2020年普通高考数学【山东卷】全真模拟卷2解析版
- 格式:doc
- 大小:668.00 KB
- 文档页数:17
2020届新高考数学模拟仿真卷(山东卷)第2卷CE 的延长线交AB 于点F,则()』的图象,只需把函数y sin 2x 的图象上所有的点( 3A.向左平行移动 」个单位长度3B.向右平行移动 」个单位长度3C.向左平行移动 1个单位长度6D.向右平行移动 」个单位长度 61、 已知a,b R i 是虚数单位,若2i 与2 bi 互为共轲复数,则 a bi ()A. 5 4iB. 5 4iC. 3 4i2、 已知全集U 为() A.{ 1,0,1,2} C.D. 3 4iR ,集合A{x|x 22 0}, B { 1,0,1,2},则图中阴影部分所表示的集合B.{ 1,0,1} C.{0,1,2} D.{0,1}3、函数f (x ) A. e x-21的图象大致为(A. uur DF1 uuu -AB 6 1 uur -AC2 B. uur DF 1 uur -AB3 1 uuir-ACC. uur DF3uuur-AB41 uur AC 2D. uur DF1 uuir 一AB 21 uur AC 6在 ABC 中, D 是BC 中点, 中占IE 是AD 4、 5、为了得到函数 y sin 2x22C 2切与点N,与双曲线E :与 与 1在第一象限交于点 M,满足a b…一 ,一… ....... … 1 ,一,MA 1 MA 2,若椭圆C 的离心率为e,双曲线E 的离心率为e 2,则为 —的值为()e 19、下图是国家统计局 2019年4月11日发布的2018年3月到2019年3月全国居民消费价 格的涨跌幅情况折线图.(注:2019年2月与2018年2月相比较称同比,2019年2月与2019年A.2018年3月至2019年3月全国居民消费价格同比均上涨B.2018年3月至2019年3月全国居民消费价格环比有涨有跌C.2019年3月全国居民消费价格同比涨幅最大D.2019年3月全国居民消费价格环比变化最快log 2(x 1),x 110、已知f (x ) 1 x ,则下列结论正确的是()(-),x 1 2 (6)6、若 2 3x a o2&x a ?xa 6x 6,则 a a 2a 3 a 6 等于()A.-1B.1C. -64D.-637、已知函数f(x ) 1,x 0,若对任意e ,x 0, [1,1],不等式f[(1 2a)x 4a 2] [f(x 2)]a恒成立,其中a 0,则a 的取值范围是1 A. (0,T 3 8、已知椭圆 2 C : a1 B.[ —,)2 2 by 2 1(a b0)的左,右顶点分别为 A, A 2 ,c 为椭圆C 的半焦距,过A 的直线与圆x 2B. 5 P 6/5C. --- 5D. 2.5 —的比 一■if个国优代消嘴蜡端鼓眼险1月相比较称环比),根据该折线图,下列结论正确的是()蜉・3货粕B.C 的离心率为J 3C.曲线y e x 21经过C 的一个焦点D .直线x V2y 1 0与C 有两个公共点一 21A. f(f(1)) -yB. f(f( 1)) 211、已知双曲线 C 过点(3, "2)且渐近线为y2A.C 的方程为—y 213- 1 C. f (f (0)) 2c 2020D. f(f(——))2019丑x,则下列结论正确的是() 3 201912、已知 AB,C 三点均在球。
2021年山东高|考数学理试题解析一、选择题:本大题共12小题 ,每题5分 ,总分值60分.在每题给出的四个选项中 ,只有一项为哪一项符合题目要求的 .(1 )复数z 满足(z -3)(2 -i) =5(i 为虚数单位) ,那么z 的共轭复数为( )【答案】D 【解析】由(z-3)(2-i)=5,得(2 )设集合A ={0,1,2},那么集合B ={x -y |x ∈A, y ∈A }中元素的个数是( ) A. 1 B. 3 C 【答案】C【解析】因为,x y A ∈,所以2,1,0,1,2x y -=-- ,即{2,1,0,1,2}B =--,有5个元素 ,选【解析】因为函数为奇函数 ,所以(1)(1)(11)2f f -=-=-+=- ,选A.OP PAO OA ∠==,即3PAO π∠=,选B.(5 )将函数y =sin (2x +ϕ )的图像沿x 轴向左平移8π个单位后 ,得到一个偶函数的图像 ,那么ϕ的一个可能取值为 (A )34π (B ) 4π (C )0 (D ) 4π- 【答案】B【解析】将函数y =sin (2x +ϕ )的图像沿x 轴向左平移8π个单位 ,得到函数sin[2()]sin(2)84y x x ππϕϕ=++=++ ,因为此时函数为偶函数 ,所以,42k k Z ϕπ+=+∈ ,即,4k k Z ϕπ=+∈ ,所以选B.(6 )在平面直角坐标系xOy 中 ,M 为不等式组:2x y 20x 2y 103x y 80--≥⎧⎪+-≥⎨⎪+-≤⎩,所表示的区域上一动点 ,那么直线OM 斜率的最||小值为 (A )2 (B )1 (C ) 13- (D ) 12- 【答案】 C【解析】作出可行域如图 ,由图象可知当M 位于点D 处时 ,OM的斜率最||小 .由210380x y x y +-=⎧⎨+-=⎩得31x y =⎧⎨=-⎩ ,即(3,1)D -,此时OM 的斜率为1133-=- ,选C. (7 )给定两个命题p 、q ,假设﹁p 是q 的必要而不充分条件 ,那么p 是﹁q 的(A )充分而不必条件 (B )必要而不充分条件(C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】因为﹁p 是q 的必要而不充分条件 ,所以﹁q 是p 的必要而不充分条件 ,即p 是﹁q 的充分而不必要条件 ,选A.(8 )函数y =xcosx + sinx 的图象大致为(A ) (B ) (C) (D) 【答案】 D【解析】函数x π=时 ,()0f ππ=-<,排除A,选D.(9 )过点 (3 ,1 )作圆 (x -1 )2 +y 2 =1的两条切线 ,切点分别为A ,B ,那么直线AB 的方程为 (A )2x +y -3 =0 (B )2x -y -3 =0 (C )4x -y -3 =0 (D )4x +y -3 =0 【答案】A【解析】由图象可知 ,(1,1)A 是一个切点 ,所以代入选项知 ,,B D 不成立 ,排除 .又AB 直线的斜率为负 ,所以排除C ,选A.设切线的斜率为k ,那么切线方程为1(3)y k x -=- ,即130kx y k -+-= (10 )用0 ,1 ,… ,9十个数字 ,可以组成有重复数字的三位数的个数为 (A )243 (B )252 (C )261 (D )279 【答案】B【解析】有重复数字的三位数个数为91010900⨯⨯= .没有重复数字的三位数有1299648C A =,所以有重复数字的三位数的个数为900648=252- ,选B.(11 )抛物线C 1:y = 12px 2(p >0)的焦点与双曲线C 2: 2213x y -=的右焦点的连线交C 11在点M 处的切线平行于C 2的一条渐近线 ,那么p =332343【答案】D【解析】经过第|一象限的双曲线的渐近线为3y x =.抛物线的焦点为(0,)2p F ,双曲线的右焦点为2(2,0)F.1'y xp=,所以在2(,)2xM xp处的切线斜率为,即1xp=,所以0x p=,即三点(0,)2pF,2(2,0)F,,)6pM p共线,所以202p pp--=-,即p=,选D.【解析】由22340x xy y z-+-=,得2234z x xy y=-+.所以4yx=,即2x y=时取等号此时22yz=,1)(max=zxy.xyyyzyx2122212-+=-+)211(2)11(2yyxy-=-=1)221121(42=-+≤yy,应选B.二、填空题:本大题共4小题,每题4分,共16分(13 )执行右面的程序框图,假设输入的ε的值为0.25 ,那么输入的n的值为【答案】3【解析】第|一次循环 ,10123,312,2F F n =+==-== ,此时1110.253F =≤不成立 .第二次循环 ,10235,523,3F F n =+==-== ,此时1110.255F =≤成立 ,输出3n = . (14)在区间[ -3,3]上随机取一个数x ,使得 |x +1 | - |x -2 |≥1成立的概率为 【答案】13【解析】设()12f x x x =+-- ,那么3,31()1221,123,23x f x x x x x x --≤≤-⎧⎪=+--=--<<⎨⎪≤≤⎩.由211x -≥ ,解得12x ≤< ,即当13x ≤≤时 ,()1f x ≥ .由几何概型公式得所求概率为31213(3)63-==-- .(15 )向量AB 与AC 的夹角为120 ,且||3,||2,AB AC ==假设,AP AB AC λ=+且AP BC ⊥,那么实数λ的值为【答案】712【解析】向量AB 与AC 的夹角为120 ,且||3,||2,AB AC ==所以1cos1203232AB AC AB AC ⋅=⋅=-⨯⨯=- .由AP BC ⊥得 ,0AP BC ⋅= ,即()()0AP BC AB AC AC AB λ⋅=+⋅-= ,所以22(1)0AC AB AB AC λλ-+-⋅= ,即493(1)0λλ---= ,解得712λ=. (16 )定义 "正对数〞:0,01ln ln ,1x x x x +<<⎧=⎨≥⎩ ,现有四个命题:①假设0,0a b >> ,那么ln ()ln b a b a ++= ②假设0,0a b >> ,那么ln ()ln ln ab a b +++=+ ③假设0,0a b >> ,那么ln ()ln ln a a b b+++≥-④假设0,0a b >> ,那么ln ()ln ln ln 2a b a b ++++≤++ 其中的真命题有: (写出所有真命题的编号 )【答案】①③④【解析】①当1,0a b >>时 ,1ba > ,ln ()ln ln ,ln lnb b a a b a b a b a ++=== ,所以ln ()ln b a b a ++=成立 .当01,0a b <<>时 ,01b a << ,此时ln ()0,ln 0b a b a ++== ,即ln ()ln b a b a ++=成立 .综上ln ()ln b a b a ++=恒成立 .②当1,a e b e==时 ,ln ()ln10,ln ln 1,ln 0ab a e b +++===== ,所以ln ()ln ln ab a b +++=+不成立 .③讨论,a b 的取值 ,可知正确 .④讨论,a b 的取值 ,可知正确 .所以正确的命题为①③④ . 三、解答题:本大题共6小题 ,共74分. (17 )设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a +c =6 ,b =2 ,cosB = 79. (Ⅰ )求a ,c 的值;(Ⅱ )求sin (A -B )的值. 解答: (1 )由cosB = 79与余弦定理得 ,221449a c ac +-=,又 a +c =6 ,解得3a c ==(2 )又 a =3,b =2 ,42sin 9B =与正弦定理可得 ,22sin 3A =,1cos 3A = ,(18 ) (本小题总分值12分 )如下列图 ,在三棱锥P -ABQ 中 ,PB ⊥平面ABQ ,BA =BP =BQ ,D ,C ,E ,F 分别是AQ ,BQ ,AP ,BP 的中点 ,AQ =2BD ,PD 与EQ 交于点G ,PC 与FQ 交于点H ,连接GH .(Ⅰ )求证:AB//GH ;(Ⅱ )求二面角D -GH -E 的余弦值 . 解答: (1 )因为C 、D 为中点 ,所以CD//AB 同理:EF//AB ,所以EF//CD ,EF ⊂平面EFQ , 所以CD//平面EFQ ,又CD ⊂平面PCD,所以 CD//GH ,又AB//CD ,所以AB//GH.(2)由AQ =2BD ,D 为AQ 的中点可得 ,△ABQ 为直角三角形 ,以B 为坐标原点 ,以BA 、BC 、BP 为x 、y 、z 轴建立空间直角坐标系 ,设AB =BP =BQ =2 ,可得平面GCD 的一个法向量为1(0,2,1)n = ,平面EFG 的一个法向量为2(0,1,2)n = ,可得4cos 5α==,所以二面角D (19 ) (2 )由题意可知X 的可能取值为:3,2,1,0相应的概率依次为:14416,,, ,所以EX =7解答: (1 )由S 4 =4S 2 ,a 2n =2a n +1 ,{a n }为等差数列 ,可得 ,11,2a d ==所以21n a n =-2.71828是自然对数的底数 (1 )求()f x 的单调区间 ,最||大值; (2 )讨论关于x 的方程|ln |()x f x =根的个数.于x 轴的直线被椭圆C 截得的线段长为l.(Ⅰ )求椭圆C 的方程;(Ⅱ )点P 是椭圆C 上除长轴端点外的任一点 ,连接PF 1、PF 2,设∠F 1PF 2的角平分线 PM 交C 的长轴于点M (m ,0 ) ,求m 的取值范围;(Ⅲ )在 (Ⅱ )的条件下 ,过点p 作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共11||||PF PM PF PM ⋅ =22||||PF PM PF PM ⋅,11||PF PM PF ⋅ =22||PF PMPF ⋅,设(P 204x ≠ ,将向量坐标代入并化简得:m (23000416)312x x x -=- ,因为204x ≠ ,(2,2)∈- ,所以33(,)m ∈-。
2020年山东省高考理科数学仿真模拟试题二(附答案)(满分150分,考试时间120分钟)注意事项:1.答题前,考生务必将自己的姓名、准考证号码填写在答题卡和试卷指定位置上,并将条形码准确粘贴在条形码区域内。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合{}2log (1)2A x x =-<,{}16B x x =-<<,则A B ⋂= ( ) A. {}15x x -<< B. {}16x x -<< C. {}15x x <<D. {}16x x <<2. 复数i z a b =+(,a b R ∈)满足2i(1)z z =-,则a b +=( ) A. 35-B. 15-C.15D.353. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为A. B. C.D.4. 为了计算满足的最大正整数,设置了如下图所示的程序框图,若判断框中填写的是“”,则输出框中应填( )A. 输出B. 输出C. 输出D. 输出5. 已知函数()cos x xf x e=,则()f x 的图象在点()()0,0f 处的切线方程为( ) A. 10x y ++= B. 10x y +-=C. 10x y -+=D. 10x y --=6. 某班有50名学生,一次数学考试的成绩ξ服从正态分布N (105,102),已知 P (95≤ξ≤105)=0.32,估计该班学生数学成绩在115分以上的人数为( ) A. 10B. 9C. 8D. 77. 为了得到函数sin y x =的图像,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图像( )A. 横坐标伸长为原来的两倍,纵坐标不变,再向右平移6π个单位 B. 横坐标伸长为原来的两倍,纵坐标不变,再向左平移6π个单位C. 横坐标缩短为原来的12,纵坐标不变,再向右平移6π个单位D. 横坐标缩短为原来的12,纵坐标不变,再向左平移6π个单位8. 若,a b 是从集合{}1,1,2,3,4-中随机选取两个不同元素,则使得函数()5ab f x x x =+是奇函数的概率为( ) A.320B.310C.925D.359.已知命题2:233p x x a ++≥恒成立,命题():21xq y a =-为减函数,若p 且q 为真命题,则a 的取值范围是( ) A .1223a <≤ B .102a <<C .121a << D .23a £10.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,)x m ∈-∞,都有()1f x <,则m 的取值范围是( )A .9,4⎛⎤-∞ ⎥⎝⎦ B .8,3⎛⎤-∞ ⎥⎝⎦ C .7,3⎛⎤-∞ ⎥⎝⎦ D .5,2⎛⎤-∞ ⎥⎝⎦11.倾斜角为15°的直线l 经过原点且和双曲线22221(0,0)x y a b a b-=>>的左右两支交于A ,B 两点,则双曲线的离心率的取值范围是( )A.)+∞B. )+∞C. D. 12.曲线()xf x ke-=在x=0处的切线与直线x-2y-1=0垂直,则12,x x 是()()ln g x f x x =-的两个零点,则( )A.12211x x e e << B. 12211x x e << C. 1211x x e<< D. 212e x x e <<二、填空题:本题共4小题,每小题5分,共20分。
按秘密级事项管理★启用前2020 年普通高等学校招生考试全国统一考试(模拟卷)数 学注意事项:1.答卷前考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时 选出每个小题答案后 用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动 用 橡皮擦干净后再选涂其他答案标号。
回答非选择题时将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后将本试卷和答题卡一并交回.一、单项选择题:本题共 8 小题每小题 5 分共 40 分。
在每小题给出的四个选项中只有一项是符合题目要求的。
1.设集合 A = {(x , y ) | x + y = 2} B = {(x , y ) | y = x 2}则 A B =A. {(1,1)}B. {(-2, 4)}C. {(1,1), (-2, 4)}D. ∅2.已知 a + bi (a , b ∈ R ) 是1- i的共轭复数 则 a + b =1+ iA. -1B. -1 2C. 1 2D. 13.设向量 a = (1,1) b = (-1, 3) c = (2,1)且 (a - b ) ⊥ c则=A. 3B. 2C. -24. ( 1 - x )10的展开式中 x 4的系数是xD. -3A. -210B. -120C. 120D. 2105.已知三棱锥 S - ABC 中 ∠SAB = ∠ABC =, S B = 4, S C = 22, AB = 2, BC = 6则三棱锥 S - ABC 的体积是133 2 A.4 B. 6C. 4D. 66.已知点 A 为曲线 y = x + 4(x > 0) 上的动点 xB 为圆 (x - 2)2 + y 2 = 1上的动点 则| AB | 的最小值是A. 3B. 4C. 3D. 47.设命题 P :所有正方形都是平行四边形。
则 ⌝p 为A. 所有正方形都不是平行四边形B. 有的平行四边形不是正方形C. 有的正方形不是平行四边形D. 不是正方形的四边形不是平行四边形8.若 a > b > c > 1 且 ac < b2则A. log a b > log b c > log c aB. log c b > log b a > log a cC. log b c > log a b > log c aD. log b a > log c b > log a c二、多项选择题:本题共 4 小题每小题 5 分共 20 分。
山东省2020届高三数学二模试卷含解析一、单选题(共8题;共16分)1.已知角的终边经过点,则()A. B. C. D.2.已知集合,则()A. B. C. D.3.设复数z满足,z在复平面内对应的点为,则()A. B.C. D.4.设,,,则a,b,c的大小关系是()A. B. C. D.5.已知正方形的边长为()A. 3B. -3C. 6D. -66.函数y= 的图象大致是()A. B.C. D.7.已知O,A,B,C为平面内的四点,其中A,B,C三点共线,点O在直线外,且满足.其中,则的最小值为()A. 21B. 25C. 27D. 348.我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.椭球是椭圆绕其长轴旋转所成的旋转体,如图,将底面半径都为.高都为的半椭球和已被挖去了圆锥的圆柱(被挖去的圆锥以圆柱的上底面为底面,下底面的圆心为顶点)放置于同一平面上,用平行于平面且与平面任意距离d处的平面截这两个几何体,截面分别为圆面和圆环,可以证明圆= 圆环总成立.据此,椭圆的短半轴长为2,长半轴长为4的椭球的体积是()A. B. C. D.二、多选题(共4题;共12分)9.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述中错误的是()A. 消耗1升汽油乙车最多可行驶5千米.B. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多.C. 甲车以80千米/小时的速度行驶1小时,消耗10升汽油.D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油.10.设,分别为双曲线的左、右焦点,若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则关于该双曲线的下列结论正确的是()A. 渐近线方程为B. 渐近线方程为C. 离心率为D. 离心率为11.已知函数的图象的一条对称轴为,则下列结论中正确的是()A. 是最小正周期为的奇函数B. 是图像的一个对称中心C. 在上单调递增D. 先将函数图象上各点的纵坐标缩短为原来的,然后把所得函数图象再向左平移个单位长度,即可得到函数的图象.12.如图,点M是正方体中的侧面上的一个动点,则下列结论正确的是()A. 点M存在无数个位置满足B. 若正方体的棱长为1,三棱锥的体积最大值为C. 在线段上存在点M,使异面直线与所成的角是D. 点M存在无数个位置满足到直线和直线的距离相等.三、填空题(共3题;共3分)13.古典著作《连山易》中记载了金、木、水、火土之间相生相克的关系,如图所示,现从五种不同属性的物质中任取两种,则取出的两种物质恰是相克关系的概率为________14.已知点A,B,C,D均在球O的球面上,,,若三棱锥体积的最大值是,则球O的表面积为________15.设是定义在R上且周期为6的周期函数,若函数的图象关于点对称,函数在区间(其中)上的零点的个数的最小值为,则________四、双空题(共1题;共1分)16.动圆E与圆外切,并与直线相切,则动圆圆心E的轨迹方程为________,过点作倾斜角互补的两条直线,分别与圆心E的轨迹相交于A,B两点,则直线的斜率为________.五、解答题(共6题;共61分)17.已知△的内角A,B,C的对边分别为a,b,c,若,________,求△的周长L和面积S.在① ,,② ,,③ ,这三个条件中,任选一个补充在上面问题中的横线处,并加以解答.18.已知为等差数列,,,为等比数列,且,.(1)求,的通项公式;(2)记,求数列的前n项和.19.如图所示,在等腰梯形中,∥,,直角梯形所在的平面垂直于平面,且,.(1)证明:平面平面;(2)点在线段上,试确定点的位置,使平面与平面所成的二面角的余弦值为.20.已知椭圆经过点,离心率为(1)求椭圆C的方程;(2)设直线与椭圆C相交于A,B两点,若以,为邻边的平行四边形的顶点P在椭圆C上,求证:平行四边形的面积为定值.21.在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区200名患者的相关信息,得到如下表格:潜伏期(单位:天)人数17 41 62 50 26 3 1附:0.05 0.025 0.0103.841 5.024 6.635,其中(1)求这200名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述200名患者中抽取40人得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;潜伏期天潜伏期天总计50岁以上(含50岁)2050岁以下9总计40(3)以这200名患者的潜伏期超过6天的频率,代替该地区1名患者潜伏期超过6天发生的概率,每名患者的潜伏期是否超过6天相互独立.为了深入硏究,该研究团队在该地区随机调查了10名患者,其中潜伏期超过6天的人数最有可能(即概率最大)是多少?22.已知函数,(1)讨论函数的单调性;(2)当时,证明曲线分别在点和点处的切线为不同的直线;(3)已知过点能作曲线的三条切线,求m,n所满足的条件.答案解析部分一、单选题1.【答案】B【解析】【解答】解:由于角的终边经过点,则,.故答案为:B.【分析】由条件利用任意角的三角函数的定义,求得和的值,可得的值.2.【答案】C【解析】【解答】解:集合则.故答案为:C.【分析】先化简集合B,再根据交集的定义即可求出.3.【答案】A【解析】【解答】解:∵z在复平面内对应的点为,∴,又,.故答案为:A.【分析】由z在复平面内对应的点为,可得,然后代入,即可得答案.4.【答案】D【解析】【解答】解:,,,∴.故答案为:D.【分析】利用对数函数和指数函数的性质求解.5.【答案】A【解析】【解答】解:因为正方形的边长为3,,则.故答案为:A.【分析】直接根据向量的三角形法则把所求问题转化为已知长度和夹角的向量来表示,即可求解结论.6.【答案】D【解析】【解答】解:当x>0时,y=xlnx,y′=1+lnx,即0<x<时,函数y单调递减,当x>,函数y单调递增,因为函数y为偶函数,故选:D【分析】根据掌握函数的奇偶性和函数的单调性即可判断.7.【答案】B【解析】【解答】解:根据题意,A,B,C三点共线,点O在直线外,.设,,则,,消去得,(当且仅当时等式成立).故答案为:B.【分析】根据题意,易得,则,根据基本不等式的应用运算,易得的最小值.8.【答案】C【解析】【解答】解:∵圆= 圆环总成立,∴半椭球的体积为:,∴椭球的体积,∵椭球体短轴长为2,长半轴长为4,∴该椭球体的体积.故答案为:C.【分析】由圆= 圆环总成立,求出椭球的体积,代入b与a的值得答案.二、多选题9.【答案】A,B,C【解析】【解答】解:对于A,由图象可知当速度大于40km/h时,乙车的燃油效率大于5km/L,∴当速度大于40km/h时,消耗1升汽油,乙车的行驶距离大于5km,A错误,符合题意;对于B,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,B错误,符合题意;对于C,由图象可知当速度为80km/h 时,甲车的燃油效率为10km/L,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km,燃油为8升,C错误,符合题意;对于D,由图象可知当速度小于80km/h时,丙车的燃油效率大于乙车的燃油效率,∴用丙车比用乙车更省油,D正确,不符合题意.故答案为:ABC.【分析】过横轴上某一点做纵轴的平行线,这条线和三条折线的交点的意思是相同速度下的三个车的不同的燃油效率,过纵轴上某一点做横轴的平行线,这条线和三条折线的交点的意思是相同燃油效率下的三个车的不同的速度,利用这一点就可以很快解决问题.涉及到将图形语言转化为数学语言的能力和简单的逻辑推理能力.10.【答案】A,C【解析】【解答】解:设,由,可得,由到直线的距离等于双曲线的实轴长,设的中点,由等腰三角形的性质可得,,即有,,即,可得,即有,则双曲线的渐近线方程为,即;离心率.故答案为:AC.【分析】设,运用双曲线的定义和等腰三角形的性质可得关于a,b,c的方程,再由隐含条件即可得到a与b的关系,求出双曲线的渐近线方程及离心率即可.11.【答案】B,D【解析】【解答】解:,当时,取到最值,即解得,.A:,故不是奇函数,A不符合题意;B:,则是图像的一个对称中心,B符合题意;C:当时,,又在上先增后减,则在上先增后减,C不符合题意;D. 将函数图象上各点的纵坐标缩短为原来的,然后把所得函数图象再向左平移个单位长度,得,D符合题意.故答案为:BD.【分析】化简函数,将代入得函数最值,可求得,进而可得,通过计算,可判断A;通过计算,可判断B;当时,,可得在上的单调性,可判断C;通过振幅变换和平移变换,可判断D12.【答案】A,B,D【解析】【解答】解:A.连接,由正方体的性质可得,则面当点上时,有,故点M存在无数个位置满足,A符合题意;B.由已知,当点M与点重合时,点M到面的距离最大,则三棱锥的体积最大值为,B符合题意;C. 连接,因为则为异面直线与所成的角设正方体棱长为1,,则,点到线的距离为,,解得,所以在线段上不存在点M,使异面直线与所成的角是,C不符合题意;D. 连接,过M作交于N,由面,面,得,则为点到直线的距离,为点到直线的距离,由已知,则点M在以为焦点,以为准线的抛物线上,故这样的点M有无数个,D符合题意.故答案为:ABD.【分析】通过证明面,可得当点上时,有,可判断A;由已知,当点与点重合时,点到面的距离最大,计算可判断B;C. 连接,因为,则为异面直线与所成的角,利用余弦定理算出的距离,可判断C;连接,过M作交于N,得到,则点在以为焦点,以为准线的抛物线上,可判断D.三、填空题13.【答案】【解析】【解答】解:古典著作《连山易》中记载了金、木、水、火土之间相生相克的关系,现从五种不同属性的物质中任取两种,基本事件总数,取出的两种物质恰是相克关系包含的基本事件有:水克火,木克土,火克金,土克水,金克木,共5种,则取出的两种物质恰是相克关系的概率为.故答案为:.【分析】基本事件总数,利用列举法求出取出的两种物质恰是相克关系包含的基本事件有5种,由此能求出取出的两种物质恰是相克关系的概率.14.【答案】【解析】【解答】解:设的外接圆的半径为,∵,,则,为直角三角形,且,∵三棱锥体积的最大值是,,,,均在球的球面上,∴到平面的最大距离,设球的半径为,则,即解得,∴球的表面积为.故答案为:.【分析】设的外接圆的半径为r,可得为直角三角形,可求出,由已知得D到平面的最大距离h,设球O的半径为R,则,由此能求出R,从而能求出球O的表面积.15.【答案】,,或(表示不超过x的最大整数)【解析】【解答】将的图象向左平移1个单位,得到的图象,因为函数的图象关于点对称,即有的图象关于原点对称,即为定义在上的奇函数,可得,又为周期为6的周期函数,可得.可令,则,即,可得,当时,在上,有;当时,在上,有;当时,在上,有;当时,在上,有,,…,可得即,或(表示不超过的最大整数)故答案为:,或(表示不超过的最大整数)【分析】由图象平移可知,为定义在R上的奇函数,可得,又为周期为6的周期函数,可得,分别求得时,的值,归纳即可得到所求通项.四、双空题16.【答案】;-1【解析】【解答】解:如图,由题意可知,,则,∴点到直线的距离等于到点的距离,∴动圆圆心的轨迹是以为焦点,以为准线的抛物线,则其轨迹方程为;点坐标为,设,由已知设:,即:,代入抛物线的方程得:,即,则,故,设,即,代入抛物线的方程得:,即,则:,故,,直线AB的斜率,∴直线AB的斜率为−1.故答案为:;−1.【分析】由已知可得点到直线的距离等于到点的距离,即动圆圆心的轨迹是以M为焦点,以为准线的抛物线,则轨迹方程可求;设出直线的方程,与抛物线方程联立,求出的坐标,利用斜率公式,即可求得直线的斜率五、解答题17.【答案】解: 选① 因为,,且,,所以,,在△中,,即,所以,由正弦定理得,,因为,所以,所以△的周长,△的面积.选② 因为,所以由正弦定理得,因为,所以. 又因为.由余弦定理得所以. 解得. 所以.所以△的周长.△的面积.选③ 因为,,所以由余弦定理得,.即. 解得或(舍去).所以△的周长,因为,所以,所以△的面积,【解析】【分析】选择①:根据条件求出,,则可求出,再根据正弦定理可求出,进而可得周长面积;选择②:,,.由正弦定理可得:.由余弦定理可得:,联立解得:,进而可得周长面积;选择③:由余弦定理可得,则周长可求,再根据可得,通过面积公式可得面积18.【答案】(1)解:设等差数列的公差为d,由题意得,解得,所以数列的通项公式,即.设等比数列的公比为,由,,得,,解得,所以数列的通项公式;(2)解:由(1)知,则,,两式相减得,所以【解析】【分析】(1)设等差数列的公差为d,由等差数列的通项公式,解方程可得首项和公差,进而得到;设等比数列的公比为q,由等比数列的通项公式,解方程可得首项和公比,进而得到;(2)求得,由数列的错位相减法求和,结合等比数列的求和公式,计算可得所求和.19.【答案】(1)解:因为平面平面,平面平面,,平面,所以平面,又平面,所以,在△中,,,,由余弦定理得,,所以,所以.又,,所以平面,又平面,所以平面平面(2)解:以C为坐标原点,以,所在直线分别为x轴、y轴建立如图所示的空间直角坐标系,,,,,,,,,,,,设,则.设平面的一个法向量为,则,即,取,得.设平面的一个法向量为,由,得,令,得,因为平面与平面所成的二面角的余弦值为,所以,整理得,解得或(舍去),所以点M为线段中点时,平面与平面所成的二面角的余弦值为.【解析】【分析】(1)推导出平面,,,从而平面,由此能证明平面平面;(2)以为坐标原点,以,所在直线分别为轴、轴建立空间直角坐标系,利用向量法能求出点为线段中点时,平面与平面所成的二面角的余弦值.20.【答案】(1)解:因为椭圆过点,代入椭圆方程,可得①,又因为离心率为,所以,从而②,联立①②,解得,,所以椭圆为;(2)解:把代入椭圆方程,得,所以,设,,则,所以,因为四边形是平行四边形,所以,所以P点坐标为.又因为点P在椭圆上,所以,即.因为.又点O到直线的距离,所以平行四边形的面积,即平行四边形的面积为定值.【解析】【分析】(1)由题意可得关于的方程组,求得的值,则椭圆方程可求;(2)联立直线方程与椭圆方程,化为关于x的一元二次方程,利用根与系数的关系及四边形是平行四边形,可得点坐标,把P点坐标代入椭圆方程,得到,利用弦长公式求得,再由点到直线的距离公式求出点O到直线l的距离,代入三角形面积公式即可证明平行四边形的面积为定值21.【答案】(1)解:(天).(2)解:根据题意,补充完整的列联表如下:潜伏期天潜伏期天总计50岁以上(含50岁)15 5 2050岁以下9 11 20总计24 16 40则,经查表,得,所以没有的把握认为潜伏期与患者年龄有关;(3)解:由题意可知,该地区每名患者潜伏期超过6天发生的概率为.设调查的10名患者中潜伏期超过6天的人数为X,由于该地区人数较多,则近似服从二项分布,即,, (10)由,得化简得,又,所以,即这10名患者中潜伏期超过6天的人数最有可能是4人.【解析】【分析】(1)利用平均值的定义求解即可;(2)根据题目所给的数据填写2×2列联表,根据公式计算,对照题目中的表格,得出统计结论;(3)先求出该地区每名患者潜伏期超过6天发生的概率,设调查的10名患者中潜伏期超过6天的人数为X,由于该地区人数较多,则X近似服从二项分布,即,,…,10,由得:,即这10名患者中潜伏期超过6天的人数最有可能是4人.22.【答案】(1)解:因为,所以,所以当时,;当时,.所以在上单调递增,在上单调递减;(2)解:因为,所以,.又因为,.所以曲线在点处的切线方程为;曲线在点处的切线方程为.因为.所以.所以两条切线不可能相同.(3)解:设直线l过点与曲线在点处相切,设直线,则消去,得.因为过点能作曲线的三条切线,所以关于的方程有三个不等实根.设,则有三个零点.又,①若,则,所以在上单调递增,至多一个零点,故不符合题意;②若,则当时,,单调递增;当时,,单调递减;当时,,单调递增.所以的极大值为,极小值为. 又有三个零点,所以,即,所以;③若,则当时,,单调递增;当,,单调递减;当时,,单调递增,所以的极大值为,极小值为.又有三个零点,所以,即,所以,综上所述,当时,;当时,.【解析】【分析】(1)对求导,根据的符号判断的单调性;(2)先分别求出曲线分别在点和点处的切线方程,然后根据条件证明两者为不同的直线的方程;(3)先设直线过点与曲线在点处相切,再设直线,根据两者联立得到方程,要求此方程有三个不等实根即可.然后构造函数,研究该函数有3个零点的条件即可.。
2020年2020届山东省高三高考模拟考试数学试卷★祝考试顺利★ (解析版)一、单项选择题:1.已知集合{1,2}A =-,{|1}B x ax ==,若B A ⊆,则由实数a 的所有可能的取值组成的集合为( )A. 11,2⎧⎫⎨⎬⎩⎭B. 11,2⎧⎫-⎨⎬⎩⎭C. 10,1,2⎧⎫⎨⎬⎩⎭D. 11,0,2⎧⎫-⎨⎬⎩⎭【答案】D 【解析】分B 为空集和B 不为空集两种情况讨论,分别求出a 的范围,即可得出结果. 【详解】因为集合{1,2}A =-,{|1}B x ax ==,B A ⊆, 若B 为空集,则方程1ax =无解,解得0a =; 若B 不为空集,则0a ≠;由1ax =解得1x a=,所以11a =-或12a =,解得1a =-或12a =,综上,由实数a 的所有可能的取值组成的集合为11,0,2⎧⎫-⎨⎬⎩⎭.故选D2.若1iz i =-+(其中i 是虚数单位),则复数z 的共轭复数在复平面内对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限【答案】D分析:变形1iz i =-+,利用复数代数形式的乘除运算化简,求出z 的坐标即可得结论. 详解:由i 1i z =-+, 得()()21i i 1i 1i i iz -+--+===+-,1z i =- ∴复数z 的共轭复数在复平面内对应的点的坐标为()1,1-,位于第四象限,故选D.3.函数()()22ln x xf x x -=+的图象大致为( )A. B.C. D.【答案】B 【解析】根据函数奇偶性的判断可知函数为偶函数,图象关于y 轴对称,排除D ;根据()0,1x ∈时,()0f x <,排除,A C ,从而得到正确选项. 【详解】()f x 定义域为{}0x x ≠,且()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C . 本题正确选项:B4.《九章算术⋅衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比例交税,问三人各应付多少税?”则下列说法中错误的是( ) A. 甲付的税钱最多 B. 乙、丙两人付的税钱超过甲 C. 乙应出的税钱约为32 D. 丙付的税钱最少【答案】B 【解析】通过阅读可以知道,A D 说法的正确性,通过计算可以知道,B C 说法的正确性.【详解】甲付的税钱最多、丙付的税钱最少,可知,A D 正确:乙、丙两人付的税钱占总税钱的3511002<不超过甲。
2020年2月普通高考【卷】全真模拟卷(2)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试围:高中全部容。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1A.第一象限B.第二象限C.第三象限D.第四象限【答案】B第二象限.故选B.2A.2 B.3 C.4 D.5【答案】B【解析】因为21|{|2}4A x y x x x ⎧⎫===≠±⎨⎬-⎩⎭,{|23,}{2,1,0,1,2}B x x x =-≤<∈=--Z , 所以{1,0,1}A B ⋂=-,所以A B I 中元素的个数为3.故选B .3.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为A .%25.6B .%5.7C .%25.10D .%25.31【答案】A【解析】水费开支占总开支的百分比为%25.6%20100450250250=⨯++.故选A 4.函数22()11xf x x=-+在区间[4,4]-附近的图象大致形状是 A . B .C .D .【答案】BA,D C.故选B5P是C与y轴交于点M O为坐标原点)C的渐近线方程为A B C D【答案】CC C.6在下列命题中,为真命题的是A B C D【答案】AAD平行于BC,故角中,PB=PC,故三角形PBC是等边三角形;当AB=2取BC的中点G EFG//平面PAB,从而得到EF//平面PAB,故2p是真命题;设AB=a,AC和BD的交点为O,则PO垂直于地面ABCD,PA=a,AO=2a2,PO=2a2O为球心,球的半径为2a2,表面积为22πa,又正方形的面积为2a,故3p为真.故23p p∧为真;()12p p∨⌝13p p∧()23p p∧⌝均为假.故选A.7.图1是我国古代数学家爽创制的一幅“勾股圆方图”(又称“爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD=,3BD=,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为A.964B.449C.225D.27【答案】B【解析】18060120ADB∠=︒-︒=︒Q,在ABDV中,可得2222cosAB AD BD AD BD ADB=+-⋅∠,即为222153253492AB⎛⎫=+-⨯⨯⨯-=⎪⎝⎭,解得7AB=,2DE AD BD=-=Q,224()749DEFABCSS∴==VV.故选B.8.已知抛物线2:4C y x =的焦点为,F P 是抛物线C 的准线上一点,且P 的纵坐标为正数,Q 是直线PF与抛物线C 的一个交点,若2PQ QF =u u u r u u u r,则直线PF 的方程为 A .330x y --= B .10x y +-=C .10x y --=D .330x y +-=【答案】D 【解析】作QM y ⊥轴于M ,则根据抛物线的定义有QM QF =.又2PQ QF =u u u r u u u r ,故2PQ QM =,故1cos 2MQ PQM PQ ∠==.故3PQM π∠=,故直线PF 的倾斜角为23π. 故直线PF 的斜率为3-.直线PF 的方程为()31y x =--,化简得330x y +-=.故选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。
2020年2月普通高考【山东卷】全真模拟卷(2)数 学(考试时间:120分钟 试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:高中全部内容。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数21i z i=-,则z 在复平面对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限 【答案】B【解析】由题意得()()()2122211112i i i i z i i i i +-====-+--+,所以复数z 对应的点的坐标为()1,1-,位于第二象限.故选B . 2.已知集合21|4A x y x ⎧⎫==⎨⎬-⎩⎭,{|23,}B x x x =-≤<∈Z ,则A B I 中元素的个数为 A .2B .3C .4D .5 【答案】B【解析】因为21|{|2}4A x y x x x ⎧⎫===≠±⎨⎬-⎩⎭,{|23,}{2,1,0,1,2}B x x x =-≤<∈=--Z , 所以{1,0,1}A B ⋂=-,所以A B I 中元素的个数为3.故选B .3.某单位去年的开支分布的折线图如图1所示,在这一年中的水、电、交通开支(单位:万元)如图2所示,则该单位去年的水费开支占总开支的百分比为A .%25.6B .%5.7C .%25.10D .%25.31【答案】A 【解析】水费开支占总开支的百分比为%25.6%20100450250250=⨯++.故选A 4.函数22()11xf x x=-+在区间[4,4]-附近的图象大致形状是 A .B .C .D .【答案】B 【解析】22()11xf x x=-+过点()10,,可排除选项A ,D .又()20f <,排除C .故选B 5.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,点P 是C 的右支上一点,连接1PF 与y 轴交于点M ,若12||FO OM =(O 为坐标原点),12PF PF ⊥,则双曲线C 的渐近线方程为A .3y x =±B .y =C .2y x =±D .y =【答案】C【解析】设1(,0)F c -,2(,0)F c ,由12||FO OM =,1OMF ∆与2PF F ∆相似,所以1122||P F F P OM F O ==,即122PF PF =,又因为122PF PF a -=,所以14PF a =,22PF a =,所以2224164c a a =+,即225c a =,224b a =,所以双曲线C 的渐近线方程为2y x =±.故选C .6.在正四棱锥中,已知异面直线与所成的角为,给出下面三个命题::若,则此四棱锥的侧面积为;:若分别为的中点,则平面;:若都在球的表面上,则球的表面积是四边形面积的倍.在下列命题中,为真命题的是A .B .C .D .【答案】A【解析】因为异面直线与所成的角为,AD 平行于BC ,故角PBC=,正四棱锥 中,PB=PC ,故三角形PBC 是等边三角形;当AB=2,此四棱锥的侧面积为,故是假命题;取BC 的中点G ,分别为的中点故得,故平面EFG//平面PAB ,从而得到EF//平面PAB ,故是真命题; 设AB=a , AC 和BD 的交点为O ,则PO 垂直于地面ABCD ,PA =a,AO =,PO =O 为球心,球的半径为,表面积为 ,又正方形的面积为,故为真.故为真; 均为假.故选A .7.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”又称“赵爽弦图”,它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若,,则在整个图形中随机取点,此点来自中间一个小正三角形阴影部分的概率为A .B .C .D .【答案】B 【解析】,在中,可得,即为,解得,,.故选B .8.已知抛物线的焦点为是抛物线的准线上一点,且的纵坐标为正数,是直线与抛物线的一个交点,若,则直线的方程为A .B .C .D .【答案】D【解析】作轴于,则根据抛物线的定义有.又,故,故.故,故直线的倾斜角为.故直线的斜率为.直线的方程为,化简得.故选D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分。
9.在平面直角坐标系xOy 中,角α顶点在原点O ,以x 正半轴为始边,终边经过点()()1,0P m m <,则下列各式的值恒大于0的是 A .sin tan αα B .cos sin αα- C .sin cos αα D .sin cos αα+【答案】AB【解析】由题意知sin 0α<,cos 0α>,tan 0α<.选项A sin 0tan αα>; 选项B ,cos sin 0αα->;选项C ,sin cos 0αα<;选项D ,sin cos αα+符号不确定.故选AB .10.对于实数a 、b 、c ,下列命题中正确的是A .若a b >,则ac bc <;B .若0a b <<,则22a ab b >>C .若0c a b >>>,则a b c a c b >--D .若a b >,11a b>,则0a >,0b < 【答案】BCD【解析】若0c >,则由a b >得ac bc >,A 错;若0a b <<,则2a ab >,2ab b > 22a ab b >>,B 正确;若0c a b >>>,则0c b c a ->->,∴110c a c b >>--,∴a b c a c b>--,C 正确; 若a b >,且,a b 同号时,则有11a b <,因此由11,a b a b>>得0,0a b ><,D 正确. 故选BCD .11.下列说法错误的有A .随机事件A 发生的概率是频率的稳定值,频率是概率的近似值B .在同一次试验中,不同的基本事件不可能同时发生C .任意事件A 发生的概率()P A 满足()01P A <<D .若事件A 发生的概率趋近于0,则事件A 是不可能事件【答案】CD【解析】∵随机事件A 发生的概率是频率的稳定值,频率是概率的近似值,∴A 中说法正确;基本事件的特点是任意两个基本事件是互斥的,∴在同一次试验中,不同的基本事件不可能同时发生,∴B 中说法正确;必然事件发生的概率为1,不可能事件发生的概率为0,随机事件发生的概率大于0且小于1.∴任意事件A 发生的概率P (A )满足()01P A ≤≤.∴C 中说法错误;若事件A 发生的概率趋近于0,则事件A 是小概率事件,但不是不可能事件,∴D 中说法错误.故选CD .12.在平面直角坐标系中,曲线C 上任意点P 与两个定点()2,0A -和点()2,0B 连线的斜率之和等于2,则关于曲线C 的结论正确的有( )A .曲线C 是轴对称图形B .曲线C 上所有的点都在圆222x y +=外C .曲线C 是中心对称图形D .曲线C 上所有点的横坐标x 满足2x > 【答案】BC 【解析】设点(,),2,222PA PB y y P x y x k k x x ≠±+=+=+-,得24,0xy x x =-=不满足方程,4(2)y x x x=-≠± 图像如下图所示:曲线对应的函数是奇函数,图像关于原点对称,无对称轴,选项C 正确,选项A 不正确;2222162882x y x x+=+-≥>,选项B 正确; 当1x =时,3y =-则选项D 不正确. 故选BC .三、填空题:本题共4小题,每小题5分,共20分.13.在,,三个数中,则最大的数为______.【答案】【解析】,,,,,,最大.14.已知三棱锥P-ABC 的四个顶点在球O 的球面上,,则球O 的表面积为________.【答案】【解析】如图所示,将三棱锥补成长方体,球为长方体的外接球,边长分别为,,,则,所以,所以,则球的表面积为.15.在数列{}n a 中,11a =,()211nn n a a ++-=,记n S 是数列{}n a 的前n 项和,则40S =____. 【答案】220【解析】当是n 奇数时,21n n a a +-=,数列{}n a 中奇数项构成等差数列,当n 是偶数时,21n n a a ++=,401353924640()()S a a a a a a a a =+++++++++L L 12019201102202a ⨯=+⨯+=. 16.如下图中、、、、、六个区域进行染色,每个区域只染一种颜色,每个区域只染一种颜色,且相邻的区域不同色.若有种颜色可供选择,则共有_________种不同的染色方案.【答案】【解析】要完成给出的图形中、、、、、六个区域进行染色,染色方法分为两类,第一类是仅用三种颜色染色,即同色,同色,同色,即从四种颜色中取三种颜色,有种取法,三种颜色染三个区域有种染法,共种染法;第二类是用四种颜色染色,即、、三组中有一组不同色,则有种方案(不同色或不同色或不同色),先从四种颜色中取两种染同色区域有种染法,剩余两种染在不同色区域有种染法,共有种染法.由分类加法原理可得总的染色方法种数为(种).16.为了解某地区的“微信健步走”活动情况,现用分层抽样的方法从中抽取老、中、青三个年龄段人员进行问卷调查.已知抽取的样本同时满足以下三个条件:(i)老年人的人数多于中年人的人数;(ii)中年人的人数多于青年人的人数;(iii)青年人的人数的两倍多于老年人的人数.①若青年人的人数为4,则中年人的人数的最大值为___________.②抽取的总人数的最小值为__________.【答案】6 12【解析】设老年人、中年人、青年人的人数分别为①,则,则的最大值为②由题意可得,得,解得当时取最小值.故答案为:①.②.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在①函数()()1sin 20,22f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象向右平移12π个单位长度得到()g x 的图象,()g x图象关于原点对称;②向量),cos 2m x x ωω=u r ,()11cos ,,0,24n x f x m n ωω⎛⎫=>=⋅ ⎪⎝⎭r u r r ;③函数()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭()0ω>这三个条件中任选一个,补充在下面问题中,并解答.已知_________,函数()f x 的图象相邻两条对称轴之间的距离为2π. (1)若02πθ<<,且sin 2θ=,求()f θ的值; (2)求函数()f x 在[]0,2π上的单调递减区间.注:如果选择多个条件分别解答,按第一个解答计分.【解析】方案一:选条件① 由题意可知,22T ππω==,1ω∴= ()()1sin 22f x x ϕ∴=+,()1sin 226g x x πϕ⎛⎫∴=+- ⎪⎝⎭, 又函数()g x 图象关于原点对称,,6k k Z πϕπ∴=+∈,2πϕ<Q ,6πϕ∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭,(1)0,sin 2πθθ<<=Q ,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π==; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈, 令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤, ∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 方案二:选条件②)11,cos 2,cos ,24m x x n x ωωω⎛⎫== ⎪⎝⎭u r r Q , ()f x m n ∴=⋅u rr 1cos cos 24x x x ωωω=+112cos 222x x ωω⎫=+⎪⎪⎝⎭ 1sin 226x πω⎛⎫=+ ⎪⎝⎭,又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭, (1)0,sin 22πθθ<<=Q ,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π==; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈, 令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤, ∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 方案三:选条件③()1cos sin 64f x x x πωω⎛⎫=+- ⎪⎝⎭1cos sin cos cos sin 664x x x ππωωω⎛⎫=+- ⎪⎝⎭211cos cos 24x x x ωω=+-12cos 24x x ωω=+112cos 222x x ωω⎫=+⎪⎪⎝⎭1sin 226x πω⎛⎫=+ ⎪⎝⎭, 又22T ππω==,1ω∴=,()1sin 226f x x π⎛⎫∴=+ ⎪⎝⎭, (1)0,sin 22πθθ<<=Q ,4πθ∴=,()4f f πθ⎛⎫∴= ⎪⎝⎭12sin 23π==; (2)由3222,262k x k k Z πππππ+≤+≤+∈,得2,63k x k k Z ππππ+≤≤+∈, 令0k =,得263x ππ≤≤,令1k =,得7563x ππ≤≤. ∴函数()f x 在[]0,2π上的单调递减区间为275,,,6363ππππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 18.(12分)已知数列满足,且.(1)证明数列是等差数列,并求数列的通项公式.(2)若,求数列的前项和.【解析】(1)因为,两边都加上,得所以,即,所以数列是以为公差,首项为的等差数列.所以,即.(2)因为,所以数列的前项和,①则,②由,得,所以.19.(12分)如图,三棱锥D-ABC中,,E,F分别为DB,AB的中点,且.(1)求证:平面平面ABC;(2)求二面角D-CE-F的余弦值.【解析】(1)如图取的中点,连接,,因为,所以,因为,所以,又因为,所以平面,平面所以.因为,分别为,的中点,所以.因为,即,则.又因为,所以平面,又因为平面DAB,所以平面平面.(2)因为平面,则以为坐标原点,过点与垂直的直线为轴,为轴,AD为轴,建立如下图所示的空间直角坐标系.因为,在中,,所以.在中,,所以点,,.设平面的法向量为.所以,即,可取.设平面的法向量为.所以,即,可取,则因为二面角为钝二面角,所以二面角的余弦值为.20.(12分)椭圆的焦点是,,且过点.(1)求椭圆的标准方程;(2)过左焦点的直线与椭圆相交于、两点,为坐标原点.问椭圆上是否存在点,使线段和线段相互平分?若存在,求出点的坐标,若不存在,说明理由.【解析】(1)由题意知,,,解得:,,椭圆的标准方程:;(2)由(1)知,假设存在点,,使线段和线段相互平分,由题意知直线的斜率不为零,设直线的方程为:,设,,联立与椭圆的方程整理得:,,,所以的中点坐标,由题意知,,而在椭圆上,所以,解得:,所以,所以存在点使线段和线段相互平分,且的坐标.21.(12分)某公司为提高市场销售业绩,设计了一套产品促销方案,并在某地区部分营销网点进行试点.运作一年后,对“采取促销”和“没有采取促销”的营销网点各选了50个,对比上一年度的销售情况,分别统计了它们的年销售总额,并按年销售总额增长的百分点分成5组:,,,,,分别统计后制成如图所示的频率分布直方图,并规定年销售总额增长10个百分点及以上的营销网点为“精英店”.“采用促销”的销售网点“不采用促销”的销售网点(1)请根据题中信息填充下面的列联表,并判断是否有的把握认为“精英店与采促销活动有关”;(2)某“精英店”为了创造更大的利润,通过分析上一年度的售价(单位:元)和日销量(单位:件)()的一组数据后决定选择作为回归模型进行拟合.具体数据如下表,表中的①根据上表数据计算,的值;②已知该公司产品的成本为10元/件,促销费用平均5元/件,根据所求出的回归模型,分析售价定为多少时日利润可以达到最大.附①:附②:对应一组数据,其回归直线的斜率和截距的最小二乘法估计分别为,.【解析】(1)因为,有的把握认为“精英店与促销活动有关”.(2)①由公式可得:,,所以回归方程为.②若售价为,单件利润为,日销售为,故日利润,,当时,单调递增;当时,单调递减.故当售价元时,日利润达到最大为元.22.(12分)已知函数,.(1)当时,求函数的单调区间及极值;(2)讨论函数的零点个数.【解析】由题得,函数的定义域为.(1)当时,,所以,当时,,函数单调递增;当时,,函数单调递减,所以函数的单调递增区间为,单调递减区间为.所以当时,有极大值,且极大值为,无极小值.(2)由,得.当时,恒成立,函数单调递增,当时,,又,所以函数有且只有一个零点;当时,令,当时,,函数单调递增;当时,,函数单调递减,所以的极大值为,①当,即得时,解得,此时函数没有零点;②当,即时,函数有1个零点;③当,即时,.当时,令,则在上恒成立,所以,即,所以,故当且时,.当时,有,所以函数有2个零点.综上所述:当时,函数没有零点;当或时.函数有1个零点;当时,函数有2个零点.。