1.46%,整束预应力偏差 3.63%,合格;7、同断面不均匀度 5.34%,不合格。
锚下预应力检测报告锚下预应力检测报告一、引言本报告旨在对锚下预应力进行详细的检测和评估,以确保施工的质量和安全性。
本文档将对锚下预应力测试的方法、结果与分析进行详细说明,并提供相关附件和法律名词的注释。
二、检测方法2.1 抽样检测:根据预定的抽样方法,选择一定数量的锚下预应力样本进行检测。
2.2 测试仪器:使用专业的锚下预应力测试仪器,如电子测力计、锚固力矩测试仪等。
2.3 测试过程:按照标准程序对锚下预应力进行测试,包括加载、保持时间、释放等步骤。
2.4 数据记录:准确记录测试数据,包括加载力、保持力、释放后的力变化等。
三、检测结果与分析3.1 数据处理:对测试数据进行处理,包括力-位移曲线绘制、力的变化趋势分析等。
3.2 结果评估:根据标准要求,对锚下预应力的测试结果进行评估,判断是否符合设计要求。
3.3 问题诊断:如发现测试结果异常或者不符合要求,进行问题诊断分析,找出原因并提出解决方案。
四、测试结果讨论4.1 各个样本的测试结果分析:对每一个样本的测试结果进行详细讨论,包括力的变化趋势、是否存在异常等。
4.2 结果对照与统计分析:对多个样本的测试结果进行对照和统计分析,找出规律和问题。
4.3 结果的意义与影响:对测试结果的重要性和影响进行讨论,评估其对工程质量和安全的影响程度。
五、结论与建议5.1 结论:根据测试结果和分析,对锚下预应力的质量和安全性进行评估,并给出结论。
5.2 建议:提出改进措施和建议,以提高锚下预应力的质量和可靠性。
六、附件本文档所涉及的附件如下:附件一:锚下预应力测试数据记录表附件二:测试仪器使用说明书附件三:测试结果数据处理表格七、法律名词及注释本文档所涉及的法律名词及注释如下:1.锚下预应力:指在混凝土结构中通过锚固装置施加的预应力。
2.测试仪器:专用于测量锚下预应力的仪器设备,如电子测力计、锚固力矩测试仪等。
混凝土梁桥预应力张拉质量控制及锚下有效预应力检测技术探讨摘要:在我国经济的快速发展下,人们的出行方式和出行次数开始逐渐增多,交通运输业不仅得到了迅速发展,同时也成为了我国国民经济的重要组成。
在现代土木工程中,桥梁工程的核心离不开预应力,所以直接决定了相关工程的稳定性与使用寿命。
同时,在桥梁工程中,预应力施工难度较大,有着较多的施工步骤,施工专业性较强。
因此,为了进一步控制混凝土桥梁施工质量,规避安全隐患,制定相关的质量控制策略以及分析常见检测技术就显得尤为重要了。
关键词:混凝土梁桥;预应力张拉;锚下预应力检测引言我国交通运输业在近几年来得到了快速发展,各地区陆续开展了桥梁工程,规模与数量正在不断上升。
值得注意的是,在预应力桥梁应用较长时间以后,可能会受到内部、外部因素的影响,导致出现梁体下挠、开裂等一系列情况。
结合业内专家的研究显示,出现梁体开裂、下挠等一系列问题的主要原因来自于预应力损失过大。
为此,对混凝土梁桥工程的预应力张拉预应力检测技术的应用,以及质量的控制进行深入研究有着巨大的现实意义。
1混凝土梁桥预应力张拉质量控制措施1.1做好波纹管施工管理在混凝土梁桥张拉施工中,金属波纹管的镀锌壁厚需要保证超过0.3mm,如果是先简支,后连续的预应力结构,则选择塑料波纹管。
在塑料波纹管的应用过程当中,可以选择专业的焊接设备,对塑料结构进行连接,不能采用简单的胶带纸,或者绳子绑扎进行连接。
在管道方面,可以采用井型钢筋进行固定,施工时要控制好钢筋间距,曲线则不能超过50cm,直线则不能超过80cm,管道在安装时应该平整、平顺,并按照工程设计要求进行拉筋。
1.2规范钢绞线穿束质量在混凝土梁桥工程中,预应力钢绞线、钢丝在进行穿孔时,必须要按照工程要求规范来进行,避免钢绞线、钢丝出现缠绕的现象,并把钢丝或钢绞线顺直,扎牢。
在过往时期的混凝土梁桥预应力张拉施工过程中,钢绞线穿束不标准是一种较为常见的缺陷,很容易出现受力不均匀的情况[1]。
摘要预应力钢束是对预应力混凝土桥梁构架当中十分重要的部件,其性能的好坏直接决定整体的使用情况,预应力损失很大程度上会对桥梁的形状、结构以及使用年限产生很大的影响。
因此,对于钢束有效预应力检测、评估以及相关的计算,对预应力混凝土桥梁具有十分重大的意思价值。
本文针对这种情况进行了系统性的探讨。
国家为推动西部经济落后地区的交通建设和发展,国家主导开展大中跨径混凝土桥梁应力技术研究项目,并取得了巨大的科研成果,本文正是与其研究成果进行比较,借助相关专家研究出的预应力钢束沿程分布规律的探究成果,进行了详细的探究。
在实桥预留测点处,通过横张位移增量法检测方法对钢束的有效预张力进行相应的检测,通过一定的规律计算出实际数据。
对桥梁的结构数据建立科学化的模型,同时,遵循一定的规律计算出相应的数据。
并且通过钢束有效预应力实际测试结果和计划值做详细的对比,以此来判别当前阶段与影流损失的情况。
同时,根据规状态下主梁上下缘混凝土应力实际布局状况,按照相应的标准进实际的操作,同时对已经通过抽检的钢束预应力进行测量出实际值。
桥梁在实际使用阶段,会因为各种各样复杂的原因而产生相应的影响,特别是预应力损失造成的影响。
因此,为了更好的保障桥梁的安全性问题,本文通过利用MIDAS空间模型,同时,考虑到更多可能的发生的状况,对桥梁的安全性做出了相应的检验分析,从理论情况来看,该座大桥在投入使用30年后很大程度上会出现开裂的现状,因此,强烈建议在地板出预留管道处添加相应的预应力钢束或者是增添体外预应力束以此来增强大桥的强度。
关键词:预应力损失,有效预应力预测,结构安全性分析。
AbstractPrestressed steel beam is very important for the prestressed concrete bridge structure of the components, its performance decides the overall usage, the prestress loss will largely affect the shape, structure and service life of the big bridge. Therefore, it is of great value to the prestressed concrete bridge for the detection, evaluation and calculation of the effective prestress of steel beams. This paper makes a systematic study on this kind of situation.This article on the basis of western transport projects "medium and large span prestressed concrete bridge detection technology research" as a reference, with the help of experts of the prestressed steel beam along the distribution of research results, carried out a detailed inquiry. The effective pre tension of the steel beam is measured by the method of the displacement increment method, and the actual data is calculated by the method of the displacement increment method. To establish a scientific model of the structural data of the bridge, at the same time, to follow certain rules to calculate the corresponding data. By comparing the actual test results and the planned value of the effective prestress of the steel beam, the results of the current stage and the loss of the shadow flow can be judged. At the same time, according to the rules of the main beam on the bottom edge of the concrete stress distribution conditions, according to the corresponding standard into the actual operation, at the same time on the steel beam has been measured by the test of the actual value.Bridge in the actual use of the stage, because of a variety of complex causes and the corresponding impact, especially the impact caused by the loss of prestress. Therefore, in order to better protect the safety of the bridge, through the use of MIDAS space model, at the same time, taking into account the more likely occurrence situation, the safety of the bridge has made the corresponding analysis test, from the theoretical perspective, the use of bridge crack status will appear after 30 years largely in input therefore strongly recommended in the floor of the pipeline at the reservation and add the corresponding prestressed steel beam or adding external prestressed tendons in order to enhance the strength of the bridge.Key words: Prestress loss; Effective prestress forecast; Analysis of structural safety目录摘要 (1)Abstract (2)1绪论 (1)1.1研究背景 (1)1.2预应力混凝土桥梁病害及成因 (2)1.2.1预应力混凝土桥梁病害现象 (2)1.2.2病害成因 (3)1.3国内外有效预应力检测研究现状 (4)1.3.1国外研究现状 (5)1.3.2国内研究现状可加内容 (6)1.4本文研究的目的和主要内容 (10)1.4.1研究目的 (10)1.4.2主要内容 (11)1.5研究内容、技术路线和创新点 (11)1.5.1研究内容 (11)1.5.2技术路线的创新点 (12)1.6本文采用的技术路线 (13)2有效预应力评价方法 (15)2.1基本假定 (15)2.2钢束的测试分类 (15)2.3钢束沿程分布模拟 (16)2.3.1平缓束 (17)2.4复杂钢束有效预应力的模拟 (21)2.4.1预应力损失及有效预应力计算 (21)2.4.2有效预应力的模拟 (26)2.5同一截面不同钢束间有效预应力预测 (29)2.5.1基本假定 (29)2.5.2锚固损失δl2简化计算 (30)2.5.3同一截面内各对称钢束间有效预应力的关系原理 (31)3预应力结构工程施工 (33)3.1预应力结构工程特点 (33)3.1.1我国预应力混凝土的现状 (33)3.2预应力结构工程施工中预应力损失及其控制 (34)3.2.1预应力损失 (34)3.3预应力钢绞线断丝或滑丝 (38)3.4预应力不均匀 (39)3.4.1减少预应力损失的措施 (40)3.5本章小节 (41)4预应力精细化施工技术 (42)4.1锚具及其安装就位质量控制 (42)4.1.1锚具质量控制 (42)4.1.2锚具安装就位质量控制 (43)4.2锚具施工中引起的预应力缺陷 (43)4.2.1孔道中心线与锚头垫板面不垂直或垫板中心偏离孔道轴线 (43)4.2.2锚具夹片滑丝 (43)2.2.3锚具碎裂 (44)4.3钢束的梳编穿束工艺 (44)4.3.1钢绞线发生缠绕的原因 (44)4.3.2钢束梳编穿束工艺 (45)4.4预应力张拉施工 (49)4.4.1张拉前的准备工作 (49)4.4.2 张拉施工工艺 (49)4.4.3张拉设备 (50)5锚下有效预应力检测 (51)5.1锚下有效预应力检测 (51)5.2锚下有效预应力检测技术最常用的方法 (52)5.3锚下有效预应力检测技术的频率 (54)5.4锚下预应力检测过程中所出现的问题 (54)5.4.1锚下有效预应力值小于控制张拉预应力值的原因 (54)5.4.2有效预应力值大于控制张拉预应力值的原因 (55)5.5小结 (55)6结论与展望 (57)6.1结论 (57)6.2展望 (57)参考文献 (59)1绪论1.1研究背景根据预应力混凝土桥梁的相关信息记载,德国是其出现最早的地区,随后随着其不断的发展,开始不断扩散到其他地区,主要有美国、日本以及欧洲等。