市函数的图像1例题
- 格式:doc
- 大小:190.50 KB
- 文档页数:3
函数及其图像典型例题例1、已知点()p x y ,的坐标满足方程x y ++-=120,则点p 在( )A .第一象限B .第二象限C .第三象限D .第四象限分析:这道题首先考察了平面内点的坐标,在各象限内的横纵坐标的特点,其次是绝对值,算术平方根,互为相反数的性质与概念的理解。
由x y ++-=120,可知:x y =-=12,,所以点()p x y ,,在第二象限,应选(B )。
例2、已知点M m -⎛⎝ ⎫⎭⎪123,关于原点对称的点在第一象限,那么m 的取值范围是 ;分析:这道题考查对称点的特点,关于原点对称的点,它们的横纵坐标互为相反数,与点M关于原点对称的点在第一象限,说明点M 在第三象限,则30m <,,即m <0例3、求函数自变量的取值范围 (1)函数y xx =--532自变量x 的取值范围是 ;(2)函数y x x =++-25自变量x 的取值范围是 ;分析:由解析式给出的函数表达式,自变量x 的取值范围应使解析式有意义,即二次根式的被开方式要大于等于零,分式的分母不能等于零,等。
解:(1) 50320235-≥->⎧⎨⎩∴<<x x x(2) x x x +≥-≥⎧⎨⎩∴-≤≤205025例4、平行四边形相邻的两边长是x y ,,它的周长是30,则y 关于x 的函数关系式是 。
解:平行四边形对边相等,所以周长为2230x y +=,得到x y +=15,则y 关于x 的函数关系式为:()y x x =-+<<15015例5、已知,如图,正方形ABCD 中,E 是BC 边上的点,F 是CD 边上的点,且AE =AF ,AB =4,设三角形AEF 的面积为y ,EC 为x ,求y 与x 之间的函数关系式,并在直角坐标系中画出这个函数的图象。
简解: ABCD AB AD B D 是正方形,,∴=∠=∠=∠Rtx FC EC CD BC DF BE ADF ABE AF AE ==∴==∆≅∆∴=,,,, 且 BE DF x ==-4则正方形S S S S AEF ABE CEF ∆∆∆∆=--2即()y x x =-⨯⨯⨯--1621244122整理合并为:y x x =-+1242,因为E 点在BC 上,F 是CD 上的点,当E 与C 点重合时三角形AEF 不存在,所以x 的取值范围是()04<≤x (图象略)例6、已知:y -1与x 成正比例,当x =2时,y =9那么y 与x 之间的函数关系是 。
一次函数的图象专题练习题1.画函数图象的方法.可以概括为_______,__ __,__ __三步,通常称为__ __.2.如果点M 在函数y =x -1的图象上,则M 点的坐标可以是( )A .(-1,0)B .(0,1)C .(1,0)D .(1,-1)3.(1)若点A(a ,-3)在函数y =-3x的图象上,则a =____; (2)下列各点M (1,2),N (3,32),P (1,-1),Q (-2,-4)中,在函数y =2x x +1的图象上的点是__________. 4. 小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度,下面是小明离家后他到学校剩下的路程s 关于时间t 的函数图象,那么符合小明行驶情况的图象大致是( )5. 小明的父亲从家走了20分钟到一个离家900米的书店,在书店看了10分钟书后,用15分钟返回家,下列图中表示小明的父亲离家的距离与时间的函数图象是( )6. 某星期六上午,小明从家出发跑步去公园,在公园停留了一会儿打车回家.图中折线表示小明离开家的路程y(米)和所用时间x(分)之间的函数关系,则下列说法中错误的是()A.小明在公园休息了5分钟B.小明乘出租车用了17分C.小明跑步的速度为180米/分D.出租车的平均速度是900米/分7. 一段笔直的公路AC长20千米,途中有一处休息点B,AB长15千米,甲、乙两名长跑爱好者同时从点A出发,甲以15千米/时的速度匀速跑至点B,原地休息半小时后,再以10千米/时的速度匀速跑至终点C;乙以12千米/时的速度匀速跑至终点C,下列选项中,能正确反映甲、乙两人出发后2小时内运动路程y(千米)与时间x(小时)函数关系的图象是()8. 李老师为锻炼身体一直坚持步行上下班.已知学校到李老师家总路程为2000米.一天,李老师下班后,以45米/分的速度从学校往家走,走到离学校900米时,正好遇到一个朋友,停下又聊了半小时,之后以110米/分的速度走回了家.李老师回家过程中,离家的路程s(米)与所用时间t(分)之间的关系如图所示.(1)求a,b,c的值;(2)求李老师从学校到家的总时间.9. 如果两个变量x,y之间的函数关系如图,则函数值y的取值范围是() A.-3≤y≤3 B.0≤y≤2C.1≤y≤3 D.0≤y≤310. 如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度11. 甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②出发1.5小时时,乙比甲多行驶了60千米;③出发3小时时,甲、乙同时到达终点;④甲的速度是乙速度的一半.其中,正确结论的个数是()A.4B.3C.2D.112. 有一个水箱,它的容积是500升,水箱内原有水200升,现需将水箱注满,已知每分钟注入水10升.(1)写出水箱内水量Q(升)与时间t(分)的函数关系式;(2)求自变量t的取值范围;(3)画出函数的图象.13.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()14. 如图①,底面积为30 cm2的空圆柱形容器内水平放置着由两个实心圆柱组成的“几何体”,现向容器内匀速注水,注满为止,在注水过程中,水面高度h(cm)与注水时间t(s)之间的关系如图②所示.请根据图中提供的信息,解答下列问题:(1)圆柱形容器的高为____cm,匀速注水的水流速度为____cm3/s;(2)若“几何体”的下方圆柱的底面积为15 cm2,求“几何体”上方圆柱的高和底面积.答案:1. 描点 连线 描点法2. C3. (1) 1 (2) 点N4. D5. B6. B7. A8. (1)李老师停留地点离他家路程为:2000-900=1100(米),900÷45=20(分).a =20,b =1100,c =20+30=50 (2)20+30+1100110=60(分).答:李老师从学校到家共用60分钟 9. D10. C11. B 点拨:①②④正确12. (1)Q =200+10t (2)令200≤Q≤500,则0≤t≤30 (3)图略13. B14. (1) 14 5(2) “几何体”下方圆柱的高为a ,则a·(30-15)=18×5,解得a =6,所以“几何体”上方圆柱的高为11 cm-6 cm =5 cm ,设“几何体”上方圆柱的底面积为S cm 2,根据题意得5(30-S )=5×(24-18),解得S =24,即“几何体”上方圆柱的底面积为24 cm 2。
高中数学函数图象例1.作图:(1)y =a |x -1|,(2)y =log |(x -1)|a ,(3)y =|log a (x -1)|(a >1).例2.函数y =ln 1|2x -3|的图象为( )例3.函数f (x )=11+|x |的图象是( )例4.若函数y =(12)|1-x |+m 的图像与x 轴有公共点,则m 的取值范围是________.例5.已知函数f (x )=|x 2-4x +3|(1)求函数f (x )的单调区间,并指出其增减性;(2)若关于x 的方程f (x )-a =x 至少有三个不相等的实数根,求实数a 的取值范围.1、设10<<a ,在同一直角坐标系中,函数xa y -=与)(log x y a -=的图象是( )2、函数||log 2x y =的图象大致是 ( )3、当1>a 时,在同一坐标系中函数xa y -=与xy a log =的图像( )4、 .函数y =1-11-x 的图象是( )5、已知下图①的图象对应的函数为y =f(x),则图②的图象对应的函数在下列给出的四式中,只可能是( )A .y =f(|x|)B .y =|f(x)|C .y =f(-|x|)D .y =-f(|x|)6、二次函数b ax y +=2与一次函数)(b a b ax y >+=在同一个直角坐标系的图像为( )7、下列函数图象中,函数y a a a x =>≠()01且,与函数y a x =-()1的图象只能是( )y y y yO x O x O x O xA B C D11118、当a ≠0时,函数y a x b=+和y b a x=的图象只可能是 ( )9.函数y=2x+1的图象是( )10、函数lg ||x y x=的图象大致是 ( )。
完整版)一次函数图像与性质练习题授课目的与考点分析:本文主要介绍了一次函数图像与系数的关系,包括直线的平移和位置关系,以及k、b对图像和性质的影响等内容。
文章还提供了一些例题,帮助读者更好地理解和掌握相关知识点。
一、一次函数图像与系数的关系1.函数y=kx+b(k、b为常数,且k≠0)的图像是一条直线:当b>0时,直线y=kx+b是由直线y=kx向上平移b个单位长度得到的;当b<0时,直线y=kx+b是由直线y=kx向下平移|b|个单位长度得到的。
2.一次函数y=kx+b(k、b为常数,且k≠0)的图像与性质:正比例函数的图像是经过原点(0,0)和点(1,k)的一条直线;一次函数y=kx+b(k≠0)图像和性质如下:3.k、b对一次函数y=kx+b的图像和性质的影响:k决定直线y=kx+b从左向右的趋势,b决定它与y轴交点的位置,k、b一起决定直线y=kx+b经过的象限。
4.两条直线l1:y=k1x+b1和l2:y=k2x+b2的位置关系可由其系数确定:1)k1≠k2,即斜率不相等,l1与l2相交;2)k1=k2,且b1≠b2,即斜率相等但截距不等,l1与l2平行;例题:1.若b<0,则直线y=kx+b一定通过()A.第一、二象限B.第二、三象限C.第三、四象限D.第一、四象限2.若直线y=kx+b(k≠0)不经过第一象限,则k、b的取值范围是()A.k>0,b0,b≤0 XXX<0,b<0 D.k<0,b≤03.已知直线y=kx+b,若k+b=-5,kb=6,那么该直线不经过第象限。
4.若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图像可能是()A. B. C. D.5.已知点(k,b)为第四象限内的点,则一次函数y=kx+b的图像大致是()A. B. C. D.6.如果函数y=3x+m的图像一定经过第二象限,那么m的取值范围是()A.m>0 B.m≥0 C.m<0 D.m≤07.一次函数y=kx+k(k<0)的图像大致是()A. B. C. D.8.函数y=kx+k(k≠0)在直角坐标系中的图像可能是().已知一次函数y=−mx+n−2的图象如下图所示,则m、n的取值范围是()。
函数的图象一、典型例题例1 设函数2()45f x x x =-- (1)在区间[2,6]-上画出函数()f x 的图像;(2)设集合{}()5,(,2][0,4][6,)A x f x B =≥=-∞-+∞ ,试判断集合A 和B 之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方。
例2(1)若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点()2,2Q ,则函数()y f x =的图像经此变换后所得图像对应的函数为 ( )A .(1)2y f x =-+ B.(1)2y f x =--C . (1)2y f x =++D . (1)2y f x =+-(2)己知函数33(),()232x f x x x -=≠-,若(1)y f x =+的图像是1C ,它关于直线y x =对称图像是22,C C 关于原点对称的图像为33,C C 则对应的函数解析式是__________(3)作出下列函数的大致图象: ①()21y x x =-+;② 21x y x -=+; ③ lg 1y x =-④ 11xy x -=-例3 (1)设函数()x f 的定义域为R ,它的图像关于直线1x =对称,且当1≥x 时()13-=x x f 则( ) ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛322331A.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛312332B.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛233132C.f f f ⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛313223D.f f f (2)已知()f x 是定义域为(-∞,0)∪(0,+∞)的奇函数,在区间(0,+∞)上单调递增, ()f x 的图象如图所示,若[]()()0x f x f x --<,则x 的取值范围是__________________例3 已知函数()()()()1212()211xx f x x x x ⎧⎛⎫-≤-⎪ ⎪=⎝⎭⎨⎪-->-⎩,如果方程()f x a =有四个不同的实根,求实数a 的取值范围。
20.2一次函数的图像(1)知识梳理+九大题型分析+经典同步练习知识梳理1、一次函数(、为常数,且≠0)的图象:解析式(为常数,且)自变量取值范围全体实数形状过(0,)和(,0)点的一条直线、的取值示意图位置经过一、二、三象限经过一、三、四象限经过一、二、四象限经过二、三、四象限图象趋势从左向右上升从左向右下降函数变化规律随的增大而增大随的增大而减小y kx b =+k b k y kx b =+k 0k ¹b bk-k >0k <k b 0b >0b <0b >0b <y x y x2、 、对一次函数的图象和性质的影响:①一条直线与轴的交点的纵坐标叫做这条直线在轴上的截距,直线的截距是.②由于值的不同,则直线相对于轴正方向的倾斜程度不同,这个常数称为直线的斜率.③决定直线从左向右的趋势,决定它与轴交点的位置,、一起决定直线经过的象限.3、函数(、为常数,且≠0)的图象是一条直线 :①当>0时,直线是由直线向上平移个单位长度得到的;②当<0时,直线是由直线向下平移||个单位长度得到的.4.、两条直线:和:的位置关系可由其系数确定:①与相交; ②,且与平行;典型例题题型一:由k ,b 的符号判断一次函数图像例题1一次函数y =-3x -2的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A 【解析】根据一次函数的性质,当k <0,b <0时,图象经过第二、三、四象限解答.解:∵k=-3<0,∴函数经过第二、四象限,k b y kx b =+y y y kx b =+b k x k k y kx b =+b y k b y kx b =+y kx b =+k b k b y kx b =+y kx =b b y kx b =+y kx =b 1l 11y k x b =+2l 22y k x b =+12k k ¹Û1l 2l 12k k =12b b ¹Û1l 2l∵b=﹣2<0,∴函数与y 轴负半轴相交,∴图象不经过第一象限.故选A题型二:利用一次函数的图像判断k ,b 的符号例题2已知一次函数y kx b =+的图象如图所示,则k ,b 的符号是( )A .0k >,0b >B .0k >,0b <C .k 0<,0b >D .k 0<,0b <【答案】D 【解析】由图可知,一次函数y=kx+b 的图象经过二、三、四象限,根据一次函数图象在坐标平面内的位置与k 、b 的关系作答.解:由一次函数y =kx+b 的图象经过二、三、四象限,又有k <0时,直线必经过二、四象限,故知k <0,再由图象过三、四象限,即直线与y 轴负半轴相交,所以b <0.故答案为:D .题型三:k ,b 的符号与一次函数图像的综合问题例题3若关于x 的一元二次方程x 2﹣2x+kb+1=0没有实数根,则一次函数y =kx+b 的大致图象可能是( )A .B .C .D .【答案】A 【解析】由根的判别式△<0,即可得出k 、b 同号,再利用一次函数图象与系数的关系找出k >0、b >0或k <0、b <0时,一次函数y =kx+b 的图象经过的象限,此题得解.解:∵关于x 的一元二次方程x 2﹣2x+kb+1=0没有实数根,∴△=(﹣2)2﹣4×1×(kb+1)=﹣4kb <0,∴k 、b 同号.当k >0、b >0时,一次函数y =kx+b 的图象经过第一、二、三象限;当k <0、b <0时,一次函数y =kx+b 的图象经过第二、三、四象限.故选:A题型四:一次函数图像平移问题(要点:左加右减(在x 上),上加下减(在y 上))例题4将一次函数23y x =-+的图像沿x 轴向左平移4个单位长度后,得到的新的图像对应的函数关系式为( )A .25y x =--B .211y x =-+C .27y x =-+D .21y x =--【答案】A直接利用一次函数平移规律“上加下减”、“左加右减”即可得到答案.将一次函数y =﹣2x +3的图像沿x 轴向左平移4个单位长度,平移后所得图像对应的函数关系式为:2(4)3y x =-++,即y =﹣2x -5.故选:A .题型五:一次函数的图像与坐标轴交点问题(利用坐标轴上点的坐标特点可解)例题5已知方程ax +b =0的解为x =32-,则一次函数y =ax +b 图象与x 轴交点的横坐标为( )A .3B .23-C .﹣2D .32-【答案】D 【解析】关于x 的一元一次方程ax +b =0的根是x =32-,即x =32-时,函数值为0,所以直线过点(32-,0),于是得到一次函数y =ax +b 的图象与x 轴交点的坐标.解:方程ax +b =0的解为x =32-,则一次函数y =ax +b 的图象与x 轴交点的坐标为(32-,0),即一次函数y =ax +b 图象与x 轴交点的横坐标为32-.故选:D .拓展题:在平面直角坐标系中,点O 为原点,点(1,0)A ,直线3y kx =-交x 轴于点B ,交y 轴于点C ,若ABC D 的面积6,则k =( )A .±1B .35±C .1或35-D .1-或35【答案】D利用一次函数图象上点的坐标特征可得出点B ,C 的坐标,进而可得出OC ,AB 的长,利用三角形的面积公式结合ABC D 的面积为6,即可得出关于k 的方程,解之即可得出结论.解:当0x =时,033y k =´-=-,\点C 的坐标为(0,3)-,3OC =;当0y =时,30kx -=,解得:3x k=,\点B 的坐标为3(k,0),3|1|AB k=-.162ABC S AB OC D ==Q g ,即133|1|62k´-=,解得:1k =-或35k =.故选:D .题型六:利用一次函数图像或者解不等式求自变量或函数值的范围关键词:数形结合、几何法、代数法、一次函数与不等式例题6一次函数2y kx =+与x 轴交于点(4,0)A ,则不等式21kx +<的解是( )A .2x >B .2x <C .2x >-D .2x <-【答案】A 【解析】先由题意求出一次函数表达式,然后再求解不等式的解集即可.解:由题意得:把点A 坐标代入解析式得:042k =+,解得1k=2-;\一次函数解析式为:122y x =-+,\1212x -+<,解得2x >;故选A .题型七:直线的倾斜程度与k 的大小关系例题7 帮练习第7题题型八:一次函数与其他函数相交问题例题8如图在平面直角坐标系中,直线y 6x =-+分别与x 轴、y 轴交于点A 、B ,与()y 0kx x=>的图象交于点C 、D .若CD =13AB ,则k 的值为( )A .4.B .6.C .8.D .10.【答案】C 【解析】先求出点A 、B 的坐标,于是可得AB 的长,进而可得CD 的长,设C 、D 的横坐标分别为a ,b ,则a ,b 是联立y =﹣x +6和y =kx并整理后的方程的解,由CD b -并结合根与系数的关系可得关于k 的方程,解方程即可求出k ,从而可得答案.解:对直线y =﹣x +6,令x =0,则y =6,令y =0,则x =6,∴点A 、B 的坐标分别为(6,0)、(0,6),∴OB =OA =6,∴AB==3CD,∠BAO=45°,∴CD=,联立y=﹣x+6和y=kx并整理得:x2﹣6x+k=0,设点C、D的横坐标分别为a,b,则a+b=6,ab=k,∵∠BAO=45°,∴CD b-,∴CD2=2(a﹣b)2=2[(a+b)2﹣4ab]=2(36﹣4k)=()2,解得:k=8.故选:C.题型九:一次函数的几何综合问题例题9已知直线y=x轴,y轴分别交于,A B两点,在x轴上取一点P,使得PABD是等腰三角形,则符合条件的点P有()个A.2B.3C.4D.5【答案】A【解析】根据等腰三角形的性质进行分类讨论:以AB为腰和底进行讨论即可求解.解:由题意,如图:Q 直线y =x 轴,y 轴分别交于,A B 两点,\()(1,0,A B ,\1,OA OB ==在Rt AOB V 中,2AB =,\∠ABO=30°,∠OAB=60°,又Q 在x 轴上取一点P ,使得PAB D 是等腰三角形,\①当AB=AP=2时,在x 轴上有()()123,0,1,0P P -;②当BP=AP 时,易得△ABP 为等边三角形,则有AB=BP=AP=2,所以()31,0P -;综上所述:符合条件的点P 有2个;故选A .一、单选题1.一次函数3y x =-+的图像经过的象限是( )A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限【答案】B 【解析】根据一次函数解析式k 和b 的符号,即可判定该函数图像经过的象限,即可解决.解:∵k <0∴一次函数图像y 随x 的增大而减小∵b >0∴图像交y 轴正半轴∴函数经过一、二、四象限故选B .【点睛】本题主要考查了一次函数图形的性质,熟练k 和b 决定图像位置是解决本题的关键.2.直线1y x =+与y 轴的交点是( )A .()1,0-B .()1,0C .()0,1D .()1,1--【答案】C 【解析】根据y 轴上点的坐标特征:横坐标为0,将x=0代入直线解析式中即可求出结论.解:当x=0时,011y =+=∴直线1y x =+与y 轴的交点是()0,1故选C .【点睛】此题考查的是求直线与y 轴的交点坐标,掌握y 轴上点的坐标特征:横坐标为0,是解决此题的关键.3.一次函数0y kx b kb =+,<,且y 随x 的增大而增大,则其图象可能是( )A .B .C .D .【答案】A【解析】先根据一次函数y kx b =+中,y 随x 的增大而增大,且0kb <,判断出k 与b 的符号,再根据一次函数的图象与系数的关系进行解答.∵一次函数y kx b =+中,y 随x 的增大而增大,∴0k >,∵0kb <,∴0b <,∴一次函数y kx b =+的图象过一、三、四象限.故答案为:A .【点睛】本题考查的是一次函数的图象与性质、一次函数的性质及不等式的基本性质,解决本题的关键是熟练掌握一次函数图像和系数的关系.4.如图,若一次函数y =﹣2x +b 的图象与两坐标轴分别交于A ,B 两点,点A 的坐标为(0,4),则不等式﹣2x +b <0的解集为( )A.x>2B.x<2C.x<4D.x>4【答案】A【解析】首先把A点坐标代入一次函数解析式,算出b的值,进而可求出B点坐标,再结合图象可得不等式﹣2x+b <0的解集.∵一次函数y=﹣2x+b的图象过A(0,4),∴b=4,∴函数解析式为y=﹣2x+4,当y=0时,x=2,∴B(2,0),∴不等式﹣2x+b<0的解集为x>2,故选:A.【点睛】此题主要考查一次函数与不等式的综合运用,熟练掌握,即可解题.5.某个一次函数的图象与直线162y x=+平行,并且经过点()2,4--,则这个一次函数的解析式为()A.152y x=--B.132y x=+C.132y x=-D.28y x=--【答案】C 【解析】根据两直线平行时k 的值相等,设出所求解析式,把已知点坐标代入计算即可.由一次函数的图象与直线y ═12x +6平行,设直线解析式为y =12x +b ,把(−2,−4)代入得:−4=−1+b ,即b =−3,则这个一次函数解析式为y =12x−3.故选:C .【点睛】此题考查了待定系数法求一次函数解析式,以及一次函数的图象,熟练掌握待定系数法是解本题的关键.6.如图,已知一次函数y kx b =+的图象与x 轴,y 轴分别交于点(2,0),点(0,3).有下列结论:①关于x 的方程0kx b +=的解为2x =;②当2x >时,0y <;③当0x <时,3y <. 其中正确的是( )A .①②B .①③C .②③D .①③②【答案】A【解析】根据一次函数图象的性质,一次函数与一元一次方程的关系对各小题分析判断即可得解.由图象得:①关于x 的方程kx+b=0的解为x=2,故①正确;②当x>2时,y<0,故②正确;③当x<0时,y>3,故③错误;故选:A 【点睛】本题考查了一次函数图象的性质及一次函数与一元一次方程的关系,对于任意一个以x 为未知数的一元一次方程,它都可以转化为kx+b=0(k ≠0)的形式,解一元一次方程相当于在某个一次函数的函数y=kx+b 值为0时,求自变量的值.7.已知一次函数(3)1y a x b =+++的图象经过过一、二、四象限,那么a ,b 的取值范围是( )A .3a >-,1b >-B .3a <-,1b <-C .3a >-,1b <-D .3a <-,1b >-【答案】D【解析】由一次函数的图像经过过一、二、四象限可得:3a +<0且1b +>0,从而可得答案.解:因为一次函数(3)1y a x b =+++的图象经过过一、二、四象限,所以:3a +<0且1b +>0,所以:3a <-,1b >-,故选D .【点睛】本题考查的是一次函数的图像的性质,同时考查一元一次不等式的解法,掌握一次函数的图像的性质是解题的关键.8.如图,四个一次函数y ax =,y bx =,1y cx =+,3y dx =-的图象如图所示,则a ,b ,c ,d 的大小关系是( )A .b a d c>>>B .a b c d >>>C .a b d c >>>D .b a c d>>>【答案】B【解析】根据一次函数和正比例函数的图象与性质可得.解:∵y ax =,y bx =经过第一、三象限,且y ax =更靠近y 轴,∴0a b >>,由∵ 1y cx =+,3y dx =-从左往右呈下降趋势,∴0,0c d <<,又∵3y dx =-更靠近y 轴,∴d c <,∴a b c d>>>故答案为:B .【点睛】本题考查了一次函数及正比例函数的图象与性质,解题的关键是熟记一次函数及正比例函数的图象与性质.9.将直线y=3x 向左平移2个单位长度,再向上平移5个单位长度,平移后所得新直线的表达式为( )A .()3-25y x =+B .()325y x =++C .()3-2-5y x =D .()325y x =+-【答案】B【解析】根据直线的平移规律:上加下减,左加右减解答即可.解:将直线y=3x 向左平移2个单位长度,再向上平移5个单位长度,平移后所得新直线的表达式为()325y x =++.故选:B .【点睛】本题考查了直线的平移,属于基本题型,熟练掌握一次函数的平移规律是解题关键.10.如图,点(,3)M m 在直线27y x =-+与直线21y x =-+之间(不在这两条直线上),则m 的取值范围是( )A .12m -<<B .02m <<C .51m -<<D .11m -<<【答案】A【解析】分别求出点M 在两条直线上时对应的m 的值,进而可得答案.解:当点(,3)M m 在直线27y x =-+上时,273m -+=,解得2m =,当点(,3)M m 在直线21y x =-+上时,213m -+=,解得1m =-;∵点(,3)M m 在直线27y x =-+与直线21y x =-+之间(不在这两条直线上),∴m 的取值范围为12m -<<.故选:A .【点睛】本题考查了一次函数图象上点的坐标特征,属于常考题型,正确理解题意、熟练掌握一次函数的图象与性质是解题关键.二、填空题11.若一次函数()121y k x k =++- 的图象不经过第一象限,则k 的取值范围是_____【答案】k <-12【解析】根据一次函数图像所在的象限,得到关于k 的不等式组,进而即可求解.∵一次函数()121y k x k =++- 的图象不经过第一象限,∴1+2k <0,且k-1<0,∴k <-12,且k <1,∴k <-12故答案是:k <-12【点睛】本题主要考查一次函数的系数与图像的关系,熟练掌握y=kx+b (k ≠0,k ,b 为常数)中,常数k ,b 的几何意义,是解题的关键.12.直线1:24l y x =+沿x 轴向右移动4个单位长度得到直线2l ,则直线2l 的解析式为______.【答案】24y x =-【解析】根据函数图象平移的方法:左加右减判断即可;直线1:24l y x =+沿x 轴向右移动4个单位长度得到:()2:24424=-+=-l y x x ;故答案是:24y x =-.【点睛】本题主要考查了一次函数图象的平移,准确分析判断是解题的关键.13.直线3y x =-+与x 轴,y 轴分别交与点,M N ,则点,M N 的坐标分别__________和__________【答案】()3,0 ()0,3【解析】分别把y=0或x=0代入解析式计算出对应的自变量和函数值,则可确定直线与x 轴、y 轴的交点坐标解:把y=0代入得-x+3=0,解得x=3;把x=0代入得y=3所以直线3y x =-+与x 轴、y 轴的交点坐标分别为()3,0,()0,3故答案为()3,0,()0,3【点睛】本题考查一元一次函数图象上的点的坐标特征,熟练掌握知识点是解此题的关键14.如图,直线y kx b =+分别交坐标轴于()5,0-,()0,3两点,则不等式0kx b +<的解集是__________.【答案】5x <-【解析】求0kx b +<的解集,就是求使一次函数y kx b =+的值小于0的自变量x 的取值范围.解:求0kx b +<的解集,从图象上可以看出当0y <时,5x <-.故答案为:5x <-.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y kx b =+的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y kx b =+在x 轴上(或下)方部分所有的点的横坐标所构成的集合.15.在一次函数y=kx+2中,若y 随x 的增大而增大,则它的图象不经过第 象限.【答案】四.【解析】一次函数y=kx+b 的图象有两种情况:①当k 0>,b 0>时,函数y=kx+b 的图象经过第一、二、三象限,y 的值随x 的值增大而增大;②当k 0>,b 0<时,函数y=kx+b 的图象经过第一、三、四象限,y 的值随x 的值增大而增大;③当k 0<,b 0>时,函数y=kx+b 的图象经过第一、二、四象限,y 的值随x 的值增大而减小;④当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限,y 的值随x 的值增大而减小.由题意得,函数y=kx+2的y 的值随x 的值增大而增大,因此,k 0>.由k 0>,b 0>,知它的图象经过第一、二、三象限,不经过第四象限.16.已知一次函数y =kx+b 的图象经过一,二,四象限,且当2≤x ≤4时,4≤y ≤6,则b k的值是_____.【答案】-8【解析】利用一次函数的性质得到k<0,则判断x=2时,y=6;x=4时,y=4,然后根据待定系数法求得k、b的值,即可求得bk的值.解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,∴函数y随x的增大而减小,∵当2≤x≤4时,4≤y≤6,∴当x=2时,y=6;当x=4时,y=4,∴26 44 k bk b+=ìí+=î,解得:18kb=-ìí=î,∴bk=﹣8,故答案为:﹣8.【点睛】本题考查了一次函数的性质,一次函数图象上点的坐标特征以及待定系数法求一次函数的解析式,根据题意得出当x=2时,y=6;当x=4时,y=4是解题的关键.17.已知:一次函数y=(2﹣m)x+m﹣3.(1)如果此函数图象经过原点,那么m应满足的条件为__;(2)如果此函数图象经过第二、三、四象限,那么m应满足的条件为__;(3)如果此函数图象与y轴交点在x轴下方,那么m应满足的条件为__;(4)如果此函数图象与y轴交点到x轴的距离为2,那么m应满足的条件为__.【答案】m=3 2<m<3 m<3且m≠2 m=5或m=1【解析】(1)将点(0,0)代入一次函数解析式,即可求出m的值;(2)根据一次函数的性质知,当该函数的图象经过第二、三、四象限时,2-m<0,且m-3<0,即可求出m 的范围;(3)先求出一次函数y=(2-m)x+m-3与y轴的交点坐标,再根据图象与y轴交点在x轴下方得到2-m≠0且m-3<0,即可求出m的范围;(4)先求出一次函数y=(2-m)x+m-3与y轴的交点坐标,再根据图象与y轴交点到x轴的距离为2,得出交点的纵坐标的绝对值等于2,即可求出m的值.(1)∵一次函数y=(2﹣m)x+m﹣3的图象过原点,∴m﹣3=0,解得m=3.故答案为:m=3;(2)∵该函数的图象经过第二、三、四象限,∴2﹣m<0,且m﹣3<0,解得2<m<3.故答案为:2<m<3;(3)∵y=(2﹣m)x+m﹣3,∴当x=0时,y=m﹣3,由题意,得2﹣m≠0且m﹣3<0,∴m<3且m≠2.故答案为:m<3且m≠2;(4)∵y=(2﹣m)x+m﹣3,∴当x =0时,y =m ﹣3,由题意,得2﹣m ≠0且|m ﹣3|=2,∴m =5或m =1.故答案为:m =5或m =1.【点睛】本题考查了一次函数与系数的关系:由于y=kx+b 与y 轴交于(0,b ),当b >0时,(0,b )在y 轴的正半轴上,直线与y 轴交于正半轴;当b <0时,(0,b )在y 轴的负半轴,直线与y 轴交于负半轴.k >0,b >0⇔y=kx+b 的图象在一、二、三象限;k >0,b <0⇔y=kx+b 的图象在一、三、四象限;k <0,b >0⇔y=kx+b 的图象在一、二、四象限;k <0,b <0⇔y=kx+b 的图象在二、三、四象限.也考查了一次函数图象上点的坐标特征以及一次函数的定义.18.已知一次函数y 1=x +2与y 2=-x +b (b 为常数),当x <1时,y 1<y 2.则b 的取值范围是___________.【答案】b≥4【解析】由12y y <,求出b 2x 2-<根据x<1时,12y y <,列出b 212-³,解出不等式即可求出答案.∵12y y <,y 1=x +2,y 2=-x +b∴x+2<-x+b∴2x<b-2∴b 2x 2-< 又∵x<1时,12y y < ∴b 212-³∴b ≥4故答案为:b ≥4【点睛】本题考查了一次函数与不等式的关系,掌握函数与不等式的关系是解题的关键.19.已知直线4y kx =-与两坐标轴所围成的三角形面积等于4,则k 的值为________.【答案】±2【解析】求出直线与坐标轴的交点坐标或坐标表达式,根据三角形的面积公式建立关系式,即可求出k 的值.直线与y 轴的交点坐标为(0,﹣4),与x 轴的交点坐标为(4k,0),则与坐标轴围成的三角形的面积为14442k´´=,解得k=±2,经检验,k=±2是方程的解且符合题意,故答案为:±2.【点睛】本题考查了一次函数与坐标轴的交点与相关三角形的面积问题,要熟悉函数与坐标轴的交点的求法.20.在平面直角坐标系xOy 中,直线l :1(0)y kx k =-¹与直线x k y k =-=-,分别交于点A B ,.直线x k =-与y =k -交于点C .记线段AB ,BC AC ,围成的区域(不含边界)为W .横,纵坐标都是整数的点叫做整点.(1)当2k =-时,区域W 内的整点个数为_____;(2)若区域W 内没有整点,则k 的取值范围是_______.【答案】6 01k <…或k=2【解析】(1)当2k =-时,直线21y x =--与直线22x y ,==的交点A B ,的坐标为:322æö÷ç-÷ç÷çèø, ,()2,-5,作出函数图像即可得出答案.(2)将k=1与k=2的函数图像作出,得出线段AB ,BC AC ,围成的区域(不含边界)无整点,即区域W 内没有整点.(1)解:如图示,当2k =-时,直线21y x =--与直线22x y ,==的交点A B ,的坐标为:322æö÷ç-÷ç÷çèø ,()2,-5,则,区域W 内的整点有(0,0),(0,1),(1,-2),(1,-1),(1,0),(1,1)共6个.(2)当1k =时,图像如下图示线段AB ,BC AC ,围成的区域(不含边界)无整点,当2k =时,图像如下图示线段AB ,BC AC ,围成的区域(不含边界)无整点,综上所述,由(1)的图像可知,当01k <…或k=2时,区域W 内没有整点.【点睛】本题考查的是一次函数图像的性质特点,解题的关键是要懂得根据题目的条件,画出相对应的函数图像.三、解答题21.已知一次函数122y x =+的图象与x 轴交于点A ,与y 轴交于点B ,求A ,B 两点的坐标并在如图的坐标系中画出此函数的图象.【答案】()4,0A -;()0,2B ;图象见解析.【解析】根据一次函数的解析式求出点A 、B 的坐标,然后利用五点作图法,最好使用列表-描点-连线的作图步骤作出图象.解:当x=0时,则有:2y =;当y=0时,则有:4x =-;∴点()4,0A -,点()0,2B ,∴函数图像如图所示:【点睛】本题主要考查一次函数的图像,熟练掌握一次函数图像的画法是解题的关键.22.画出函数y=-2x+2的图象,结合图象回答下列问题:(1)这个函数中,随着自变量x的增大,函数值y是增大还是减小?它的图象从左到右怎样变化?(2)当x取何值时,y=0?(3)当x取何值时,y<0?【答案】(1)见详解;(2)x=1;(3)x>1【解析】(1)画出函数图像,由图像可得;y随着x的增大而减小,图像从左至右下降;(2)由图像可得,当x=1时,y=0;(3)由图像可得,当x>1时,y<0.(1)函数y=-2x+2的图象为:由图象知:这个函数中,随着x的增大,y将减小,图象从左向右下降;(2)由图象知:当x=1时,y=0;(3)由图象知:当x>1时,y<0.23.一次函数y=kx+b的图象如图所示:(1)求出该一次函数的表达式;(2)当x=10时,y的值是多少?(3)当y=12时,x的值是多少?【答案】(1)y=x﹣2.(2)8;(3)14【解析】【解析】(1)观察函数的图象,得出一次函数经过点(2,0)(0,﹣2),代入函数解析式即得出一次函数的表达式.(2)(3)再分别令x=10和y=12,即可得出对应的y,x的值.解:(1)观察图象可得一次函数的图象经过点(2,0),(0,﹣2)代入函数的解析式y=kx+b中,得202k bb+=ìí=-î,解得k1b2=ìí=-î,∴一次函数的表达式为y=x﹣2.(2)令x=10,得y=10﹣2=8(3)令y=12,得x=12+2=14.【点睛】本题考查了待定系数法求一次函数的解析式,比较简单,同学们要熟练掌握.24.已知一次函数的图像经过()1,5A --和()1,1B 两点.(1)求这个一次函数的解析式;(2)若点(),1C a a -+在这个一次函数的图象上,求a 的值.【答案】(1)函数的解析式是:y=3x−2;(2) a=0.75.【解析】(1)设函数的解析式是y=kx+b ,把A (-1,-5)和B (1,1)代入函数的解析式,然后解方程组即可求解;(2)把点C 代入一次函数的解析式中,列方程可得a 的值.(1)设函数的解析式是y=kx+b ,根据题意得:53k b k b -+=-ìí+=î,解得:32k b =ìí=-î,则函数的解析式是:y=3x−2;(2)∵点C(a,−a+1)在这个一次函数的图象上,∴−a+1=3a −2a=0.75.【点睛】本题考查一次函数图象上点的坐标特征和待定系数法求一次函数解析式,解题的关键是掌握待定系数法求一次函数解析式.25.如图,已知直线123y x =-+和21y mx =-分别交y 轴于点A ,B ,两直线交于点()1,C n .(1)求m ,n 的值;(2)求ABC V 的面积.【答案】(1)2m =,1n =;(2)△ABC 的面积为2.【解析】(1)先利用直线1y 求出点C 坐标,再利用直线2y 求出m 的值.(2)两个函数图象与y 轴的交点为A 、B ,即x=0时,可以求出A 、B 坐标,即可得出三角形面积.解:(1)∵两直线交于点()1,C n ∴将()1,C n 代入123y x =-+得:n=-2+3=1即:C 点坐标为:(1,1)将C (1,1)代入21y mx =-得:m-1=1即:m=2故:m=2,n=1.(2)∵当x=0时,13y =∴A (0,3)当x=0时,2-1y =∴B (0,-1)∴11141222ABC S AB D =´=´´= 故:△ABC 的面积为2.【点睛】本题属于一次函数的基础题型,根据已知点求出函数解析式,然后利用解析式求出点坐标,并求出三角形面积.26.直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点,直线24(0)y kx k k =+->与直线2y x =--相交于C 点.(1)请说明24(0)y kx k k =+->经过点(4,2);(2)1k =时,点D 是直线24(0)y kx k k =+->上一点且在y 轴的右侧,若2DOB DOA S S =V V ,求点D 的坐标;(3)若点C 在第三象限,求k 的取值范围.【答案】(1)见解析;(2)(4,2)D 或42,33D æö-ç÷èø;(3)113k <<【解析】(1)把x=4代入函数关系求出y 的值即可;(2)先求出A ,B 的坐标,进而求出OA ,OB 的值,再设点D 的坐标为(,2)a a -,根根据2DOB DOA S S =V V ,列出方程求解即可;(3)分别求出当直线24(0)y kx k k =+->经过点A ,B 时k 的值即可.解:(1)当4x =时,244242y kx k k k =+-=+-=∴点(4,2)在直线24(0)y kx k k =+->上.(2)∵直线2y x =--与x 轴相交于A 点,与y 轴相交于B 点∴(2,0)A -,(0,2)B -∴2OA OB==设D 的坐标为(,2)a a -∵2DOB DOA S S =V V ,∴2|2|a a =-,∴4a =或43a =,∴(4,2)D 或42,33D æö-ç÷èø(3)当直线24(0)y kx k k =+->经过点A 时,0224k k =-+-,解之得,13k =当直线24(0)y kx k k =+->经过点B 时,有224k -=-,解之得,1k =∴若点C 在第三象限,则113k <<.【点晴】本题考查了一次函数与一元一次方程,是一次函数的综合题,利用数形结合进行分析是解题的关键.27.如图,已知直线:4AB y x =+与直线AC 交于点A ,与x 轴交于点B ,且直线AC 过点(2,0)C 和点(0,1)D ,连接BD .(1)求直线AC 的解析式.(2)求交点A 的坐标,并求出ABD △的面积.(3)在x 轴上是否存在一点P ,使得APD △周长最小?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)112y x =-+;(2)(2,2)A -,3ABD S =V ;(3)存在点P 使APD △周长最小2,03P æö-ç÷èø.【解析】(1)设直线AC 解析式y kx b =+,代入(2,0)C ,(0,1)D ,用待定系数法解题即可;(2)将直线AB 与直线AC 两个解析式联立成方程组,转化成解二元一次方程组,再结合三角形面积公式解题;(3)作D 、E 关于x 轴对称,利用轴对称性质、两点之间线段最短解决最短路径问题,再用待定系数法解直线AE 的解析式,进而令0y =,解得直线与x 轴的交点即可.(1)设直线AC 解析式y kx b =+,把(2,0)C ,(0,1)D 代入y kx b =+中,得201k b b +=ìí=î,解得121k b ì=-ïíï=î,\直线AC 解析式112y x =-+.(2)联立1124y x y x ì=-+ïíï=+î,解得22x y =-ìí=î.(2,2)A \-,把0y =代入4y x =+中,得4x =-,(4,0)B \-,(2,0)C Q ,6BC \=,1162622ABC A S BC y \=×=´´=V ,1161322DBC D S BC y =×=´´=V ,633ABD ABC DBC S S S \=-=-=V V V .故答案为:(2,2)A -,3ABD S =V .(3)作D 、E 关于x 轴对称,PD PE \=,APD QV 周长AP PD AD =++,AD Q 是定值,AP PD \+最小时,APD △周长最小,AP PD AP PE AE +=+³Q ,\A 、P 、B 共线时,AP PE +最小,即AP PD +最小,连接AE 交x 轴于点P ,点P 即所求,(0,1)D Q ,D 、E 关于x 轴对称,(0,1)E \-,设直线AE 解析式y mx n =+,把(2,2)A -,(0,1)E -代入y mx n =+中,221m n n -+=ìí=-î,解得321m n ì=-ïíï=-î,312y x \=--,令0y =得3102x --=,23x =-,2,03P æö\-ç÷èø,即存在点P 使APD △周长最小2,03P æö-ç÷èø.【点睛】本题考查一次函数、二元一次方程组、轴对称最短路径问题、与x 轴交点等知识,是重要考点,难度较易,掌握相关知识是解题关键.。
【考纲说明】1、理解一次函数的概念,会用待定系数法确定函数解析式;2、掌握一次函数的图象和性质并灵活运用;3、能根据函数值的取值范围判断自变量的取值范围,能解决与一次函数有关的应用问题;4、本部分在中考中占3—12分。
【趣味链接】聪明的你一定知道乌鸦喝水的故事吧!如图一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不到瓶中的水。
于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随着石子的增多而上升,乌鸦喝到了水。
但是还没解渴,瓶中的水面就下降到乌鸦够不着的高度。
乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,呱呱的飞走了。
如果设衔入瓶中的石子的体积为x,瓶中的水面的高度为y,能大致表示上面故事情节的图象是一条直线,这就是我们这节课所说的一次函数。
【知识梳理】一、函数基本概念、1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
(x的取值范围)二、一次函数1、自变量x和因变量y有如下关系:y=kx+b (k为任意不为零实数,b为任意实数)则此时称y是x的一次函数。
特别的,当b=0时,y是x的正比例函数。
即:y=kx (k为任意不为零实数)定义域:自变量的取值范围,自变量的取值应使函数有意义;要与实际有意义。
2、当x=0时,b为函数在y轴上的截距。
3、一次函数性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。
(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。
(3)函数不是数,它是指某一变量过程中两个变量之间的关系。
特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。
典型例题
1、设函数54)(2--=x x x f 。
(1)在区间]6,2[-上画出函数)(x f 的图像。
(2)设集合A=}5)({≥x f x ,B=),6[]4,0[]2,+∞⋃⋃-∞-,试判断集合A 和B 之间的关系,并给出证明。
(3)当k>2时,求证:在集合]5,1[-上,k kx y 3+=的图像位于函数)(x f 图像的上方。
解:(1)
(2)方程5)(=x f 的解分别是142-,0,142+,由于)(x f 在]1,(--∞和]5,2[上单调递减,在]2,1[-和),5[+∞上单调递增,因此,),142[]4,0[]142,(+∞+⋃⋃--∞=A ,由于6142<+,2142->-,所以A B 真包含于。
(3)证法一:当]5,1[-∈x 时,54)(2++-=x x x f ,
)
53()4()54()3()(22-+-+=++--+=k x k x x x x k x g .4
3620)24(22+----=k k k x
12
4,2<-∴>k k ,又51≤≤-x , ①当1241<-≤-k ,即62≤<k 时,取2
4k x -=, ]64)10[(4
143620)(22min ---=+--=k k k x g 。
64)10(162<-≤k ,
0)(,064)10(min 2><--∴x g k 则。
②当12
4-<-k ,即6>k 时,取1-=x ,02)(min >=k x g 。
由①②可知: 当2>k 时,0)(>x g ,]5,1[-∈x ,因此,在区间]5,1[-上,k kx y 3+=的图像位于函数)(x f 图像的上方。
证法二:当]5,1[-∈x 时,54)(2
++-=x x x f ,由⎩⎨⎧++-=+=54)3(2x x y x k y , 得0)53()4(2=-+-+k x k x 。
令0)53(4)4(2=---=∆k k ,
解得2=k 或18=k 。
在区间]5,1[-上,当2=k 时,)3(2+=x y 的图像与函数)(x f 的图像只有一个交点)8,1(;
当18=k 时,)3(18+=x y 的图像与函数)(x f 的图像没有交点。
由图可知:由于直线)3(+=x k y 过点)0,3(-,当2>k 时,直线)3(+=x k y 是由直线)3(2+=x y 绕点)0,3(-逆时针方向旋转得到,因此,在区间]5,1[-上,k kx y 3+=的图像位于函数)(x f 图像的上方。
理由:(1)解决较为简单的函数图像作法。
(2)数形结合解方程和不等式,
(3)图像之间的位置关系。
2、已知函数|4||8|)(---=x x x f 。
(1) 作出函数)(x f y =的图像;
(2) 解不等式2|4||8|>---x x 。
解:(Ⅰ)44()2124848.x f x x x x ⎧⎪=-+<⎨⎪->⎩
, ≤,, ≤, 图像如下:
(Ⅱ)不等式842x x --->,即()2f x >,
由2122x -+=得5x =.
由函数()f x 图像可知,原不等式的解集为(5)-∞,.
理由:本题目比较简单,为08年宁夏海南第24题,(1)利用给出的坐标系可以规范学生的作图。
(2)数形结合,解决方程及不等式问题。