锚下有效应力
- 格式:pptx
- 大小:1.15 MB
- 文档页数:16
有效预应力的检测在当今的工程界,预应力技术被广泛应用,其目的是为了提高结构的强度和刚度,以及增强结构的耐久性。
然而,要确保预应力的有效性并达到预期的效果,对其进行准确的检测至关重要。
本文将探讨有效预应力的检测方法及其重要性。
预应力是指在施加外部荷载之前,预先在结构中引入一定的应力。
这种应力可以抵抗外部荷载,提高结构的性能。
然而,要实现这一目标,必须确保预应力的有效性和稳定性。
因此,对有效预应力的检测成为了一项重要的任务。
对有效预应力的检测通常采用非破坏性试验方法,如超声波法、X射线法和磁致伸缩法等。
这些方法可以无损地检测预应力的大小和分布情况,为结构的性能评估提供依据。
超声波法是一种常用的有效预应力检测方法。
其原理是通过在混凝土表面发射超声波,并记录波速和反射回来的时间,从而计算出混凝土内部的应力状态。
这种方法具有无损、快速和准确的特点,可以有效地检测预应力的有效性。
X射线法也是一种常用的检测方法。
通过X射线照射混凝土结构,可以获得内部应力的分布图像。
这种方法可以提供更直观的应力分布信息,但需要注意的是,X射线对人体有害,需要采取相应的防护措施。
磁致伸缩法是一种通过测量磁致伸缩效应来检测有效预应力的方法。
磁致伸缩效应是指磁场变化时物体尺寸发生变化的现象。
通过在混凝土表面施加磁场并测量尺寸变化,可以计算出内部的应力状态。
这种方法具有非接触、快速和准确的特点,但需要使用昂贵的设备和专业的技术人员。
除了以上提到的非破坏性检测方法,还有一些破坏性检测方法,如钻芯取样法和劈裂试验法等。
这些方法需要在结构中取样并进行试验,以确定有效预应力的真实大小。
虽然这些方法可以提供更准确的结果,但会对结构造成一定的损伤,因此在使用时需要谨慎考虑。
对有效预应力的检测是确保结构性能的重要环节。
采用适当的检测方法和技术,可以准确地评估结构的性能和耐久性,从而为工程的成功实施提供保障。
在未来的发展中,随着技术的进步和新方法的出现,对有效预应力的检测将更加准确和便捷。
现浇箱梁锚下有效预应力控制施工工艺探讨发表时间:2017-03-17T09:40:54.080Z 来源:《基层建设》2016年第34期作者:盘训学郑初杰[导读] 摘要:简述锚下有效预应力损失概念,结合工程实例分析造成现浇箱梁锚下有效预应力损失的原因,因地制宜,提出适用于现场的解决方案及措施,验证提出解决方法的可行性与可靠性。
中交第二航务工程局有限公司摘要:简述锚下有效预应力损失概念,结合工程实例分析造成现浇箱梁锚下有效预应力损失的原因,因地制宜,提出适用于现场的解决方案及措施,验证提出解决方法的可行性与可靠性。
关键词:现浇箱梁,锚下有效预应力,损失,检测引言预应力锚索锚固作为解决桥梁工程问题最直接、高效、经济的技术措施,在桥梁结构工程中广泛使用,锚索锚固质量是表征锚索安全性和耐久性的重要指标,而锚索的有效预应力是影响锚固质量的关键因素。
桥梁工程中,预应力锚固工程属于长期、隐蔽性工程,因此,如何在施工阶段保证锚下有效预应力是保证预应力施工质量的关键。
2.锚下有效预应力的概念公路桥涵施工规范 JTG/T F50-2011关于预应力张拉质量控制与检验第7.12小节第3条规定:张拉锚固后,预应力筋在锚下的有效预应力应符合设计张拉控制应力,两者的相对偏差不超过±5%,且同意断面中的预应力束其有效预应力的不均匀度应不超过±2%。
在预应力张拉过程中,由于施工、材料性能和环境条件等因素的影响,预应力束内的实际应力将低于张拉控制应力σcon,这些减少的应力称为预应力损失 l。
预应力束内实际存余的预应力就称之为有效预应力 pe,其数值取决于张拉时的控制应力 con和预应力损失 l。
pe= con- l。
3.控制锚下有效预应力施工工艺探讨本文选取佛山市乐从至龙江公路主干线工程第LL-05标段龙良路跨线桥预应力现浇箱梁作为研究对象。
预应力体系采用φS15.2 高强度低松弛预应力钢绞线,其标准强度 fpk=1860MPa,锚下张拉控制应力为0.73fpk=1357.8MPa,弹性模量 Ep=1.95×105 MPa。
附 录 A(资料性附录)锚下有效预应力检测试验方法A.1 锚下有效预应力检测试验的目的是检验施工质量是否达到设计要求。
A.2 锚下有效预应力检测的要求与数量按本标准执行,可参考 DBJ 50-134、CQJTG/T F81等标准执行。
A.3 锚下有效预应力检测内容包括锚下有效预应力的力值大小、同束不均度、同断面不均度等。
A.4 锚下有效预应力的检测方法宜采用反拉法。
A.5 锚下有效预应力检测的检测设备应满足,示值误差:±1%;测试准确度:±1.5%;重复准确度:1%。
A.6 锚下有效预应力检测的检测设备须双标定,并在计量校准合格后方可用于现场检测。
A.7 根据设计张拉控制应力确定锚下预应力范围,当检测岀的锚下有效预应力值在公差范围内,则判为合格;反之为不合格。
A.8 试验步骤:A.8.1 设备安装——限位装置千斤顶泵站系统安装。
A.8.2 参数设置——张拉控制应力及其对应的锚下有效预应力设置。
A.8.3 实施检测——计算机对泵站系统发出指令进行张拉,千斤顶咬紧预应力筋带动央片沿轴线移动,当夹片脱离锚杯时,计算机系统自动对所采集的数据进行分析处理,从而得出锚下有效预应力值。
A.9 当锚下有效预应力值检测不合格时,应具备分析不合格原因,并提供处理方案,待按更正后的方案施工后复检直至合格。
附 录 B(资料性附录)锚下有效预应力不均匀度计算方法B.1 有效预应力同束不均匀度是同一束中各单根预应力筋锚下有效预应力最大值和最小值的偏差程度,计算方法见公式(B.1):................................ (B.1)式中:U ——有效预应力同束不均匀度;P ——同一束中各单根预应力筋锚下有效预应力。
B.2 有效预应力同断面不均匀度是同一断面上同类、同批号张拉的各束有效预应力最大值和最小值得偏差程度,计算方法见公式(B.2):............................. (B.2)式中:U ——有效预应力同断面不均匀度;N ——同一断面中各单根预应力筋锚下有效预应力平均值。
有效预应力检测(每日一练)考生姓名:刘志雄考试日期:【2024-11-30 】判断题(共20 题)•A、正确B、错误答题结果:正确答案:B2、张拉施工前,对于混凝土的强度要求,如设计无特殊说明,一般是指强度达到标养强度的75%。
(注意:题干与选项内容完整输入之前不允许手动回车换行;选项和答案中的英文字母均为大写!选项内容为“正确”,“错误”!)。
(B)•A、正确B、错误答题结果:正确答案:B3、曲线预应力筋或长度超过25m的直线预应力筋,在设计无规定时,应采用两端张拉。
(注意:题干与选项内容完整输入之前不允许手动回车换行;选项和答案中的英文字母均为大写!选项内容为“正确”,“错误”!)。
(A)•A、正确B、错误答题结果:正确答案:A4、预应力张拉时,每个断面断丝之和不超过该断面钢丝总数的1%。
(注意:题干与选项内容完整输入之前不允许手动回车换行;选项和答案中的英文字母均为大写!选项内容为“正确”,“错误”!)。
(A)•A、正确B、错误答题结果:正确答案:A5、预应力筋断丝的原因是因为切割锚头钢绞线留的太短。
(注意:题干与选项内容完整输入之前不允许手动回车换行;选项和答案中的英文字母均为大写!选项内容为“正确”,“错误”!)。
(B)•A、正确B、错误答题结果:正确答案:B6、有效预应力检测应使用复张法进行检测,预应力筋张拉锚固后,应在24h内进行有效预应力检测。
(注意:题干与选项内容完整输入之前不允许手动回车换行;选项和答案中的英文字母均为大写!选项内容为“正确”,“错误”!)。
(A)•A、正确B、错误答题结果:正确答案:A7、预应力筋下料完成后,应用梳板或相应锚具梳束、编束,逐根理顺,并绑扎成束,严禁互相缠绕。
(注意:题干与选项内容完整输入之前不允许手动回车换行;选项和答案中的英文字母均为大写!选项内容为“正确”,“错误”!)。
(A)•A、正确B、错误答题结果:正确答案:A8、钢丝、钢绞线及精轧螺纹钢筋应采用切割机或砂轮锯切断。
锚下控制应力和油表读数计算我部预制箱梁分为30m和40m两种形式一、计算1束锚下应力值(用于顶板负弯矩张拉)1.已知条件钢绞线的标准强度 R y b=1860,钢绞线束的总截面积 A y=1×139=139 mm2弹性模量 E y=1.95×105Mpa 2.张拉控制应力锚下张拉控制应力取σk =0.75 R y b =1395Mpa油压表显示的拉力应为σk×A y=1395×139=19.3905(T)一束钢绞线的应力值为193.905T二、计算4束锚下应力值(用于30m箱梁张拉)1.已知条件钢绞线的标准强度 R y b=1860,钢绞线束的总截面积 A y=4×139=556 mm2弹性模量 E y=1.95×105Mpa2.张拉控制应力锚下张拉控制应力取σk =0.75 R y b =1395Mpa油压表显示的拉力应为σk×A y=1395×556=77.562T四束钢绞线的张拉应力值为77.562(T)三、计算5束锚下应力值(用于30m和40m箱梁张拉)1.已知条件钢绞线的标准强度 R y b=1860,钢绞线束的总截面积 A y=5×139=695 mm2弹性模量 E y=1.95×105Mpa2.张拉控制应力锚下张拉控制应力取σk =0.75 R y b =1395Mpa 油压表显示的拉力应为σk×A y=1395×695=96.953T五束钢绞线的张拉应力值为96.953T五、油表读数计算根据实际校顶报告与经计算所得锚下控制应力值,进行一元回归方程计算,所得值为各阶段控制应力相对应的油表读数。
千斤顶作用力T和张拉泵油压P是线性关系:T=AP+B (1) 利用千斤顶检验报告测得作用力与油压(T1,P1)、(T2,P2) 、(T3,P3) 、┈(T n,P n),对上式进行线性回归,求回归值:T=AP+B (2)A=L PT/L PP (3)B=T-AP (4)P=1/n∑P i (5)T=1/n∑T i (6)L PP=∑P i2-1/n(∑Pi)2 (7)L PT=∑P i T i-1/n(∑P i)(∑Ti) (8)。
锚下有效预应力检测方案(1)背景预应力锚索技术在土木工程中(如桥梁工程、边坡工程等)得到了广泛应用。
对于预应力结构工程来说,有效预应力直接关系结构的变形和开裂,影响其使用性能和安全性能,是其质量控制核心和工程的长久生命线。
因此,对于预应力混凝土桥梁结构,需要通过有效手段检测和评估预应力施工质量,在很大程度上就能避免预应力结构出现承载力不足的问题,保证结构的安全运营。
(2)检测依据1、《桥梁预应力及索力张拉施工质量检测验收规程》(CQJTG/T F81-2009)2、《桥梁有效预应力检测技术规程》(DB53/T 810-2016)3、《公路混凝土桥梁预应力施工质量检测评定技术规程》(DB35/T 1638—2017)4、《公路桥梁锚下预应力检测技术规程》(T/CECS G:D31-01-2017)5、《公路混凝土桥梁预应力施工质量检测评定技术规程》(DB35/T 1638—2017)6、《重庆市市政基础设施工程预应力施工质量验收规范》(DBJ 50-134-2017)7、《公路桥梁后张法预应力施工技术规范》 (DB33/T 2154—2018)8、《公路桥梁锚口有效预应力检测技术规程》(DB14/T 1717-2018)9、《桥梁用预应力精轧螺纹钢筋张拉力检测方法》(JT/T 1265-2019)10、《公路水运工程预应力张拉有效应力检测技术规程》(DB36/T 1136-2019)11、《公路桥梁锚下有效预应力检测技术规程》(T/CECSG:J51-01-2020)12、《桥梁锚下预应力检测技术规程》(DBJ52/T 106-2021)13、《在用公路桥梁现场检测技术规程》(JTG/T 5214-2022)14、《公路桥梁混凝土结构预应力施工质量检测评价技术规程》(DB32/T 4649-2024)(3)测试原理在外露单根钢绞线上安装集成式智能前端,千斤顶启动后钢绞线被张拉,当反拉力小于原有预应力时,夹片对钢绞线有紧固力,内部钢绞线不会发生位移。
桥梁连续箱梁锚下有效预应力检测及质量控制摘要:本文主要对桥梁连续箱梁锚下有效预应力检测及质量控制进行研究。
技术分析后,提出了施工过程的改进措施,并进一步加强了质量改进的检测和监测。
在质量总结过程中,应组织测试公司的专家咨询团队及时的解决测试过程中的问题,对预应力设计进行质量进行沟通和交流,然后进行下一阶段的测试和验证。
第一阶段试验完成后,应根据抽样检查的次数和各桥梁预制项目的进度,适当商定试验时间,并及时进行试验后评估。
关键词:桥梁连续箱梁;锚下有效预应力;预应力检测;质量控制引言省道S540线阳江雅韶至白沙段扩建工程项目起于西部沿海高速雅韶收费站出口,起点桩号K0+000,经雅韶、岗列、城西、止于平冈接规划国道234 线(现状省道S277 线),终点桩号K17+857.245,路线全长17.857km,按双向六车道一级公路标准建设,设计时速80km/h。
桥梁3331.8 米/10 座,其中特大桥1187m/1座(漠阳江特大桥),大桥 1951m/3 座(那龙河大桥、三洲河大桥及漠阳江西大桥),中小桥 248m/7座。
一、项目概况1、那龙河大桥拟建那龙河大桥位于阳江市雅韶镇,地势较平缓,采用桥梁的形式上跨那龙河,桥型布置为12×16+6×30+(55+80+55)+6×30+11×16;该桥梁上部结构采用装配式预应力混凝土小箱梁+预应力混凝土连续箱梁。
预应力系统:主桥采用三向预应力系统,纵向预应力钢梁设有腹板梁、顶板梁和底板梁。
横向预应力为3 F,S15.2,水平预应力钢梁沿桥梁设计线布置在1m外,并沿桥梁单端交替拉伸。
垂直预应力钢筋采用高强度轧制变形钢筋JL32和沿桥梁延伸0.5m的金属波纹管。
箱梁腹板竖向预应力筋的调整[1]。
图1 那龙河大桥主桥纵向预应力体系示意图图2 那龙河大桥主桥横向预应力体系示意图2、漠阳江特大桥拟建K12+577.186 漠阳江特大桥位于阳江市江城区城西镇,地势较平缓,采用桥梁的形式上跨漠阳江,桥型布置为10×16+11×30+(55+80+55)+5×30+25+4×30+13×16;该桥梁上部结构采用装配式预应力混凝土小箱梁+预应力混凝土连续箱梁。
浅析锚下有效预应力不合格原因摘要:岩土锚固已在我国边坡、基坑、矿井、隧洞、地下工程,在坝体、航道、水库、机场及抗倾、抗浮结构等工程建设中获得广泛应用。
随着我国大力兴建基础设施,特别是对交通、能源、水利和城市基础设施建设力度的加大,岩土锚固将展示出十分广阔的应用前景。
锚下预应力,是指预应力锚索施工的有效张拉预应力或运行中预应力,锚下有效预应力是否合格直接影响到预应力张拉的效果,因此探究出有效预应力不合格原因是十分必要的。
本文主要从锚下有效预应力偏大、偏小以及均匀性较差三个方面分析锚下有效预应力不合格原因。
关键词:有效预应力;不合格;均匀性引言在现代桥梁工程中,预应力混凝土因具有诸多优点而被得到广泛应用。
同时具有显著的经济效益和社会效益。
而预应力的张拉、压浆又为桥梁工程施工工艺中的关键工序,直接影响预应力混凝土使用的安全性和使用寿命。
预应力张拉的效果直接表现在锚下有效预应力是否合格,锚下有效预应力不合格现象有以下三点:锚下有效预应力偏小;锚下有效预应力偏大;锚下有效预应力均匀性较差。
1.锚下有效预应力偏小原因锚下有效预应力偏小是由于预应力损失过大,其具体原因如下:1.1由材料引起的预应力损失①张拉时锚具变形和张拉结束千斤顶回油后工作夹片内宿造成预应力筋的回缩、滑移,即锚口圈损失。
②由于粗骨料粒径不当造成局部骨料堆积及混凝土自身具有收缩和徐变的特征,会使构建缩短,构建中的预应力筋跟着回缩,造成预应力损失。
③预应力施工过程所使用的锚夹具及钢绞线材料特性不好造成预应力损失。
1.2由钢绞线松弛造成预应力损失预应力钢绞线在持久不变的应力作用下,会产生随持续加荷时间延长而增加的徐变变形;预应力钢绞线在一定拉应力值下,将其长度固定不变,则预应力筋中的应力将随时间延长而降低,从而引起预应力筋的松弛。
①预应力筋初拉应力越高,其应力松弛越厉害;②预应力筋松弛量的大小主要与其品质有关,热扎钢筋的松弛小于碳素钢筋的松弛;③预应力钢筋松弛与时间有关,初期发展最快,以后渐趋稳定;④预应力钢筋松弛与温度有关,它随温度升高而增加。
预应力梁锚下有效预应力的快速检测方法分析在现代建筑和桥梁工程中,预应力梁因其能够提高结构的承载能力、减小裂缝和变形等优点而得到广泛应用。
然而,要确保预应力梁的安全性和可靠性,准确检测锚下有效预应力至关重要。
锚下有效预应力不足可能导致结构性能下降,甚至引发安全事故;而过大的预应力则可能造成材料浪费和结构的不利影响。
因此,寻找快速、准确且可靠的检测方法成为了工程领域的重要研究课题。
目前,常见的预应力梁锚下有效预应力检测方法主要包括:一、油压表法油压表法是一种传统且较为直接的检测方法。
在预应力施加过程中,通过安装在千斤顶油路中的油压表测量压力,并结合千斤顶的活塞面积计算出施加的预应力大小。
这种方法操作相对简单,但精度容易受到油压表精度、千斤顶摩阻以及油路泄漏等因素的影响。
而且,油压表法只能在施工过程中进行检测,对于已经建成的预应力梁难以实施。
二、应变片法应变片法是通过在预应力筋或混凝土表面粘贴应变片,测量其在预应力作用下的应变,然后根据材料的力学性能计算出预应力大小。
该方法具有较高的精度,但安装应变片的过程较为复杂,需要专业人员操作,且应变片容易受到外界环境的干扰,影响测量结果的准确性。
三、超声波法超声波法是利用超声波在预应力筋中的传播速度与预应力大小之间的关系来进行检测。
当预应力筋受到拉伸时,其内部的微观结构发生变化,从而导致超声波传播速度的改变。
通过测量超声波的传播速度,可以推算出锚下有效预应力。
这种方法具有无损检测的优点,但检测结果的准确性受到多种因素的影响,如预应力筋的材质、直径、混凝土的质量等。
四、磁弹法磁弹法是基于铁磁性材料在磁场中磁导率随应力变化的特性来检测预应力。
预应力筋通常为钢绞线,具有铁磁性。
通过在预应力筋表面施加磁场,并测量磁导率的变化,可以间接得到预应力的大小。
磁弹法具有快速、非接触测量的优点,但对于复杂的现场环境和多根预应力筋的情况,测量结果可能会受到干扰。
近年来,一些新的快速检测方法也逐渐崭露头角:一、光纤光栅法光纤光栅传感器具有体积小、精度高、抗干扰能力强等优点。
锚下有效预应力检测技术在某桥梁工程预制箱梁中的应用摘要:预应力混凝土桥梁预制小箱梁锚下的有效预应力直接关系到预应力张拉的质量,锚下有效预应力检测技术能准确测出单根和整束预应力筋的锚下有效预应力,对同束有效预应力、同断面有效预应力大小和不均匀度进行检测,并根据检测结果综合评价预制小箱梁的总体质量状况。
关键词:锚下有效预应力; 预制箱梁;张拉;检测1、概述预应力施工是桥梁施工生命线的重要组成部分,而锚下有效预应力的检测能直接反映出桥梁预应力张拉的实际效果,锚下有效预应力检测技术能准确测出单根和整束预应力筋的锚下有效预应力,对同束有效预应力、同断面有效预应力大小和不均匀度进行检测,直接反映出预应力张拉施工中梳编穿束质量和重复张拉的精度。
2、检测技术原理2.1传统的有效预应力测试方法主要为应变片法(测试单根钢绞线)和传感器法(测试整束钢绞线),但其精度、可靠性、安全性以及经济性较低。
为能准确测出预应力筋锚下有效预应力,可利用新型的有效预应力测试技术,该检测设备包含一体化系统、计算机系统和千斤顶系统。
2.2锚下有效预应力检测技术根据弹模效应与最小应力跟踪原理研发。
当千斤顶带动绞线与夹片沿轴线移动0.5mm时,即测出锚下有效预应力值。
利用本技术检测会对钢绞线进行检测张拉,但不会对已经形成的锚下有效预应力产生影响。
因为检测张拉,夹片只随钢绞线轴线移动0.5mm,远低于限位板的限位面,夹片仍牢牢咬住钢绞线,力放开后,夹片与钢绞线相对位置不发生变化,由于钢绞线是弹性体,在比例极限内,力放松后,钢绞线会恢复原状,其锚下有效预应力也不会发生变化。
2.3本技术能准确测出单根和整束预应力筋的锚下有效预应力,对同束有效预应力、同断面有效预应力大小和不均匀度进行检测。
对比传统方法,本技术具有如下特点:1)无损、高效,不需要对锚固系统埋设应力传感器等测试原件,可真正体现抽检的随机性与代表性。
2)准确,检测精度达1.5%FS。
3)已形成预应力张拉控制的成套体系,可对工艺流程进行全面控制,真正达到少量工程抽检从而全面控制预应力张拉质量的工程目的。
后张法预应力钢绞线张拉锚下应力准确控制论文【摘要】不同工程后张法预应力张拉施工采取的张拉方法不同给,其钢绞线布置结构不同,其伸长量计算方法也不同,如两端张拉、钢绞线是对称结构的就可以采取计算一半钢绞线伸长值乘以二,而非对称结构就必须从两侧向中间分段计算,当然钢绞线直线阶段和曲线阶段不能分在同一段,这样不利于计算的准确性。
后张法预应力施工环节严谨,操作过程和设备仪器都比较精密,因此对施工技术人员能力和专业技术基础要求很高,尤其是在后张法预应力的钢绞线张拉施工中,因为其钢绞线张拉直接影响该预应力值产生效果,因此就必须要对预应力钢绞线张拉问题进行深入研究探讨。
下面笔者就结合黄花陂跨线桥桥梁工程中的后张法预应力施工来具体探讨该结构中钢绞线伸长量准确计算测量工作,然后研究了其锚下应力的有效控制方法措施。
一、工程概述及其预应力箱梁结构黄花陂跨线桥桥梁全长360.06m,跨越省道S225,与省道交叉前右角44.3度。
上部结构采用预应力砼连续箱梁和预应力砼简支小箱梁,跨径组合为:左幅:(2×22+2×35)连续箱梁+12×20m预制架设小箱梁;右幅:(22+2×35+22)连续箱梁+12×20m预制架设小箱梁。
下部结构采用花瓶墩、板墩及柱式墩,桥台采用柱式台及肋板台。
现浇预应力混凝土连续箱梁,基本桥幅宽12.75m,桥梁路线中心线高两边低,设4%横坡,箱梁砼标号为C50砼。
箱梁结构高2m,箱梁顶底板同坡,外侧腹板倾斜,中间腹板竖直,单箱双室。
本桥采用纵向预应力体系,预应力设置在腹板内,共设置16束Φs15.2钢绞线,张拉控制应力为0.75fpk=1395Mpa,预应力张拉采用两端对称张拉。
二、后张法预应力钢绞线伸长量计算测量和锚下应力的准确控制(一)后张法预应力钢绞线张拉施工及其伸长量计算测量一般后张法预应力钢绞线张拉施工质量影响因素主要有管道弯曲和偏差引起的摩擦力,这些摩擦力会使得钢绞线张拉过程中其锚下控制力随着管壁往梁跨方向逐步减弱,因此使得钢绞线不同线段内伸长量也都不同,我国建筑行业内也有关于公路桥梁预应力筋伸长值的计算方法和公式:△L=PL×[1-e-(kx+μθ)]/(kx+μθ)(Ay×Ey),为确保该预应力筋伸长值计算的准确性,其弹性模量就必须要按照实际测量Ey值来计算,且要对其孔道摩擦系数、波纹管三维位置等进行检测,确保其k、μ值的准确性。