沪科版八年级数学下册《期末测试卷》(附答案)
- 格式:docx
- 大小:295.15 KB
- 文档页数:19
沪科版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如图,已知口ABCD中,AE⊥BC于点E,以点B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=60°,∠ADA′=45°,则∠DA′E′的大小为()A.170°B.165°C.160°D.155°2、空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()A.折线图B.条形图C.直方图D.扇形图3、如图,四边形是菱形,,,点是边上的一动点,过点作于点,于点,连接,则的最小值为()A. B. C. D.4、学校篮球队名场上队员的身高分别为:,,,,(单位:).增加一名身高为的成员后,现篮球队成员的身高与原来相比,下列说法正确的是()A.方差不变B.方差变大C.方差变小D.不能确定5、如果把直角三角形的两条直角边长同时扩大到原来的3倍,那么斜边长扩大到原来的()A.3倍B.4倍C.6倍D.9倍6、学校为了了解七年级700名学生上学期参加社会实践活动的时间,随机对该年级50名学生进行了调查。
根据收集的数据绘制了下面的频数分市直方图,则以下说法正确的是()A.绘制该频数分布直方图时选取的组距为10分成的组数为5B.这50人中大多数学生参加社会实践活动的时间是12-14hC.这50人中有64%的学生参加社会实践活动时间不少于10hD.可以估计全年级700人中参加社会实践活动时间为6~8h的学生大约为28人7、下列各组数中,能作为直角三角形三边长度的是()A.5、6、7B.1、4、9C.5、12、13D.5、11、128、如图,在菱形中,,的垂直平分线交对角线于点, 为垂足,连结,则等于()A. B. C. D.9、一个样本的极差是52,样本容量不超过100.若取组距为10,则画频数分布直方图应把数据分成()A.5组B.6组C.10组D.11组10、下列计算正确的是().A. B. C. D.11、体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一名同学的成绩比较稳定,通常需要比较两名同学成绩的()A.平均数B.方差C.頻数分布D.中位数12、某校5个小组参加植树活动,平均每组植树10株.已知第一,二,三,五组分别植树9株、12株、9株、8株,那么第四小组植树()A.12株B.11株C.10株D.9株13、用配方法解一元二次方程x2-4x=5的过程中,配方正确的是()A.(B.C.D.14、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.615、如图,在中,,,,是的垂直平分线,交于点,连接,则的长为().A. B. C. D.二、填空题(共10题,共计30分)16、如图,在菱形ABCD中,DE⊥AB,cosA=,则tan∠BDE的值是________17、如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G 分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则=________.18、如图,在正方形ABCD中,AB=6,点E在边CD上,DE= DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是________.19、计算:| -|+2 =________.20、若一组数据1,3,a, 2,5的平均数是3,则a=________。
沪科版八年级下册数学期末考试试题题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)1.下列根式中,不是最简二次根式的是()A.10B.8C. 6D. 22.下列计算正确的是()A.5-2= 3 B.35×23=615C.(22)2=16 D.33=13.已知关于x的方程x2+3x+a=0有一个根为-2,则另一个根为()A.5 B.2 C.-1 D.-54.正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.135.某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分、90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分6.已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.127.现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形8.如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC的中点,连接DE,EF,FD则四边形DBEF的周长是()A.5 B.7 C.9 D.11第8题图第9题图第10题图9.如图,矩形ABCD的顶点A,C分别在直线a,b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°10.如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长度的速度沿A→B→C→D的路线运动,运动到点D时停止,那么△APD 的面积S与点P运动的时间t之间的函数关系的图象是()二、填空题(本大题共4小题,每小题5分,满分20分) 11.要使代数式x +12有意义,则x 的取值范围是________. 12.方程x (x -1)=x 的解为________________.13.如图,△ABC 的顶点A ,B ,C 在边长均为1的正方形网格的格点上,BD ⊥AC 于D ,则BD 的长为________.第13题图 第14题图14.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中一定成立的是________(把所有正确结论的序号都填在横线上).①∠DCF =12∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .三、(本大题共2小题,每小题8分,满分16分) 15.计算:(3+1)(3-1)+24-⎝⎛⎭⎫120.16.解方程:x 2-2x =4.四、(本大题共2小题,每小题8分,满分16分) 17.按要求作图(不写作法,保留作图痕迹):(1)如图①,在平行四边形ABCD 中,请作出一条直线,将其分成面积相等的两部分;(2)如图②,在多边形ABCDEF中,AB∥CD∥EF,AF∥DE∥BC,请作出一条直线,将该多边形分成面积相等的两部分.18.定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a 的值小于0.(1)求a的取值范围;(2)请判断方程2x2-bx+a=0的根的情况.五、(本大题共2小题,每小题10分,满分20分)19.如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,BD=9.(1)求CD,AD的长;(2)判断△ABC的形状,并说明理由.20.中华文明,源远流长;中华汉字,寓意深广.为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:请根据所给信息,解答下列问题:(1)a=________,b=________;(2)请补全频数直方图;(3)这次比赛成绩的中位数会落在____________分数段;(4)若成绩在90分以上(包括90分)的为“优等”,则该校参加这次比赛的3000名学生中成绩“优等”的约有多少人?六、(本题满分12分)21.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元,2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.七、(本题满分12分)22.如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD,CE,若∠BFD=2∠A,求证:四边形BECD是矩形.成绩x/分频数频率50≤x<60100.05 60≤x<70200.10 70≤x<8030b 80≤x<90 a 0.30 90≤x≤100800.40八、(本题满分14分)23.【问题情境】如图①,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)求证:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图②,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.参考答案与解析1.B 2.B 3.C 4.C 5.D 6.B7.A8.B9.C解析:如图,延长AB交直线b于点E.∵a∥b,∴∠AEC=∠1=60°.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠2=∠AEC =60°.故选C.10.B 解析:由四边形ABCD 是菱形,∠A =60°,AB =4,易得菱形的高为2 3.当点P 在AB 上时,S △APD =12×23t =3t (0≤t ≤4);当点P 在BC 上时,S △APD =12×4×23=43(4<t ≤8);当点P 在CD 上时,S △APD =12×23(12-t )=-3t +123(8<t ≤12).纵观各选项,只有B 选项图象符合题意.故选B.11.x ≥-1 12.x 1=0,x 2=2 13.45514.①②④ 解析:①∵四边形ABCD 是平行四边形,∴AB =CD ,AD ∥BC .∵AD =2AB ,∴AD =2CD .∵F 是AD 的中点,∴AF =FD =12AD ,∴AF =FD =CD ,∴∠DFC =∠DCF .∵AD ∥BC ,∴∠DFC =∠BCF ,∴∠DCF =∠BCF ,∴∠DCF =12∠BCD ,故①正确;②如图,延长EF ,交CD 的延长线于点M .∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A =∠MDF .在△AEF 和△DMF 中,∵⎩⎪⎨⎪⎧∠A =∠MDF ,AF =DF ,∠AFE =∠DFM ,∴△AEF ≌△DMF (ASA ),∴EF=MF .∵CE ⊥AB ,AB ∥CD ,∴CD ⊥CE .在Rt △ECM 中,EF =MF ,∴EF =CF ,故②正确;③∵EF =MF ,∴S △CEF =S △CMF ,∴S △CEM =2S △CEF .∵AB ∥CM ,∴△BEC 中BE 边上的高和△CEM 中CM 边上的高相等.∵BE <CM ,∴S △BEC <S △CEM ,∴S △BEC <2S △CEF ,故③错误;④∵EF =CF ,∴∠FEC =∠FCE .设∠FEC =∠FCE =x ,∴∠EFC =180°-∠FEC -∠FCE =180°-2x ,∠DFC =∠DCF =∠ECD -∠ECF =90°-x ,∠AEF =∠AEC -∠FEC =90°-x ,∴∠DFE =∠DFC +∠EFC =90°-x +180°-2x =270°-3x ,∴∠DFE =3∠AEF ,故④正确.故答案为①②④.15.解:原式=3-1+26-1=1+2 6.(8分)16.解:配方得x 2-2x +1=4+1.∴(x -1)2=5,开平方得x -1=±5,∴x 1=1+5,x 2=1- 5.(8分)17.解:(1)答案不唯一,如图①,连接AC ,BD 交于点O ,过O 作直线EF 交AB 于点E ,交CD 于点F ,直线EF 即为所求.(4分)(2)答案不唯一,如图②,延长CB 交EF 于点G ,连接CE ,DG 交于点M ,连接AG ,BF 交于点N ,作直线MN ,直线MN 即为所求.(8分)18.解:(1)∵2☆a 的值小于0,∴22·a +a =5a <0,解得a <0.(4分)(2)在方程2x 2-bx +a =0中,Δ=(-b )2-4×2a =b 2-8a .由(1)可知a <0,∴b 2-8a >0,∴方程2x 2-bx +a =0有两个不相等的实数根.(8分)19.解:(1)∵CD ⊥AB ,∴△BCD 和△ACD 都是直角三角形,∴CD =BC 2-BD 2=152-92=12,∴AD =AC 2-CD 2=202-122=16.(5分)(2)△ABC 为直角三角形.(7分)理由如下:由(1)可知AD =16,又∵BD =9,∴AB =AD +BD =16+9=25.∵AC 2+BC 2=202+152=625=252=AB 2,∴△ABC 为直角三角形.(10分)20.解:(1)60 0.15(3分)(2)补全频数直方图如图所示.(5分)(3)80≤x <90(7分)(4)3000×0.40=1200(人).(9分)答:该校参加这次比赛的3000名学生中成绩“优等”的约有1200人.(10分)21.解:(1)设这两年该县投入教育经费的年平均增长率为x ,根据题意得6000(1+x )2=8640,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).(5分)答:这两年该县投入教育经费的年平均增长率为20%.(6分)(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为8640×(1+0.2)=10368(万元).(11分)答:预算2017年该县投入教育经费为10368万元.(12分) 22.证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠BEF =∠CDF ,∠EBF =∠DCF .∵BE =AB ,∴BE =CD .在△BEF 和△CDF 中,∵⎩⎪⎨⎪⎧∠BEF =∠CDF ,BE =CD ,∠EBF =∠DCF ,∴△BEF ≌△CDF (ASA ).(6分)(2)∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠A =∠DCB .由(1)可知△BEF ≌△CDF ,∴BF =CF ,EF =DF ,∴四边形BECD 是平行四边形.∵∠BFD =2∠A ,∴∠BFD =2∠DCF ,∴∠DCF =∠FDC ,∴DF =CF ,∴DE =BC ,∴四边形BECD 是矩形.(12分)23.(1)证明:延长AE ,BC 交于点N .(1分)∵四边形ABCD 是正方形,∴AD ∥BC ,∴∠DAE =∠N .∵AE 平分∠DAM ,∴∠DAE =∠MAE ,∴∠N =∠MAE ,∴MA =MN .∵E 是CD 边的中点,∴DE =CE .在△ADE 和△NCE 中,∵⎩⎪⎨⎪⎧∠DAE =∠N ,∠AED =∠NEC ,DE =CE ,∴△ADE ≌△NCE (AAS ),∴AD =NC ,∴MA =MN =NC +MC =AD +MC .(5分)(2)解:AM =DE +BM 成立.(6分)证明如下:过点A 作AF ⊥AE 交CB 的延长线于点F .(7分)∵四边形ABCD 是正方形,∴∠BAD =∠D =∠ABC =90°,AB =AD ,AB ∥DC ,∴∠DAE +∠BAE =90°,∠ABF =180°-∠ABC =90°=∠D .∵AF ⊥AE ,∴∠F AE =90°,∴∠BAF +∠BAE =90°,∴∠BAF =∠DAE .在△ABF 和△ADE 中,∵⎩⎪⎨⎪⎧∠BAF =∠DAE ,AB =AD ,∠ABF =∠D ,∴△ABF ≌△ADE (ASA ),∴BF =DE ,∠F =∠AED .∵AB ∥DC ,∴∠BAE =∠AED =∠F .∵AE 平分∠DAM ,∴∠DAE =∠MAE ,∴∠BAF =∠MAE ,∴∠BAE =∠BAM +∠MAE =∠BAM +∠BAF =∠F AM ,∴∠F =∠F AM ,∴AM =FM =FB +BM =DE +BM .(10分) (3)解:(1)中的结论AM =AD +MC 仍然成立,(2)中的结论AM =DE +BM 不成立.(14分)。
沪科版八年级下册数学期末考试试题一、选择题(本大题共10小题,满分30分)1.(3分)下列各式中属于最简二次根式的是()A.B.C. D.2.(3分)如果,那么x的取值范围是()A.1≤x≤2 B.1<x≤2 C.x≥2 D.x>23.(3分)一元二次方程x(x﹣2)=2﹣x的根是()A.x=2 B.x1=0,x2=﹣2 C.x1=2,x2=﹣1 D.x=﹣14.(3分)关于x的一元二次方程(m﹣1)x2+2x+m2﹣5m+4=0,常数项为0,则m值等于()A.1 B.4 C.1或4 D.05.(3分)一元二次方程x2﹣x﹣1=0和2x2﹣6x+5=0,这两个方程的所有实数根之和为()A.4 B.﹣4 C.﹣6 D.16.(3分)如果一个直角三角形的两边分别是6,8,那么斜边上的中线是()A.4 B.5 C.4或5 D.3或57.(3分)在直角三角形中,如果有一个角是30°,这个直角三角形的三边之比最有可能的是()A.3:4:5 B.1:1:C.5:12:13 D.1::28.(3分)从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3 B.3,3 C.3,4 D.4,49.(3分)已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CD B.AB∥CD,BC∥AD C.AB∥CD,BC=AD D.AB=CD,BC=AD10.(3分)在端午节道来之前,双十中学高中部食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购.下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数二、填空题(本大题共6小题,满分18分)11.(3分)已知a、b、c位置如图所示,试化简:|a+b﹣c|+=.12.(3分)关于x的一元二次方程kx2﹣3x﹣1=0有实数根,则k的取值范围是.13.(3分)小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此反复,小林共走了108米回到点P,则角α的度数为.14.(3分)如图,一透明的圆柱体玻璃杯,从内部测得底部直径为6cm,杯深8cm.今有一根长为16cm的吸管如图放入杯中,露在杯口外的长度为h,则h 的变化范围是:.15.(3分)如图所示,将两张等宽的长方形条交叉叠放,重叠部分是一个四边形ABCD,若AD=4cm,∠ABC=30°,则四边形ABCD的面积是cm2.16.(3分)顺次连接对角线互相垂直且相等的四边形中点所得到的四边形是.三、计算题(本大题共7小题,满分72分)17.(8分)计算:3﹣9﹣(2﹣)﹣|2﹣5|.18.(8分)如图,有一块耕地ACBD,已知AD=24m,BD=26m,AC⊥BC,且AC=6m,BC=8m.求这块耕地的面积.19.(10分)如图,已知四边形ABCD是平行四边形,点E,F是对角线BD上的两点,且BE=DF,连接AE,CF.求证:AE∥CF且AE=CF.20.(10分)如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO 到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.21.(12分)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总数甲班891009611897500乙班1009511091104500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率.(2)计算两班比赛数据的方差.(3)根据以上信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.22.(12分)江苏是全国首个自然村“村村通宽带”省份.我市某村为了将当地农产品外销,建立了淘宝网店.该网店于今年7月底以每袋25元的成本价收购一批农产品.当商品售价为每袋40元时,8月份销售256袋.9、10月该商品十分畅销.销售量持续走高.在售价不变的基础上,10月份的销售量达到400袋.设9、10这两个月月平均增长率不变.(1)求9、10这两个月的月平均增长率;(2)为迎接双“十一”,11月份起,该网店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价1元/每袋,销售量就增加5袋,当农产品每袋降价多少元时,该淘宝网店11月份获利4250元?23.(12分)如图所示,在四边形ABCD中,点E、F是对角线BD上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.参考答案与试题解析一、选择题(本大题共10小题,满分30分)1.(3分)(2017春•蒙城县期末)下列各式中属于最简二次根式的是()A.B.C. D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A不符合题意;B、被开方数含能开得尽方的因数或因式,故B不符合题意;C、被开方数含能开得尽方的因数或因式,故C不符合题意;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D符合题意;故选:D.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.(3分)(2017春•蒙城县期末)如果,那么x的取值范围是()A.1≤x≤2 B.1<x≤2 C.x≥2 D.x>2【分析】根据二次根式有意义的条件和0不能为分母可知,x﹣1≥0且x﹣2>0,解不等式组即可.【解答】解:由题意可得,x﹣1≥0且x﹣2>0,解得x>2.故选D.【点评】二次根式有意义的条件必须是被开方数大于等于0,特别注意0做除数无意义.3.(3分)(2017春•蒙城县期末)一元二次方程x(x﹣2)=2﹣x的根是()A.x=2 B.x1=0,x2=﹣2 C.x1=2,x2=﹣1 D.x=﹣1【分析】先移项得到x(x﹣2)+(x﹣2)=0,然后利用因式分解法解方程.【解答】解:x(x﹣2)+(x﹣2)=0,(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选C.【点评】本题考查了解一元二次方程﹣因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.4.(3分)(2017•河北模拟)关于x的一元二次方程(m﹣1)x2+2x+m2﹣5m+4=0,常数项为0,则m值等于()A.1 B.4 C.1或4 D.0【分析】一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的a、b、c分别是二次项系数、一次项系数、常数项.【解答】解:由题意,得m2﹣5m+4=0,且m﹣1≠0,解得m=4,故选:B.【点评】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c是常数且a ≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.5.(3分)(2017春•蒙城县期末)一元二次方程x2﹣x﹣1=0和2x2﹣6x+5=0,这两个方程的所有实数根之和为()A.4 B.﹣4 C.﹣6 D.1【分析】先根据根的判别式分析两个方程解的情况,可得出方程x2﹣x﹣1=0有两个不相等的实数根、方程2x2﹣6x+5=0没有实数根,再根据根与系数的关系即可得出方程x2﹣x﹣1=0的两个实数根之和,此题得解.【解答】解:∵在方程x2﹣x﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=5>0,∴方程x2﹣x﹣1=0有两个不相等的实数根,设方程x2﹣x﹣1=0的两个根分别为m、n,∴m+n=1.∵在方程2x2﹣6x+5=0中,△=(﹣6)2﹣4×2×5=﹣4<0,∴方程2x2﹣6x+5=0没有实数根.∴一元二次方程x2﹣x﹣1=0和2x2﹣6x+5=0的所有实数根之和为1.故选D.【点评】本题考查了根与系数的关系以及根的判别式,利用根的判别式△=b2﹣4ac分析出两方程解的情况是解题的关键.6.(3分)(2017春•蒙城县期末)如果一个直角三角形的两边分别是6,8,那么斜边上的中线是()A.4 B.5 C.4或5 D.3或5【分析】分一个直角三角形的两直角边分别是6,8和8是斜边两种情况,根据勾股定理、直角三角形的性质计算.【解答】解:当一个直角三角形的两直角边分别是6,8时,由勾股定理得,斜边==10,则斜边上的中线=10=5,当8是斜边时,斜边上的中线是4,故选:C.【点评】本题考查的是勾股定理的应用以及直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.7.(3分)(2017春•蒙城县期末)在直角三角形中,如果有一个角是30°,这个直角三角形的三边之比最有可能的是()A.3:4:5 B.1:1:C.5:12:13 D.1::2【分析】设30°角所对的直角边为a,根据30°角所对的直角边等于斜边的一半求出斜边的长度,再利用勾股定理求出另一条边的长度,然后即可求出比值.【解答】解:如图,设30°角所对的直角边BC=a,则AB=2BC=2a,∴AC==a,∴三边之比为a:a:2a=1::2.故选D.【点评】本题主要考查了含30度角的直角三角形的边的关系,勾股定理,是基础题,作出草图求解更形象直观.8.(3分)(2017春•蒙城县期末)从六边形的一个顶点出发,可以画出m条对角线,它们将六边形分成n个三角形.则m、n的值分别为()A.4,3 B.3,3 C.3,4 D.4,4【分析】从一个n边形一个顶点出发,可以连的对角线的条数是n﹣3,分成的三角形数是n﹣2.【解答】解:对角线的数量=6﹣3=3条;分成的三角形的数量为n﹣2=4个.故选C.【点评】本题考查多边形的对角线及分割成三角形个数的问题,解答此类题目可以直接记忆:一个n边形一个顶点出发,可以连的对角线的条数是n﹣3,分成的三角形数是n﹣2.9.(3分)(2017春•蒙城县期末)已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是()A.AB∥CD,AB=CD B.AB∥CD,BC∥AD C.AB∥CD,BC=AD D.AB=CD,BC=AD【分析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.根据判定方法依次组合即可.【解答】解:A、AB∥CD,AB=CD.根据平行四边形的判定定理“一组对边平行且相等的四边形是平行四边形”可以判定四边形ABCD是平行四边形,故本选项错误;B、AB∥CD,BC∥AD.根据平行四边形的判定定理“两组对边分别平行的四边形是平行四边形”可以判定四边形ABCD是平行四边形,故本选项错误;C、AB∥CD,BC=AD,根据一组对边平行,另一组对边相等,不能判定四边形ABCD 是平行四边形,故本选项正确;D、AB=CD,BC=AD,根据平行四边形的判定定理“两组对边分别相等的四边形是平行四边形”可以判定四边形ABCD是平行四边形,故本选项错误;故选:C.【点评】本题主要考查对平行四边形的判定的理解和掌握,能熟练地运用平行四边形的判定定理进行推理是解此题的关键.10.(3分)(2017•南平模拟)在端午节道来之前,双十中学高中部食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购.下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数【分析】学校食堂最值得关注的应该是哪种粽子爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选:D.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.二、填空题(本大题共6小题,满分18分)11.(3分)(2017春•蒙城县期末)已知a、b、c位置如图所示,试化简:|a+b ﹣c|+=﹣2a+c.【分析】直接利用数轴得出a+b﹣c<0,b﹣a>0,进而化简即可.【解答】解:由数轴可得:a+b﹣c<0,b﹣a>0,故:|a+b﹣c|+=﹣(a+b﹣c)+b﹣a=﹣2a+c.故答案为:﹣2a+c.【点评】此题主要考查了二次根式的化简,正确开平方是解题关键.12.(3分)(2017•昆都仑区二模)关于x的一元二次方程kx2﹣3x﹣1=0有实数根,则k的取值范围是k≥﹣且k≠0.【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出结论.【解答】解:∵关于x的一元二次方程kx2﹣3x﹣1=0有实数根,∴,解得:k≥﹣且k≠0.故答案为:k≥﹣且k≠0.【点评】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式,找出关于k的一元一次不等式组是解题的关键.13.(3分)(2011•衡阳模拟)小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此反复,小林共走了108米回到点P,则角α的度数为40°.【分析】先求出多边形的边数,再利用多边形的外角和求出答案即可.【解答】解:∵108÷12=9,∴小林从P点出发又回到点P正好走了一个九边形,∴α=360°÷9=40°.故答案为:40°.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.14.(3分)(2017春•蒙城县期末)如图,一透明的圆柱体玻璃杯,从内部测得底部直径为6cm,杯深8cm.今有一根长为16cm的吸管如图放入杯中,露在杯口外的长度为h,则h的变化范围是:6cm≤h≤8cm.【分析】根据题中已知条件,首先要考虑吸管放进杯里垂直于底面时最短为8cm,则露在杯口外的长度最长为16﹣8=8cm;最长时与底面直径和高正好组成直角三角形,用勾股定理解答进而求出露在杯口外的长度最短.【解答】解:当吸管放进杯里垂直于底面时最短为8cm,则露在杯口外的长度最长为16﹣8=8cm;最长时与底面直径和高正好组成直角三角形,底面直径为6cm,高为8cm,所以由勾股定理可得杯里面管长为=10cm,则露在杯口外的长度最长为16﹣10=6cm;所以,露在杯口外的长度在6cm和8cm范围变化.故答案为:6cm≤h≤8cm.【点评】本题考查勾股定理的应用,解答此题的关键是要找出管最长和最短时在杯中所处的位置,然后计算求解.15.(3分)(2017春•蒙城县期末)如图所示,将两张等宽的长方形条交叉叠放,重叠部分是一个四边形ABCD,若AD=4cm,∠ABC=30°,则四边形ABCD的面积是8cm2.【分析】证出该四边形是一个菱形,再由直角三角形的性质即可得出答案.【解答】解:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,分别作CD,BC边上的高为AE,AF,如图所示:∵两纸条相同,∴纸条宽度AE=AF.∵平行四边形的面积为AE×CD=BC×AF,∴CD=BC.∴平行四边形ABCD为菱形,∴AB=AD=4cm,∵∠ABC=30°,∴AE=AB=2cm,=BC•AE=4×2=8,∴S菱形ABCD故答案为8.【点评】本题考查菱形的判定与性质的应用、含30°角的直角三角形的性质;证明四边形是菱形是解决问题的突破口.16.(3分)(2017春•蒙城县期末)顺次连接对角线互相垂直且相等的四边形中点所得到的四边形是正方形.【分析】画出满足条件的图象,利用E、F、G、H分别为各边的中点,由三角形中位线定理及平行四边形判定定理,可得这个四边形是平行四边形,再由对角线垂直,即可得到结论.【解答】解:连接AC、BD,则∵E、F、G、H分别为各边的中点,∴EF∥AC,GH∥AC,EH∥BD,FG∥BD,EF=GH=AC,EH=FG=BD∴四边形EFGH是平行四边形,∵AC⊥BD,且AC=BD,∴EF⊥FG,且EF=FG,∴四边形EFGH是正方形;故答案为:正方形.【点评】本题考查了三角形的中位线的性质及特殊四边形的判定,属于基础题.三、计算题(本大题共7小题,满分72分)17.(8分)(2017春•蒙城县期末)计算:3﹣9﹣(2﹣)﹣|2﹣5|. 【分析】先进行二次根式的乘法运算,再去绝对值,然后把二次根式化为最简二次根式后合并即可.【解答】解:原式=12﹣3﹣2+9+2﹣5 =9+4. 【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(2017春•蒙城县期末)如图,有一块耕地ACBD ,已知AD=24m ,BD=26m ,AC ⊥BC ,且AC=6m ,BC=8m .求这块耕地的面积.【分析】连接AB ,先根据勾股定理求出AB 的长,再由勾股定理的逆定理,判断出△ABD 的形状,根据S 四边形ADBC =S △ABD ﹣S △ABC 即可得出结论.【解答】解:连接AB ,∵AC ⊥BC ,AC=6m ,BC=8m ,∴Rt △ABC 中,AB==10m , ∵AD=24m ,BD=26m ,∴AD 2=242=576,BD 2=262=676,AB 2=1002=100,∴AB 2+AD 2=BD 2,∴△ABD 是直角三角形,∴S 四边形ADBC =S △ABD ﹣S △ABC =AB•AD ﹣AC•BC=×10×24﹣×8×6=120﹣24=96m 2.答:这块土地的面积是96m 2.【点评】本题考查的是勾股定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.(10分)(2017春•蒙城县期末)如图,已知四边形ABCD是平行四边形,点E,F是对角线BD上的两点,且BE=DF,连接AE,CF.求证:AE∥CF且AE=CF.【分析】由平行四边形的性质得∠ABE=∠CDF,由已知条件和三角形全等的判定方法即可证明△ABE≌△CDF,得出∠AEB=∠DFC,进而可得∠AED=∠BFC,得出AE∥CF即可.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS),∴∠AEB=∠DFC,AE=CF,∴∠AED=∠BFC,∴AE∥CF,∴AE∥CF且AE=CF.【点评】本题考查了平行四边形的性质、全等三角形的判定和性质以及平行线的判定方法;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(10分)(2017春•蒙城县期末)如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.(1)求证:四边形ADCE的是矩形;(2)若AB=17,BC=16,求四边形ADCE的面积.【分析】(1)根据平行四边形的性质得出四边形ADCE是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可;(2)求出DC,根据勾股定理求出AD,根据矩形的面积公式求出即可.【解答】(1)证明:∵点O是AC中点,∴AO=OC,∵OE=OD,∴四边形ADCE是平行四边形,∵AD是等腰△ABC底边BC上的高,∴∠ADC=90°,∴四边形ADCE是矩形;(2)解:∵AD是等腰△ABC底边BC上的高,BC=16,AB=17,∴BD=CD=8,AB=AC=17,∠ADC=90°,由勾股定理得:AD===15,∴四边形ADCE的面积是AD×DC=15×8=120.【点评】本题考查了平行四边形的判定,矩形的判定和性质,等腰三角形的性质,勾股定理的应用,能综合运用定理进行推理和计算是解此题的关键,比较典型,难度适中.21.(12分)(2017春•蒙城县期末)某校八年级学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):1号2号3号4号5号总数甲班891009611897500乙班1009511091104500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率.(2)计算两班比赛数据的方差.(3)根据以上信息,你认为应该把冠军奖杯发给哪一个班级?简述你的理由.【分析】(1)根据优秀率的公式:优秀人数÷总人数×100%,进行计算即可;(2)根据方程的计算公式,计算即可;(3)根据优秀率和方差进行比较即可.【解答】解:(1)甲班的优秀率:=0.4=40%,乙班的优秀率:=0.6=60%;(2)甲班的平均数==100(个),甲班的方差=[(89﹣100)2+(100﹣100)2+(96﹣100)2+(118﹣100)2+(97﹣100)2]=94;乙班的平均数==100(个),乙班的方差=[(100﹣100)2+(95﹣100)2+(110﹣100)2+(91﹣100)2+(104﹣100)2]=44.4;(3)冠军奖杯应发给乙班.因为乙班5名学生的比赛成绩的优秀率比甲班高,方差比甲班小,综合评定乙班踢毽子水平较好.【点评】本题考查了方差,以及优秀率的概念,并且运用它们的意义解决问题.22.(12分)(2017春•蒙城县期末)江苏是全国首个自然村“村村通宽带”省份.我市某村为了将当地农产品外销,建立了淘宝网店.该网店于今年7月底以每袋25元的成本价收购一批农产品.当商品售价为每袋40元时,8月份销售256袋.9、10月该商品十分畅销.销售量持续走高.在售价不变的基础上,10月份的销售量达到400袋.设9、10这两个月月平均增长率不变.(1)求9、10这两个月的月平均增长率;(2)为迎接双“十一”,11月份起,该网店采用降价促销的方式回馈顾客,经调查发现,该农产品每降价1元/每袋,销售量就增加5袋,当农产品每袋降价多少元时,该淘宝网店11月份获利4250元?【分析】(1)由题意可得,8月份的销售量为:256件;设9月份到10月份销售额的月平均增长率,则9月份的销售量为:256(1+x);10月份的销售量为:256(1+x)(1+x),又知三月份的销售量为:400袋,由此等量关系列出方程求出x 的值,即求出了平均增长率;(2)利用销量×每件商品的利润=4250求出即可.【解答】解:(1)设9、10这两个月的月平均增长率为x,根据题意可得:256(1+x)2=400,解得:x1=,x2=﹣(不合题意舍去).答:9、10这两个月的月平均增长率为25%;(2)设当每袋降价m元时,根据题意可得:(40﹣25﹣m)(400+5m)=4250,解得:m1=5,m2=﹣70(不合题意舍去).答:当每袋降价5元时,获利4250元.【点评】此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.23.(12分)(2006•太原)如图所示,在四边形ABCD中,点E、F是对角线BD 上的两点,且BE=FD.(1)若四边形AECF是平行四边形,求证:四边形ABCD是平行四边形;(2)若四边形AECF是菱形,那么四边形ABCD也是菱形吗?为什么?(3)若四边形AECF是矩形,试判断四边形ABCD是否为矩形,不必写理由.【分析】(1)连AC,证OB=OD,即可;(2)四边形ABCD是菱形.证对角线互相垂直平分即可;(3)因为∠BAD和∠EAF不可能都为90°,所以四边形ABCD不是矩形.【解答】解:连AC,设AC、BD相交于点O;(1)∵四边形AECF是平行四边形,∴OE=OF,OA=OC,∵BE=FD,∴OB=OD.∴四边形ABCD是平行四边形.(2)∵四边形AECF是菱形,∴OE=OF,OA=OC,AC⊥BD.∵BE=FD,∴OB=OD.∴四边形ABCD是菱形.(3)四边形ABCD不是矩形.【点评】此题主要考查平行四边形、菱形、矩形的判定.。
沪科版八年级数学下册《期末测试卷》(附答案)选择题1.下列根式中一定有意义的是()A。
$a$B。
$-a^2$C。
$a+1/2$D。
$a-1/2$2.下列式子中$y$是$x$的正比例函数的是()A。
$y=3x-5$B。
$y=2/x$___D。
$y=2x$3.直线$y=x-2$与$x$轴的交点坐标是()A。
$(2,0)$B。
$(-2,0)$C。
$(0,-2)$D。
$(0,2)$4.无理数$5+\sqrt{1}$在两个整数之间,下列结论正确的是()A。
$2<5+\sqrt{1}<3$B。
$3<5+\sqrt{1}<4$___<5+\sqrt{1}<5$D。
$5<5+\sqrt{1}<6$5.某校排球队21名同学身高的众数和中位数分别是(单位:cm)()A。
185,178B。
178,175C。
175,178D。
175,1756.若$a b>c$,$a c<b$,则一次函数$y=-\frac{ac}{x-b}$的图像不经过下列哪个象限()A。
第一象限B。
第二象限C。
第三象限D。
第四象限7.如图,在正方形$ABCD$中,$BD=2$,$\angle DCE$是正方形$ABCD$的外角,$P$是$\angle DCE$的角平分线$CF$上任意一点,则$\triangle PBD$的面积等于()A。
1B。
1.5C。
2D。
2.58.如图,在直角三角形$ABC$中,$\angle ACB=90°$,$AC=BC$,边$AC$落在数轴上,点$A$表示的数是1,点$C$表示的数是3,负半轴上有一点$B_1$,且$AB_1=AB$,点$B_1$所表示的数是()A。
$-2$B。
$-\sqrt{2}$C。
$\sqrt{2}-1$D。
$1-\sqrt{2}$9.如图,函数$y=kx$和$y=-\frac{11}{x+4}$的图像相交于点$A(3,m)$,则不等式$kx\geq-x+4$的解集为A。
学校姓名班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……一、选择题:(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.下列式子中,属于最简二次根式的是()A .B .C .D .2.下列各组数是勾股数的是()A.6,7,8 B.1,,2C.5,4,3 D.0.3,0.4,0.53.一次函数y=﹣2x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是()A.平均数B.中位数C.众数D.方差5.如图,在数轴上,点A表示的数是2,△OAB是Rt△,∠OAB=90°,AB=1,现以点O为圆心,线段OB长为半径画弧,交数轴负半轴于点C,则点C表示的实数是()A .﹣B .﹣C.﹣3 D.﹣26.下列等式成立的是()A .•=B .=2C .﹣=D .=﹣37.在平面直角坐标系中,把直线y=2x向左平移1个单位长度,平移后的直线解析式是()A.y=2x+1 B.y=2x﹣1 C.y=2x+2 D.y=2x﹣2 8.如图,在R△ABC中,CD、CE分别是斜边AB上的中线和高,CD=8,CE=5,则Rt△ABC的面积是()A.80 B.60 C.40 D.209.如图,若正比例函数y=kx图象与四条直线x=1,x=2,y=1,y=2相交围成的正方形有公共点,则k的取值范围是()A.k≤2 B.k≥C.0<k<D.≤k≤210.菱形ABCD的对角线AC=6cm,BD=4cm,以AC为边作正方形ACEF,则BF长为()A.4cm B.5cm C.5cm或8cm D.5cm或cm二、填空题:(本大题共4小题,每小题5分,满分20分)11.若二次根式有意义,则x的取值范围是.12.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩.13.如图,函数y=3x和y=kx+6的图象相交于点A(a,3),则不等式3x≤kx+6的解集为.14.如图,在R△ABC中,∠C=90°,AC=3,BC=4,点P是AB上的一个动点,过点P作PM ⊥AC于点M,PN⊥BC于点N,连接MN,则MN的最小值为.三、(本大题共2小题,每小题8分,满分16分)15.计算:(2﹣1)2+(+4)().16.《九章算术》“勾股”章有一题:“今有竹高一丈,末折抵地,去本三尺,问折者几何?”译文为:一根竹子,原来高一丈,虫伤之后,一阵风将竹子折断,其竹梢恰好抵地,抵地处与原竹子底部距离三尺,问原处还有多高的竹子?请解答上述问题.四、(本大题共2小题,每小题8分,满分16分)17.小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,本次上学途中,小明一共行驶了米;(2)小明在书店停留了分钟,本次上学,小明一共用了分钟;(3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?18.如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,过点E作EF⊥AD于点F 求证:四边形ABEF是正方形.五、(本大题共2小题,每小题10分,满分20分)19.如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,连接CD,过E点作EF∥DC交BC的延长线于点F.(1)求证:四边形CDEF是平行四边形;(2)求四边形CDEF的周长.20.如图,直线l1的函数表达式为y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积.六、(本题满分12分)21.某校要从王同学和李同学中挑选一人参加县知识竞赛在五次选拔测试中他俩的成绩如下表.第1次第2次第3次第4次第5次王同学60 75 100 90 75李同学70 90 100 80 80根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差王同学80 75 75 190李同学(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?说明你的理由. 七、(本题满分12分)22.某风景区计划在绿化区域种植银杏树,现甲、乙两家有相同的银杏树苗可供选择,其具体销售方案如下:甲乙购树苗数量 销售单价 购树苗数量 销售单价 不超过500棵时 800元/棵 不超过1000棵时 800元/棵 超过500棵的部分700元/棵超过1000棵的部分600元/棵设购买银杏树苗x 棵,到两家购买所需费用分别为y 甲元、y 乙元(1)该风景区需要购买800棵银杏树苗,若都在甲家购买所要费用为 元,若都在乙家购买所需费用为 元;(2)当x >1000时,分别求出y 甲、y 乙与x 之间的函数关系式; (3)如果你是该风景区的负责人,购买树苗时有什么方案,为什么? 八、(本题满分14分)23.已知,▱ABCD 中,∠ABC =90°,AB =4cm ,BC =8cm ,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE .求证:四边形AFCE 为菱形. (2)如图1,求AF 的长.(3)如图2,动点P 、Q 分别从A 、C 两点同时出发,沿△AFB 和△CDE 各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止,在运动过程中,点P 的速度为每秒1cm ,点Q 的速度为每秒0.8cm ,设运动时间为t 秒,若当以A 、P 、C 、Q 四点为顶点的四边形是平行四边形时,求t 的值.参考答案与试题解析一、选择题:(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A,B,C,D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.解:A、=2,故此选项错误;B、=,故此选项错误;C、=,故此选项错误;D、是最简二次根式,故此选项正确.故选:D.2.解:A、72+62≠82,故此选项错误;B、不是整数,故此选项错误;C、32+42=52,故此选项正确;D、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C.3.解:∵y=﹣2x﹣3∴k<0,b<0∴y=﹣2x﹣3的图象经过第二、三、四象限,不经过第一象限故选:A.4.解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:B.5.解:∵在Rt△AOB中,OA=2,AB=1,∴OB==.∵以O为圆心,以OB为半径画弧,交数轴的正半轴于点C,∴OC=OB=,∴点C表示的实数是﹣.故选:B.6.解:A、原式==,所以A选项错误;B、原式=2,所以B选项正确;C、原式=2﹣,所以C选项错误;D、原式=3,所以D选项错误.故选:B.7.解:由“左加右减”的原则可知,将直线y=2x向左平移1个单位所得的直线的解析式是y=2(x+1)=2x+2.即y=2x+2,故选:C.8.解:∵在R△ABC中,CD是斜边AB上的中线,CD=8,∴AB=2CD=16,∵CE=5,∴△ACB的面积S===40,故选:C.9.解:∵直线y=kx与正方形ABCD有公共点,∴直线y=kx在过点A和点C两直线之间之间,如图,可知A(2,1),C(1,2),当直线y=kx过A点时,代入可得1=2k,解得k=,当直线y=kx过C点时,代入可得2=k,解得k=2,∴k的取值范围为:≤k≤2,故选:D.10.解:∵AC=6cm,BD=4cm,∴AO=AC=×6=3cm,BO=BD=×4=2m,如图1,正方形ACEF在AC的上方时,过点B作BG⊥AF交FA的延长线于G,BG=AO=3cm,FG=AF+AG=6+2=8cm,在Rt△BFG中,BF=cm,如图2,正方形ACEF在AC的下方时,过点B作BG⊥AF于G,BG=AO=3cm,FG=AF﹣AG=6﹣2=4cm,在Rt△BFG中,BF==5cm,综上所述,BF长为5cm或cm.故选:D.二、填空题:(本大题共4小题,每小题5分,满分20分)11.解:根据题意,使二次根式有意义,即x﹣2≥0,解得x≥2;故答案为:x≥2.12.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.13.解:把A(a,3)代入y=3x得3a=3,解得a=1,则A(1,3),根据图象得,当x≤1时,3x≤kx+6.故答案为:x≤114.解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB==5,∵PM⊥AC,PN⊥BC,∠C=90°,∴四边形CNPM是矩形,∴MN=CP,由垂线段最短可得CP⊥AB时,线段MN的值最小,此时,S=BC•AC=AB•CP,△ABC即×4×3=×5•CP,解得CP=2.4.故答案为:2.4.三、(本大题共2小题,每小题8分,满分16分)15.解:原式=12﹣4+1+3﹣16=﹣4.16.解:设竹子折断处离地面x尺,则斜边为(10﹣x)尺,根据勾股定理得:x2+32=(10﹣x)2解得:x=4.55.答:原处还有4.55尺高的竹子.四、(本大题共2小题,每小题8分,满分16分)17.解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.(2)由图象可知:小明在书店停留了4分钟.本次上学,小明一共用了14分钟;(3)折回之前的速度=1200÷6=200(米/分),折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分),经过比较可知:小明在从书店到学校的时候速度最快,即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分.故答案是:(1)1500,2700;(2)4,14.18.证明:∵四边形ABCD是矩形,∴∠FAB=∠ABE=90°,AF∥BE,∵EF⊥AD,∴∠FAB=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∵AE平分∠BAD,AF∥BE,∴∠FAE=∠BAE=∠AEB,∴AB=BE,∴四边形ABEF是正方形.五、(本大题共2小题,每小题10分,满分20分)19.(1)证明:∵D、E分别为AB、AC的中点,∴DE是△ABC的中位线,∴DE BC,∵EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=,∴四边形CDEF的周长=2(1+)=2+2.20.解:(1)∵D在直线l1y=﹣3x+3的图象上,∴当y=0时,0=﹣3x+3,解得:x=1,∴D(1,0),(2)设直线l2的解析表达式为y=kx+b,∵过(3,﹣),(4,0),∴,解得,∴直线l2的解析表达式为y=x﹣6;(3)∵,解得:,∴C(2,﹣3),∴△ADC的面积为:×AD×3=×3×3=.六、(本题满分12分)21.解:(1)将李同学的成绩从小到大排列为:70、80、80、90、100,所以李同学的平均成绩为×(70+80+80+90+100)=84,中位数为80、众数为80,方差为×[(70﹣84)2+(80﹣84)2+(80﹣84)2+(90﹣84)2+(100﹣84)2]=104,补全表格如下:姓名平均成绩(分)中位数(分)众数(分)方差王同学80 75 75 190李同学84 80 80 104(2)在这五次考试中,成绩比较稳定的是小李,小王的优秀率=×100%=40%,小李的优秀率=×100%=80%;(3)我选李同学去参加比赛,因为李同学的优秀率高,有4次得80分以上,成绩比较稳定,获奖机会大.七、(本题满分12分)22.解:(1)甲家购买所要费用=500×800+300×700=400000+210000=610000;都在乙家购买所需费用=800×800=640000.故答案为:610000;640000.(2)当x>1000时,y甲=800×500+700(x﹣500)=700x+50000,y乙=800×1000+600(x﹣1000)=600x+200000,x为正整数,(3)当0≤x≤500时,到两家购买所需费用一样;‚当500≤x≤1000时,甲家有优惠而乙家无优惠,所以到甲家购买合算;又y甲﹣y乙=100x﹣150000.当y甲=y乙时,100x﹣150000=0,解得x=1500,当x=1500时,到两家购买所需费用一样;当y甲<y乙时,100x﹣150000<0,解得x<1500,∴当500<x<1500时,到甲家购买合算;当y甲>y乙时,100x﹣150000>0,解得x>1500,∴当x>1500时,到乙家购买合算.综上所述,当0≤x≤500时或x=1500时,到两家购买所需费用一样;当500<x<1500时,到甲家购买合算;当x>1500时,到乙家购买合算.八、(本题满分14分)23.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∠AEF=∠CFE.∵EF垂直平分AC,∴OA=OC.在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF(AAS).∵OA=OC,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE为菱形.(2)设菱形的边长AF=CF=xcm,则BF=(8﹣x)cm,在Rt△ABF中,AB=4cm,由勾股定理,得16+(8﹣x)2=x2,解得:x=5,∴AF=5.(3)由作图可以知道,P点AF上时,Q点CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点AB上时,Q点DE或CE上,也不能构成平行四边形.∴只有当P点在BF上,Q点在ED上时,才能构成平行四边形,∴以A,C,P,Q四点为顶点的四边形是平行四边形时,∴PC=QA,∵点P的速度为每秒1cm,点Q的速度为每秒0.8cm,运动时间为t秒,∴PC=t,QA=12﹣0.8t,∴t=12﹣0.8t,解得:t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.考试注意事项1、准备充分,忙中有序考试前的准备是否充分对临场的情绪状态和水平的发挥有重要的影响。
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、已知甲、乙两同学1分钟跳绳的平均数相同,若甲同学1分钟跳绳成绩的方差S甲2=0.006,乙同学1分钟跳绳成绩的方差S乙2=0.035,则()A.甲的成绩比乙的成绩更稳定B.乙的成绩比甲的成绩更稳定C.甲、乙两人的成绩一样稳定D.甲、乙两人的成绩稳定性不能比较2、▱ABCD一内角的平分线与边相交并把这条边分成2cm,3cm的两条线段,则▱ABCD的周长是()A.5cmB.7cmC.14cm或15cmD.14cm或16cm3、下列计算正确的是()A. B. C. D.若,则x=14、要使代数式有意义,则x的取值范围是()A.x>B.x<C.x≥D.x≤5、参加一次商品交易会的每两家公司之间都签订了一份合同,所有公司共签订了45份合同.设共有x家公司参加商品交易会,则x满足的关系式为()A. x(x+1)=45B. x(x﹣1)=45C.x(x+1)=45 D.x(x﹣1)=456、四边形ABCD的对角线相交于点O,能判定四边形是正方形的条件是()A.AC=BD,AB=CD,AB//CDB.AO=BO=CO=DO,AC⊥BDC.AD//BC,∠A=∠CD.AO=CO,BO=DO,AB=BC7、以下列各组数为边长,能组成直角三角形的是()A.2,3,4B.10,8,4C.7,25,24D.7,15,128、如图,数轴上点C所表示的数是()A. B. C.3.6 D.3.79、一艘轮船以16海里/时的速度离开港口向东南方向航行,另一艘轮船在同时同地以12海里/时的速度向西南方向航行,它们离开港口3小时相距()海里.A.60B.30C.20D.8010、下列方程中,没有实数根的是 ( )A.x 2-x-1=0B.x 2+1=0C.-x 2+x+2=0D.x 2=-3x11、阳光中学阅览室在装修过程中,准备用边长相等的正方形和正三角形两种地砖镶嵌地面,在每个顶点的周围正方形、正三角形地砖的块数可以分别是( )A.2,2B.2,3C.1,2D.2,112、如图,在平行四边形ABCD中,点E在AD上,∠ABE=20°,∠BED=∠BCD,则∠D的度数为()A.70°B.75°C.80°D.85°13、四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠D=180°C.∠B+∠A=180°D.∠A+∠D=180°14、以面积为9cm2的正方形的对角线为边长的正方形面积为()A.18cm 2B.20cm 2C.24cm 2D.28cm 215、关于的方程ax2+bx+c=2与方程(x+1)(x-3)=0的解相同,则a-b+c的值等()A.-2B.0C.1D.2二、填空题(共10题,共计30分)16、如果代数式有意义,那么字母x的取值范围是________.17、函数自变量x的取值范围是 ________.18、已知一组数据:0,2,x , 4,5的众数是4,那么这组数据的中位数是________.19、离中考还有20天,为了响应“还时间给学生”的号召,学校领导在全年级随机的调查了20名学生每天作业完成时间,绘制了如下表格:每天作业完成时间:(小2 2.53 3.5时)人数:(人) 5 5 8 2则这20个学生每天作业完成的时间的中位数为________ 小时20、如图,矩形ABCD中,AB=8,BC=4,点E在边AB上,点F在边CD上,点G、H在对角线AC上,若四边形EGFH是菱形,则AE的长是________.21、已知等腰的两边长分别为、,且,则的周长为________.22、如图,在正方形ABCD中,点E为BC边上一点,且CE=2BE,点F为对角线BD上一点,且BF=2DF,连接AE交BD于点G,过点F作FH⊥AE于点H,若HG=2cm,则正方形ABCD的边长为________cm.23、一元二次方程根的判别式的值为________.24、如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,交CB于点D,DE⊥AB,垂足为E.若AC=3,AB=5,则DE的长为________。
沪科版八年级数学下册期末测试卷一、选择题(每题4分,共40分)1.要使式子aa-2有意义,则a的取值范围是( )A.a≠2 B.a≥0 C.a>0且a≠2 D.a≥0且a≠2 2.已知2是关于x的方程x2-2ax+4=0的一个解,则a的值是( ) A.1 B.2 C.3 D.43.下列说法中不正确的是( )A.三个内角度数之比为3∶4∶5的三角形是直角三角形B.三边长之比为3∶4∶5的三角形是直角三角形C.三个内角度数之比为1∶2∶3的三角形是直角三角形D.三边长之比为1∶2∶3的三角形是直角三角形4.一个多边形的内角和是外角和的3倍,则这个多边形的边数是( ) A.9 B.8 C.7 D.65.某班级采用小组学习制,在一次数学单元测试中,第一组成员的测试成绩(单位:分)分别为95,90,100,85,95,其中成绩为85分的同学有一道题目被老师误判,其实际成绩应为90分,那么该小组的实际成绩与之前的成绩相比,下列说法正确的是( )A.数据的中位数不变B.数据的平均数不变C.数据的众数不变D.数据的方差不变6.下列计算,正确的是( )A.(-2)2=-2B.(-2)×(-2)=2C.3 2-2=3 D.8+2=107.若关于x的一元二次方程x2-4x+m+2=0有两个不相等的实数根,且m为正整数,则此方程的解为( )A.x1=-1,x2=3 B.x1=-1,x2=-3C.x1=1,x2=3 D.x1=1,x2=-38.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的高,CE为AB边上的中线,AD=2,CE=5,则CD=( )A.2 B.3 C.4 D.2 3(第8题) (第9题)9.《九章算术》中的“方田章”论述了三角形面积的求法:“圭田术曰:半广以乘正从”,就是说:“三角形的面积=底×高÷2”,我国著名的数学家秦九韶在《数书九章》中也提出了“三斜求积术”,即利用三角形的三条边长来求三角形的面积,用式子可表示为S=14⎣⎢⎡⎦⎥⎤a2b2-⎝⎛⎭⎪⎫a2+b2-c222(其中a,b,c为三角形的三条边长,S为三角形的面积).如图,在平行四边形ABCD中,已知AB=6,AD=3,对角线BD=5,则平行四边形ABCD的面积为( )A.11B.14C.142D.7210.如图,在正方形ABCD的对角线BD上截取BE=BC,连接CE并延长交AD于点F,连接AE,过点B作BH⊥AE于点G,交AD于点H,则下列结论错误的是( ) A.AH=DF B.S四边形EFHG=S△DEF+S△AGHC.∠AEF=45°D.△ABH≌△DCF(第10题) (第13题)二、填空题(每题5分,共20分)11.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.12.关于x的一元二次方程(m-5)x2+2x+2=0有实根,则m的最大整数值是________.13.如图,平行四边形ABCD中,AB∶BC=3∶2,∠DAB=60°,点E在AB上且AE∶EB=1∶2,点F是BC中点,过点D作DP⊥AF于点P,DQ⊥CE于点Q,则DP∶DQ=______________.14.边长为2的正方形ABCD中,点E是BD上一点,过点E作EF⊥AE交射线CB 于点F,且BC=2BF,则线段DE的长为______________.三、(每题8分,共16分)15.计算:2 13×9-12+54-1.16.解方程:x2+4x-3=0.四、(每题8分,共16分)17.如图,在由边长为1的小正方形组成的5×6的网格中,△ABC的三个顶点均在格点上,请按要求解决下列问题:(1)通过计算判断△ABC的形状;(2)在图中确定一个格点D,连接AD,CD,使四边形ABCD为平行四边形,并求出▱ABCD的面积.(第17题)18.为进一步提升企业产品竞争力,某企业加大了科研经费的投入,2018年该企业投入科研经费5 000万元,2020年投入科研经费7 200万元,假设该企业这两年投入科研经费的年平均增长率相同.(1)求这两年该企业投入科研经费的年平均增长率;(2)若该企业科研经费的投入还将保持相同的年平均增长率,请你预算2022年该企业投入科研经费多少万元.五、(每题10分,共20分)19.如图,把一个等腰直角三角形零件(△ABC,其中∠ACB=90°)放置在一凹槽内,三个顶点A,B,C分别落在凹槽内壁上,已知∠D=∠E=90°,测得AD=5 cm,BE=7 cm,求该三角形零件的面积.(第19题)20.如图,用长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,建造花圃时,在BC上用其他材料做了宽为1米的两扇小门.(1)设花圃的一边AB长为x米,则另一边AD的长为________米(用含x的代数式表示);(2)若花圃的面积刚好为45平方米,求此时花圃的长与宽.(第20题)六、(12分)21.某校要从王同学和李同学中挑选一人参加县知识竞赛,在五次选拔测试中他们的成绩(单位:分)如下表.第1次第2次第3次第4次第5次王同学60 75 100 90 75李同学70 90 100 80 80根据上表解答下列问题:(1)完成下表.平均成绩/中位数/分众数/分方差分王同学80 75 75 190李同学(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则王同学、李同学在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为应选谁参加比赛比较合适?请说明理由.七、(12分)22.如图,已知点D是△ABC的边BC的中点,直线AE∥BC,过点D作DE∥AB,分别交AE,AC于点E,F.(1)求证:四边形ADCE是平行四边形;(2)如果四边形ADCE是矩形,△ABC应满足什么条件?并说明理由;(3)如果四边形ADCE是菱形,直接写出△ABC应满足的条件:__________________.(第22题) 八、(14分)23.对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图①,在四边形ABCD中,AB=AD,CB=CD,四边形ABCD是垂美四边形吗?请说明理由.(2)性质探究:如图②,垂美四边形ABCD的对角线AC,BD交于点O.猜想:AB2+CD2与AD2+BC2有什么关系?并证明你的猜想.(3)解决问题:如图③,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE.已知AC=4,AB=5,求GE的长.(第23题)答案一、1.D 2.B 3.A 4.B 5.A 6.B 7.C8.C 9.B10.B二、11.-212.413.2 3∶1314.22或3 22三、15.解:2 13×9-12+54-1=213×9-2 3+14=2 3-23+12=12.16.解:原方程可化为x2+4x+4-7=0,即(x+2)2=7,开平方,得x+2=±7,解得x1=-2+7,x2=-2-7. 四、17.解:(1)由题意可得,AB=12+22=5,AC=22+42=2 5,BC=32+42=5.∵(5)2+(2 5)2=25=52,即AB2+AC2=BC2,∴△ABC是直角三角形.(2)如图所示.(第17题)▱ABCD 的面积为AB ·AC =5×2 5=10.18.解:(1)设这两年该企业投入科研经费的年平均增长率为x ,根据题意得5 000(1+x )2=7 200, 解得x 1=0.2=20%,x 2=-2.2(舍去).答:这两年该企业投入科研经费的年平均增长率为20%. (2)7 200×(1+20%)2=10 368(万元).答:预算2022年该企业投入科研经费10 368万元. 五、19.解:∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∠ACD +∠BCE =90°. ∵∠D =90°,∴∠ACD +∠DAC =90°, ∴∠DAC =∠BCE . 在△ADC 和△CEB 中,⎩⎨⎧∠D =∠E ,∠DAC =∠ECB ,AC =BC ,∴△ADC ≌△CEB (AAS), ∴DC =BE =7 cm ,∴AC =52+72=25+49=74(cm), ∴BC =AC =74 cm ,∴该三角形零件的面积为12×74×74=37(cm 2).20.解:(1)(24-3x )(2)由题意可得(24-3x )x =45, 解得x 1=3,x 2=5,当AB =3米时,AD =15米>14米,不符合题意,舍去, 当AB =5米时,AD =9米,符合题意. 答:花圃的长为9米,宽为5米. 六、21.解:(1)84;80;80;104(2)在这五次测试中,成绩比较稳定的是李同学.王同学的优秀率为25×100%=40%,李同学的优秀率为45×100%=80%.(3)选李同学参加比赛比较合适,因为李同学的优秀率高,成绩比较稳定,获奖机会大.七、22.(1)证明:∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD.∵点D是△ABC的边BC的中点,∴BD=CD,∴AE=CD.又∵AE∥CD,∴四边形ADCE是平行四边形.(2)解:△ABC是等腰三角形,且AB=AC.理由如下:∵四边形ADCE是矩形,∴AD⊥BC.∵点D是△ABC的边BC的中点,∴AB=AC,即△ABC是等腰三角形.(3)△ABC是直角三角形,且∠BAC=90°八、23.解:(1)四边形ABCD是垂美四边形,理由如下:如图①,连接AC,BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,即AC⊥BD,∴四边形ABCD是垂美四边形.①(第23题)(2)AB 2+CD 2=AD 2+BC 2,证明如下:∵四边形ABCD 是垂美四边形,∴AC ⊥BD ,∴∠AOD =∠AOB =∠BOC =∠COD =90°,由勾股定理得AD 2+BC 2=OA 2+OD 2+OB 2+OC 2,AB 2+CD 2=OA 2+OB 2+OC 2+OD 2,∴AB 2+CD 2=AD 2+BC 2.(3)如图②,设CE 交AB 于点M ,交BG 于点N ,连接BE ,CG , ∵四边形ACFG 和四边形ABDE 都是正方形,∴∠CAG =∠BAE =90°,AG =AC =4,AE =AB =5,∴∠CAG +∠BAC =∠BAE +∠BAC ,即∠GAB =∠CAE .在△GAB 和△CAE 中,⎩⎨⎧AG =AC ,∠GAB =∠CAE ,AB =AE ,∴△GAB ≌△CAE (SAS),∴∠ABG =∠AEC ,易知∠AEC +∠AME =90°,又∵∠AME =∠BMN ,∴∠ABG +∠BMN =90°,∴∠BNM =90°,即CE ⊥BG ,∴四边形CGEB是垂美四边形.由(2)可得CG2+BE2=CB2+GE2,在Rt△ACB中,AC=4,AB=5,∴BC2=AB2-AC2=9,在Rt△ACG中,CG2=AC2+AG2=32,在Rt△ABE中,BE2=AB2+AE2=50,∴9+GE2=32+50,解得GE=73或GE=-73(不合题意,舍去),∴GE的长为73.。
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A. B. C.D.2、下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形D.四条边都相等的四边形是菱形3、下列命题中是真命题的是()A.如果a 2=b 2,那么a=bB.对角线互相垂直的四边形是菱形C.线段垂直平分线上的点到这条线段的两个端点的距离相等D.对应角相等的两个三角形全等4、如图,下列四组条件中,能判定□ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个5、式子有意义,则实数x的取值范围是( )A.x>2B.x>-2C.x≥2D.x≥-26、如图,在Rt△ABC中,∠A=90°,P为边BC上一动点,PE⊥AB于E , PF ⊥AC于F ,动点P从点B出发,沿着BC匀速向终点C运动,则线段EF的值大小变化情况是().A.一直增大B.一直减小C.先减小后增大D.先增大后减少7、如图,在平面直角坐标系中,点P的坐标为(0,2),直线y= 与x 轴、y轴分别交于点A,B,点M是直线AB上的一个动点,则PM长的最小值为()A.3B.4C.5D.68、在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示则这些运动员成绩的中位数、众数分别是()A.4.65、4.70B.4.65、4.75C.4.70、4.75D.4.70、4.709、下列说法中正确的是()A.有一个角是直角的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直平分的四边形是正方形D.两条对角线相等的菱形是正方形10、a= ,b= ,则a+b﹣ab的值是()A.3B.4C.5D.11、用配方法解方程x2﹣4x﹣1=0时,配方后得到的方程为()A.(x+2)2=3B.( x+2)2=5C.(x﹣2)2=3D.( x﹣2)2=512、如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连结EF,若AB=6,BC=4 ,则FD的长为()A.2B.4C.D.213、某校在计算学生的数学期评成绩时,规定期中考试成绩占40%,期末考试成绩占60%.王林同学的期中数学考试成绩为80分,期末数学考试成绩为90分,那么他的数学期评成绩是()A.80分B.82分C.84分D.86分14、如图,已知一张纸片▱ABCD,∠B>90°,点E是AB的中点,点G是BC上的一个动点,沿BG将纸片折叠,使点B落在纸片上的点F处,连接AF,则下列各角中与∠BEG不一定相等的是()A.∠FEGB.∠EAFC.∠AEFD.∠EFA15、在如图的网格中,每个小正方形的边长为1,A、B、C三点均在正方形格点上,若是的高,则的长为()A. B. C. D.2二、填空题(共10题,共计30分)16、如图,在▱ABCD中,对角线AC与BD相交于点O,AC⊥CD,OE∥BC交CD于E,若OC=4,CE=3,则BC的长是________.17、如图,在矩形ABCD中,BC=6,AB=2,Rt△BEF的顶点E在边CD或延长线上运动,且∠BEF=90°,EF=BE,DF=,则BE=________.18、如图,在矩形ABCD中,BC=20cm,点P和点Q分别从点B和点D出发,按逆时针方向沿矩形ABCD的边运动,点P和点Q的速度分别为3cm/s和2cm/s,则最快________ s后,四边形ABPQ成为矩形.19、如图,在平面直角坐标系中,点A、B分别在x轴、y轴的正半轴上,且,C为线段上一点,,若M为y轴上一点,且,设直线与直线相交于点N,则的长为________.20、以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y= (x >0)经过点D,则OB•BE的值为________.21、一次数学测验中,某小组七位同学的成绩分别是:90,85,90,95,90,85,95.则这七个数据的众数是________.22、《九章算术》是我国古代数学的扛鼎之作,其中记载了这样一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,铭道长一尺,问径几何?”。
沪科版八年级数学下册期末考试试卷(含答案)沪科版八年级数学下册期末考试试卷一.选择题(本大题共6题,满分18分)1.下列函数中,一次函数是()A.y=xB.y=kx+bC.y=x^2-2x+1D.y=(x+3)/(x+2)2.下列判断中,错误的是()A.方程x(x-1)=0是一元二次方程B.方程xy+5x=0是二元二次方程C.方程(x+3)/(x+2)=2是分式方程D.方程2x^2-x=0是无理方程3.已知一元二次方程x^2-2x-m=0有两个实数根,那么m 的取值范围是()A.m≤-1B.m≥-1C.m>-1D.m<-14.下列事件中,必然事件是()A.“奉贤人都爱吃___”B.“2018年上海中考,___数学考试成绩是满分150分” C.“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只” D.“在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A.平行四边形的对角线相等B.矩形的对角线平分对角C.菱形的对角线互相平分 D.梯形的对角线互相垂直6.等腰梯形ABCD中,AD//BC。
E、F、G、H分别是AB、BC、CD、AD的中点,那么四边形EFGH一定是()A.矩形B.菱形C.正方形D.等腰梯形二.填空题。
(本大题共12题,每小题2分,共24分)7.一次函数y=2x-1的图像在y轴上的截距为-18.方程(1/4)x-8=0的根是89.方程2x+10-x=1的根是310.一次函数y=kx+3的图像不经过第3象限,那么k的取值范围是k>=-3/411.用换元法解方程2y^2-2y-1=0,如果设x=y-1/2,那么原方程化成以“x”为元的方程是4x^2-3=012.化简:(AB-CD)(-AC-BD)=AD^2-BC^213.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:(1+x)^2=179/10014.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=1215.既是轴对称图形有事中心对称图形的四边形为平行四边形16.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8.S四边形ABCD=16,那么对角线BD=419.给定方程19.x=-1.20.给定方程组:y=4,y=-2或者x=8,x=2.21.给定方程组:1) y=14-x2) 1/222.给定几何图形:1) OD,BO2) AC23.解:假设和谐号速度为x km/h,则复兴号列车速度为(x+70) km/h。
一、选择题(本大题共有6题,每题3分,满分18分)1、直线23y x =-的截距是 ( )(A )—3; (B )—2; (C )2; (D )32、如果关于x 的方程()32019a x -=有解,那么实数a 的取值范围是( )(A )3a <; (B )3a = ; (C )3a >; (D )3a ≠3、下列说法正确的是( )(A )410x +=是二项方程; (B )22x y y -=是二元二次方程;(C )132x x -=是分式方程; (D210-=是无理方程 4、下列事件中,属于确定事件的是( )(A )抛掷一枚质地均匀的骰子,正面向上的点数是6;(B )抛掷一枚质地均匀的骰子,正面向上的点数大于6;(C )抛掷一枚质地均匀的骰子,正面向上的点数小于6;(D )抛掷一枚质地均匀的骰子6次,“正面向上的点数是6”至少出现一次5、如果平行四边形ABCD 两条对角线的长度分别为8,12AC cm BD cm ==,那么BC 边的长度可能是( )(A )2BC cm =; (B )6BC cm =; (C )10BC cm =; (D )20BC cm =6、已知平行四边形ABCD 中,90A B C ∠=∠=∠=,如果添加一个条件,使得该四边形成为正方形,那么所添加的这个条件可以是( )(A )90D ∠= (B )AB CD = (C )AB BC = (D )AC BD =二、填空题(本大题共12题,每题2分,满分24分)7、已知一次函数()32f x x =+,那么(2)f -=学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……8、已知函数37y x =-+,当2x >时,函数值y 的取值范围是9、将直线2y x =向上平移1个单位,那么平移后所得直线的表达式是10、二项方程32540x +=在实数范围内的解是11、用换元法解方程22111x x x x --=-时,如果设21x y x =-,那么所得到的关于y 的整式方程为 12、如果2x =是关于x 的方程21124k x x =+--的增根,那么实数k 的值为 13、不透明的布袋里有2个黄球,3个红球,5个白球,它们除颜色外其他都相同,那么从布袋中随机摸出一个球恰好为红球的概率是14、已知一个多边形的每个外角都是30,那么这个多边形是 边形15、如果向量AD BC =,那么四边形ABCD 的形状可以是 (写出一种情况即可)16、写出一个轴对称图形但不是中心对称图形的四边形:17、已知正方形ABCD 的边长为1,如果将向量AB AC -的运算结果记为向量m ,那么向量m 的长度为18、已知四边形ABCD 是矩形,点E 是边AD 的中点,以直线BE 为对称轴将ABE ∆翻折至FBE ∆,联结DF ,那么图1中与相等的角的个数为(图1)三、解答题(本大题共有7题,满分58分)19、(本题6x =-20、(本题8分)解方程组:222(1)20(2)x y x xy y -=⎧⎨--=⎩(不写作法,画出图21、(本题4分)已知向量,a b,(如图2),请用向量的加法的平行四边形法则作向量a b形)图222、(本题8分)甲、乙两位同学同时从学校出发,骑自行车前往距离学校20千米的郊野公园。
沪科版八年级下册数学期末考试试卷一、单选题1x 的取值范围是A .5x ≤B .5x <C .5x ≥D .5x > 2.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 A .5 B .4 C .7 D .6 3.下列计算正确的是A= B C .= D 3- 4.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,若再添加﹣个条件使▱ABCD 成为矩形,则该条件不可以是A .AC =BDB .AO =BOC .▱BAD =90° D .▱AOB =90° 5.为执行“均衡教育”政策,某县2019年投入教育经费2650万元,预计到2021年底三年累计投入1.2亿元.若每年投入教育经费的年平均增长率为x ,则下列方程正确的是A .()26501212000x +=B .()22650112000x +=C .()()26502650126501212000x x ++++=D .()()22650265012650112000x x ++++=6.若关于x 的一元二次方程mx 2+2mx+4=0有两个相等的实数根,则m 的值为 A .0 B .4 C .0或4 D .0或﹣47.在ABC 中,三边长分别为a ,b ,c ,且2a c b +=,12c a b -=,则ABC 是 A .直角三角形 B .等边三角形 C .等腰三角形 D .等腰直角三角形 8.如图,在Rt ABC 中,90CAB ∠=︒,16AB =,6AC =,两顶点A ,B 分别在平面直角坐标系的y 轴,x 轴的正半轴上滑动,点C 在第一象限内,连接OC ,则OC 的长的最大值为A.16 B .18 C .8+ D .8+9.如图,在Rt ABC 中,90C ∠=︒,3AC =,4BC =,点P 为AB 边上任意一点过点P 分别作PE AC ⊥于点E ,PF BC ⊥于点F ,则线段EF 的最小值是A .2B .2.4C .3D .410,那么能与它们组成直角三角形的第三条线段是A .1cmcm B .1cm C D .5cm 11.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是 A .0m ≠ B .14m ≤ C .14m < D .14m > 12.一个多边形所有内角与外角的和为1260°,则这个多边形的边数是 A .5 B .7 C .8 D .9 二、填空题13x 的值为___________ 14.下表记录了甲、乙、丙、丁四名运动员参加男子跳高选拔赛成绩的平均数x 与方差S 2:根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择 .15.若a 是方程2210x x --=的解,则代数式2242019a a -+的值为____________. 16.已知正方形ABCD 中,AB =3,P 为边CD 上一点,DP =1,Q 为边BC 上一点,若▱APQ 为等腰三角形,则CQ 的长为 ____.三、解答题1722) 18.解方程:2x 2﹣3x =5.19.如图,在正方形网格中每个小正方形的边长为1,小正方形的顶点称为格点,在正方形网格中分别画出下列图形:(1)在图(1AB .(2)在图(23的等腰DEF ∆ 20.已知关于x 的一元二次方程x 2﹣mx ﹣2=0.(1)求证:无论m 取何实数,该方程总有两个不相等的实数根; (2)若方程的一个根为2,求m 的值及另一个根.21.如图,在ABC中,D,E,F分别是AB,BC,AC的中点,连接DF,EF,BF.(1)求证:四边形BEFD是平行四边形;(2)若90AFB∠=︒,8AB=,求四边形BEFD的周长22.中华文明,源远流长;中华汉字,寓意深广,某校举办了以“感悟汉字深厚底蕴,弘扬中华传统文化”为主题的汉字听写大赛,全校3600名学生都参加了此次大赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:(1)m= ;n= ;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,估计该校参加这次比赛的3600名学生中成绩“优”等约有多少人?23.如图,平行四边形ABCD中,AE=CE.(1)用尺规或只用无刻度的直尺作出AEC∠的角平分线,保留作图痕迹,不需要写作法.(2)设AEC∠的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.24.某公司设计了一款工艺品,每件的成本是40元,为了合力定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元.(1)若销售单价为每件60元,求每天的销售利润;(2)要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?25.如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF DE⊥于点F,交CD于点G.(1)求证:CG CE=.(2)如图2,连接FC、AC.若BF平分DBE∠.∠,求证:CF平分ACE(3)如图3,若G为DC中点,2AB=,求EF的长.参考答案1.C【详解】解:▱50x-≥,▱5x≥,故选:C.2.D【分析】利用多边形内角和公式和外角和定理,列出方程即可解决问题.【详解】解:根据题意,得:(n-2)×180=360×2,解得n=6.故选:D.【点睛】本题考查了多边形内角与外角,解答本题的关键是根据多边形内角和公式和外角和定理,利用方程法求边数.3.B【解析】【分析】根据二次根式的乘法法则对A、B、C进行判断,再根据二次根式的性质对D进行判断.【详解】解:A=,故A选项错误;B,故B选项正确;C、=C选项错误;D3=,故D选项错误;【点睛】本题主要考查了二次根式的计算:先把各二次根式化为最简二次根式,再进二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.D【解析】【分析】由矩形的判定定理和菱形的判定定理分别对各个选项进行判断即可.【详解】解:A、▱四边形ABCD是平行四边形,AC=BD,▱平行四边形ABCD是矩形,故选项A不符合题意;B、▱四边形ABCD是平行四边形,▱AO=CO,BO=DO,▱AO=BO,▱AC=BD,▱平行四边形ABCD是矩形,故选项B不符合题意;C、▱四边形ABCD是平行四边形,▱BAD=90°,▱平行四边形ABCD是矩形,故选项C不符合题意;D、▱▱AOB=90°,▱AC▱BD,▱四边形ABCD是平行四边形,▱平行四边形ABCD是菱形,故选项D不符合题意;故选:D.【点睛】此题主要考查了矩形的判定、菱形的判定、平行四边形的性质等知识;熟记矩形的判定定理是解题的关键.5.D【解析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2014年投入教育经费+2014年投入教育经费×(1+增长率)+2014年投入教育经费×(1+增长率)²=1.2亿元,据此列方程.【详解】解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)²=12000.故选:D.【点睛】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.6.B【解析】【分析】由已知先确定m≠0,再由方程根的情况,利用判别式Δ=4m2﹣16m=0,求解m 即可.【详解】解:▱mx2+2mx+4=0是一元二次方程,▱m≠0,▱方程有两个相等的实数根,▱Δ=4m2﹣16m=0,▱m=0或m=4,▱m=4,故选:B.【点睛】本题考查了根的判别式,解题的关键是根据根的个数结合根的判别式得出关于m 的一元二次方程.7.A【解析】根据平方差公式,可得222c a b -= ,即可求解. 【详解】解:▱2a c b +=,12c a b -=, ▱()()122a c c ab b +-=⋅ , 即222c a b -= , ▱222+=a b c ,▱ABC 是直角三角形. 故选: A . 【点睛】本题主要考查了勾股定理的逆定理,平方差公式,熟练掌握若一个三角形的两边的平方和等于第三边的平方是解题的关键. 8.B 【解析】 【分析】取AB 的中点P ,连接OP 、CP ,利用直角三角形斜边中线等于斜边的一半,可得182OP AP AB ===,再由勾股定理,可得CP=10,再由三角形的三边关系,即可求解. 【详解】解:如图,取AB 的中点P ,连接OP 、CP ,▱16AB =,▱182OP AP AB === , 在Rt ACP 中,6AC =,由勾股定理得:10CP == ,▱18OC OP CP ≤+= ,▱当O 、P 、C 三点共线时,OC 最大,最大值为18. 故选:B . 【点睛】本题主要考查了直角三角形的性质,勾股定理,三角形的三边关系,熟练掌握相关知识是解题的关键. 9.B 【解析】 【分析】求出四边形PECF 是矩形,根据矩形的性质得出EF=CP ,根据垂线段最短得出CP▱AB 时,CP 最短,根据三角形的面积公式求出此时CP 值即可. 【详解】 解:连接CP ,▱PE▱AC ,PF▱BC ,▱ACB=90°, ▱▱PEC=▱ACB=▱PFC=90°, ▱四边形PECF 是矩形, ▱EF=CP ,当CP▱AB 时,CP 最小,即EF 最小,在Rt▱ABC 中,▱C=90°,AC=3,BC=4,由勾股定理得:AB=5, 由三角形面积公式得:AC×BC=AB×CP , CP=125, 即EF 的最小值是125=2.4, 故选:B .【点睛】本题考查了勾股定理,三角形的面积,矩形的性质和判定,垂线段最短等知识点,能求出EF最短时P点的位置是解此题的关键.10.A【解析】【分析】根据勾股定理的逆定理列出方程解即可,有第三边是斜边或者是直角边两种情况.【详解】当第三边是斜边时,第三边2=(cm),当第三边是直角边时,第三边1(cm).故选A.11.B【解析】【分析】判断一元二次方程根的情况通过判别式判断即可,有实数根即判别式大于等于0.【详解】解:▱关于x的一元二次方程22(21)0x m x m--+=有实数根▱()22=-2m141m0∆--⨯⨯≥⎡⎤⎣⎦解得:14m≤.故选:B.【点睛】本题考查了一元二次方程根的判别式,掌握一元二次方程的性质,运用判别式判断方程根的情况是解题的关键.12.B【解析】【分析】根据多边形内角和及外角和直接列式计算即可.【详解】解:多边形的内角和:(n -2)×180°;多边形的外角和是360°,根据题意可知: (n -2)×180°+360°=1260°,解得n=7.故选B .【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和公式及外角和始终为360°是解题的关键.13.3【解析】【分析】根据同类二次根式的概念及一元二次方程的解法进行求解即可.【详解】解:▱▱2221x x -=+,解得1231x x ==-,(舍去).故答案:3.【点睛】本题主要考查同类二次根式及一元二次方程的解法,熟练掌握同类二次根式的概念是解题的关键.14.甲【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【详解】 ▱x 甲=x 丙>x 丁>x 乙,▱从甲和丙中选择一人参加比赛,▱22S S甲乙<,▱选择甲参赛,故答案为甲.15.2021【解析】【分析】根据一元二次方程的解的定义,将x=a代入已知方程,即可求得a2-2a=1,然后将其代入所求的代数式并求值即可.【详解】解:▱a是方程x2-2x-1=0的一个解,▱a2-2a=1,则2a2-4a+2019=2(a2-2a)+2019=2×1+2019=2021;故答案为2021.【点睛】本题考查的是一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了代数式求值.16.2或73【解析】【分析】分三种情况求CQ:当AP=AQ时,CQ=2;当AP=PQ时,CQ;当AQ=PQ时,设CQ=x,则BQ=3﹣x,由9+(3﹣x)2=4+x2,即可求CQ=73.【详解】解:▱AB=3,DP=1,▱CP=2,▱AP如图1,当AP=AQ时,AQ在Rt▱ABQ中,BQ=1,▱CQ=2;如图2,当AP=PQ时,PQ,在Rt▱CPQ中,CQ如图3,当AQ=PQ时,设CQ=x,则BQ=3﹣x,在Rt▱ABQ中,AQ2=9+(3﹣x)2,在Rt▱PCQ中,PQ2=4+x2,▱9+(3﹣x)2=4+x2,▱x=73,▱CQ=73.故答案为:2或7 3【点睛】本题考查正方形的性质,等腰三角形的性质,能够作出满足条件的图形,并用勾股定理解题是关键.17.7﹣【解析】【分析】分别化简二次根式,然后先算乘方,再算乘法,最后合并同类二次根式.【详解】334--+7-=7﹣【点睛】本题考查二次根式的混合运算,掌握利用二次根式的性质进行化简及二次根式混合运算的计算法则是解题关键.18.x1=5,x2=﹣12【解析】【分析】化等号右边为0,左边因式分解得(2x﹣5)(x+1)=0,令两个一次因式等于0即可求出方程的解.【详解】解:2x2﹣3x=5.移项,得:2x2﹣3x﹣5=0,因式分解,得:(2x﹣5)(x+1)=0,2x﹣5=0或x+1=0,,x2=﹣1.解得:x1=52【点睛】本题主要考查了一元二次方程的解法——因式分解法,熟练掌握因式分解法的步骤是解决问题的关键.19.(1)见解析;(2)见解析.【解析】【分析】(1)根据勾股定理可得直角边长为2和1(2)根据勾股定理可得直角边长为3和1面积为3确定▱DEF.【详解】解如图所示图(1) 图(2)【点睛】此题主要考查了勾股定理的应用,在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.20.(1)见解析;(2)x =﹣1【解析】【分析】(1)求判别式()2420m ∆-⨯-=>即可证明;(2)将x =2代入一元二次方程x 2﹣mx ﹣2=0,即可求m ,由此确定一元二次方程为x 2﹣x ﹣2=0,再求方程的解即可.【详解】解:(1)()224280m m ∆=-⨯-=+>,▱无论m 取何实数,该方程总有两个不相等的实数根;(2)▱方程的一个根为2,将x =2代入一元二次方程x 2﹣mx ﹣2=0,得4﹣2m ﹣2=0,解得m =1,▱一元二次方程为x 2﹣x ﹣2=0,解得x =﹣1或x =2,▱方程的另一个解是x =﹣1.【点睛】本题考查了根的判别式及解一元二次方程,掌握判别式的值与方程的解法是解答此题的关键.21.(1)见解析;(2)16【解析】【分析】(1)利用中位线可证//DF BC ,//EF AB ,根据两组对边分别平行的四边形是平行四边形来证明即可;(2)由▱AFB =90°,得DF =DB =DA =12AB =4,再根据菱形的判定定理证得四边形BEFD 是菱形,进而求得答案.【详解】(1)证明:▱D ,E ,F 分别是AB ,BC ,AC 的中点,▱DF ,EF 是▱ABC 的中位线,▱//DF BC ,//EF AB ,▱四边形BEFD 是平行四边形;(2)解:▱D ,E ,F 分别是AB ,BC ,AC 的中点,8AB =, ▱142EF AB ==,又▱90AFB ∠=︒,142DF AB ==,▱EF DF =,由(1)得:四边形BEFD 是平行四边形,▱四边形BEFD 是菱形,▱4BE EF DF BD ====,▱四边形BEFD 的周长16=.【点睛】本题考查了平行四边形的判定定理、直角三角形斜边上的中线等于斜边的一半、菱形的判定和性质等,利用直角三角形斜边上的中线等于斜边的一半证明四边形的边相等是解题的关键.22.(1)0.2,70;(2)见解析;(3)80≤x <90;(4)900【解析】【分析】(1)根据频数、频率总数的关系进行计算即可,(2)在频数分布直方图中画出80-90组的频数直方图即可;(3)根据中位数的意义,找出处在第100、101位的两个数,落在哪个组即可;(4)样本估计总体,样本中优秀的占25%,因此估计总体3600人的25%是优秀的人数.【详解】解:(1)n=40÷200=0.20;m=200×0.35=70,故答案为:0.20,70;(2)补全频数分布直方图如图所示:(3)将200个数据从小到大排列后,处在第100、101位的两个数落在80≤x<90,故答案为:80≤x<90,(4)3600×0.25=900答:这次比赛的3600名学生中成绩“优”等约有900人.【点睛】本题考查了频数分布直方图,理解统计图中的数量和数量关系是正确解答前提.23.(1)见详解;(2)见解析.【解析】【分析】(1)只用无刻度直尺作图过程如下:▱连接AC、BD交于点O,▱连接EO,EO 为▱AEC的角平分线;(2)先根据AF=EC,AF▱CE,判定四边形AECF是平行四边形,再根据AE=EC,即可得出平行四边形AECF是菱形.【详解】解:(1)如图所示,EO为▱AEC的角平分线;(2)▱四边形ABCD是平行四边形,▱AD▱BC,▱▱AFE=▱FEC,又▱▱AEF=▱CEF,▱▱AEF=▱AFE,▱AE=AF,▱AF=EC,▱四边形AECF是平行四边形,又▱AE=EC,▱平行四边形AECF是菱形.【点睛】本题主要考查了平行四边形的性质以及菱形的判定,解题时注意:一组邻边相等的平行四边形是菱形.24.(1)1600元;(2)55元【解析】【分析】(1)根据每天的销售利润=每件的利润×每天的销售量,即可求出结论;(2)设每件工艺品售价为x元,则每天的销售量是[100-2(x-50)]件,根据每天的销售利润=每件的利润×每天的销售量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【详解】解:(1)(60-40)×[100-(60-50)×2]=1600(元).答:每天的销售利润为1600元.(2)设每件工艺品售价为x元,则每天的销售量是[100-2(x-50)]件,依题意,得:(x-40)[100-2(x-50)]=1350,整理,得:x2-140x+4675=0,解得:x1=55,x2=85(不合题意,舍去).答:每件工艺品售价应为55元.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.25.(1)见解析;(2)见解析;(3)EF【解析】【分析】(1)只需要证明BCG▱DCE即可得到答案;(2)先证明BEF▱BDF得到=EF FD,然后根据直角三角形斜边上的中线等于斜边的一半得到1=2CF EF DE=,FCE E∠=∠,然后根据正方形的性质与角平分线的定义进行求解即可;(3)先求出BG BD=GF x=,则=BF BG GF x+=在Rt BDF和Rt DFG中,由勾股定理222DF BD BF=-,222DF GD GF=-,求出x,由此即可得到答案.【详解】解:(1)▱四边形ABCD是正方形,▱BC=DC,▱BCD=90°,▱▱DCE=90°,▱CBG+▱BGC=90°,▱BF▱DE,▱▱BFE=90°,▱▱CBG+▱E=90°,▱▱BGC=▱E▱BCG ▱DCE (AAS ),▱CG CE =;(2)▱BF 平分DBE ∠,▱EBF DBF ∠=∠,又▱▱BFD=▱BFE=90°,BF=BF▱BEF ▱BDF (ASA ),▱=EF FD ,▱F 是DE 的中点 ▱1=2CF EF DE =,▱FCE E ∠=∠,▱四边形ABCD 是正方形,▱▱DBE=▱ACB=45°▱BF 平分DBE ∠,▱22.5EBF ∠=,▱67.5E ∠=,▱67.5FCE E ∠=∠=▱1804567.567.5ACF ∠=--=.即ACF FCE ∠=∠,▱CF 平分ACE ∠.(3)▱G 为DC 中点,==2AB CD ,▱1CG GD ==,由勾股定理:BG BD =设GF x =,则=BF BG GF x +=在Rt BDF 和Rt DFG 中,由勾股定理:222DF BD BF =- , 222DF GD GF =- ▱()22221x x -=-,解得x =再由勾股定理:DF ==由(1)知:BG DE =,▱=EF DE DF BG DF -=-=.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,角平分线的定义与判定,解题的关键在于能够熟练掌握相关知识进行求解。
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、)已知α,β是方程x2+2013x+1=0的两个根,则(1+2015α+α2)(1+2015β+β2)的值为()A.1B.2C.3D.42、如图,在平行四边形ABCD和平行四边形AECF的顶点,D,E,F,B在一条直线上,则下列等式成立的是()A.AE=CEB.CE=CFC.DE=BFD.DE=EF=BF3、如图,圆柱形容器的底面周长是24cm,高为17cm,在外侧底面S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开口处1cm的点F处有一苍蝇,急于捕获苍蝇充饥的蜘蛛所走的最短路线长度是()A.20cmB.8 cmC. cmD.24cm4、若关于x的方程x2﹣4x+m=0没有实数根,则实数m的取值范围是()A.m<﹣4B.m>﹣4C.m<4D.m>45、方程x2-2(3x-2)+(x+1)=0的一般形式是()A.x 2-5x+5=0B.x 2+5x+5=0C.x 2+5x-5=0D.x 2+5=06、如图,在四边形中,,,,若,则的长等于()A. B. C. D.7、如图,在△ABC中,AB=AC,点D、E分别是边AB,AC的中点,点G,F在BC边上,四边形DGFE是正方形.若DE=4cm,则AC的长为()A.4cmB.2 cmC.8cmD.4 cm8、在菱形ABCD中,对角线AC、BD相交于点O,AB=5,AC=6,过点D作AC的平行线交BC的延长线于点E,则△BDE的面积为()A.22B.24C.48D.449、如图,在中,,于点,是的外角的平分线,交于点,则四边形的形状是()A.平行四边形B.矩形C.菱形D.正方形10、一元二次方程的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.无法确定11、如果a是一元二次方程的一个根,是一元二次方程的一个根,那么a的值等于()A.1或2B.0或3C.-1或-2D.012、关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.013、如图,点A所表示的数是()A.1.5B.C.2D.14、五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,如图,其中正确的是()A. B. C. D.15、如图,在楼顶点A处观察旗杆CD测得旗杆顶部C的仰角为30°,旗杆底部D的俯角为45°.已知楼高AB=9m,则旗杆CD的高度为()A. mB. mC.9 mD.12 m二、填空题(共10题,共计30分)16、已知点A(4,0),B(0,﹣2),C(a,a)及点D是一个平行四边形的四个顶点,则线段CD长的最小值为________.17、已知三角形三边的长分别为15、20、25,则这个三角形的形状是________.18、如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=________ 度.19、用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=62°,则∠2的度数是________20、如图,把一张长方形纸片ABCD沿EF折叠后,点A、B分别落在A1、B2的位置上,A1E与BC交于点O,若∠EFO=60°,则∠AEA1=________.21、已知方程 x2﹣4x+3=0 的两根分别为 x1、x2,则 x1+x2=________.22、方程x2-5x+2=0的解是________.23、若n边形内角和为1260°,则这个n边形的对角线共有________.24、在中,若,,,则的面积是________.25、如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE 折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A 恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②△DEF∽△ABG;③S△ABG = S△FGH;④AG+DF=FG.其中正确的是________.(把所有正确结论的序号都选上)三、解答题(共5题,共计25分)26、试确定一元二次方程式x2﹣x﹣=0的解的取值范围(精确到0.1).27、如图,点O在的边AN上,以O为圆心的圆交AM于B,C两点,交AN于D,E两点,若,,,求的半径r.28、如图,AB是⊙O的一条弦,且AB=,点C,E分别在⊙O上,且OC⊥AB于点D,∠AEC=30°,连接OA.求⊙O的半径R.29、下表是某校九年级(1)班20名学生某次数学测验的成绩统计表:成绩(分)60 70 80 90 100人数(人)1 5 x y 2(1)若这20名学生的平均分是84分,求x和y的值;(2)这20名学生的本次测验成绩的众数和中位数分别是多少?30、甲、乙两船同时从港口A出发,甲船以12海里/时的速度向北偏东35°航行,乙船向南偏东55°航行.2小时后,甲船到达C岛,乙船到达B岛,若C、B两船相距40海里,问乙船的速度是每小时多少海里?参考答案一、单选题(共15题,共计45分)1、D2、C3、A4、D5、A6、D7、D9、B10、A11、B12、B13、D14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、29、30、。
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCEB.AF=ADC.AB=AFD.BE=AD﹣DF2、若是一元二次方程,则的值为()A. B.2 C.-2 D.以上都不对3、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形.再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”.在“生长”了2012次后形成的图形中所有正方形的面积和是()A.2009B.2010C.2011D.20134、对于一元二次方程2x2+1=3x,下列说法错误的是()A.二次项系数是2B.一次项系数是3C.常数项是1D.x=1是它的一个根5、如图,矩形的两条对角线相交于点,则的长是()A. B. C. D.6、下列二次函数中有一个函数的图像与x轴有两个不同的交点,这个函数是( )A. B. C. D.7、勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=3,AC=4,点D、E、F、G、H、I 都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.90B.100C.110D.1218、浙江广厦篮球队5名场上队员的身高(单位:cm)是:184,188,190,192,194.现用一名身高为170cm的队员换下场上身高为190cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大9、如图,正方形ABCD的边长为12,E,F分别为BC,AD边上的点,且BE=DF =5,M,N分别为AB,CD边上的点,且MN⊥AE交AE,CF于点G,H,则GH的长为()A.6B.C.D.10、在下列方程中,一元二次方程是()A.x 2﹣2xy+y 2=0B.x(x+3)=x 2﹣1C.x 2﹣2x=3D.x+ =011、下列结论中,正确的有()①△ABC的三边长分别为a,b,c,若b2+c2=a2,则△ABC是直角三角形;②在Rt△ABC中,已知两边长分别为6和8,则第三边的长为10;③在△ABC 中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④若三角形的三边长之比为1:2:,则该三角形是直角三角形.A.3个B.2个C.1个D.0个12、三角形两边的长是4和9,第三边满足方程x2﹣24x+140=0,则三角形周长为()A.27B.23C.23或27D.以上都不对13、某养鸭场有若干只鸭,某天捉到30只全部做上标记,又过了一段时间,捉到50只,其中有2只有标记,那么估计该养鸭场有鸭子()A.500只B.650只C.750只D.900只14、下列关于的一元二次方程中,有两个相等的实数根的方程是()A. B. C. D.15、某书店与一山区小学建立帮扶关系,连续6个月向该小学赠送书籍的数量分别如下(单位:本):300,200,200,300,300,500这组数据的众数、中位数、平均数分别是()A.300,150,300B.300,200,200C.600,300,200 D.300,300,300二、填空题(共10题,共计30分)16、如图,点在正方形的边上,连接,设点关于直线的对称点为点,且点在正方形内部,连接并延长交边于点,过点作交射线于点,连接.若,则的长为________.17、计算:3 +2 =________.18、若________.19、如图,正三角形和正方形的面积分别为10,6,两阴影部分的面积分别为a,b(a>b),则(a﹣b)等于________.20、如图,+∠G=________.21、菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.AD=10,EF=4,则BG的长________.22、某区10名学生参加实际汉字听写大赛,他们得分情况如下表:人数 3 4 2 1分数80 85 90 95那么10名学生所得分数的中位数是________.23、若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是________.24、如图,直线AB的解析式为y= x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为________.25、一组数据﹣1,3,7,4的极差是________.三、解答题(共5题,共计25分)26、计算:27、已知x、y均为实数,且满足xy+x+y=17,x2y+xy2=66,求:代数式x4+x3y+x2y2+xy3+y4的值.28、已知:如图,在△ABC中,AB=AC,M是BC的中点,MD⊥AB,ME⊥AC,DF⊥AC,EG⊥AB,垂足分别为点D、E、F、G,DF、EG相交于点P.判断四边形MDPE 的形状,并说明理由.29、如图,平行四边形ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,求△BOC的周长为多大?30、如图,车高4m(AC=4m),货车卸货时后面支架AB弯折落在地面A处,1 C=2m,求弯折点B与地面的距离.经过测量A1参考答案一、单选题(共15题,共计45分)1、B2、C3、D4、B5、C6、D7、C8、B9、C11、A12、B13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、29、30、。
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C′处,BC′交AD于点E,则线段DE的长为().A.3B.C.5D.2、顺次连接平面上A、B、C、D四点得到一个四边形,从①AB∥CD②BC=AD③∠A=∠C④∠B=∠D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有()A.5种B.4种C.3种D.1种3、如图,正方形ABCD中,点E在BC上,且CE= BC,点F是CD的中点,延长AF与BC的延长线交于点M.以下论:①AB=CM;②AE=AB+CE;③S△AEF = S四边形ABCF;④∠AFE=90°.其中正确结论的个数有()A.1个B.2个C.3个D.4个4、若代数式有意义,则实数的取值范围是()A. B. C. D.5、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是9、16、1、9,则最大正方形E的边长是A.35B.C.70D.无法确定6、下列方程中是关于 x 的一元二次方程的是( )A.x 2+ =0B.ax 2+bx+c=0C.x 2+x+1=0D.x(x+1)=x 2+77、小明量得家中的彩电屏幕的长为58厘米,宽为46厘米,你能判断这是一台多少英寸的电视机。
()A.9英寸(23厘米)B.21英寸(54厘米)C.29英寸(74厘米) D.34英寸(87厘米)8、如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B.C.D.9、一元二次方程x2+px=2的两根为x1, x2,且x1=﹣2x2,则p的值为()A.2B.1C.1或﹣1D.﹣110、用配方法解方程3x2-6x+1=0,则方程可变形为( )A. B. C. D.11、下列图形不能在平面中进行密铺(镶嵌)的是()A.三角形B.四边形C.正五边形D.正六边形12、下列说法正确的是().A.一个游戏的中奖概率是,则做100次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据 8,8,7,10,6,8,9 的众数和中位数都是8D.若甲组数据的方差s2=0.01,乙组数据的方差s 2=0.1,则乙组数据比甲组数据稳定13、在▱ABCD中,若∠BAD与∠CDA的角平分线交于点E,则△AED的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定14、如图,四边形 ABCD中,BD是对角线,AB=BC,∠ABC=60°,CD=4,∠ADC=60°,则△BCD的面积为()A.4B.8C.2 +4D.15、如图:小明从点A出发,沿直线前进5m后向左转30°,再沿直线前进5m 后,又向左转30°,照这样方式走下去,他第一次回到出发点A时,一共走了()A.50mB.60mC.70mD.80m二、填空题(共10题,共计30分)16、若以正方形ABCD的一边CD为边作等边三角形△CDE,则∠BED=________.17、若x1, x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1x2的值=________.18、若二次根式是最简二次根式,则最小的正整数a=________19、若=2﹣x,则x的取值范围是________.20、为了解某校八年级学生在延期开学期间每天学习时间的情况,随机调查了该校八级名学生,将所得数据整理并制成下表.据此估计该校八年级学生每天的平均学习时间大约是________ .21、已知关于x的方程x2+kx+3=0的一个根为x=3,则方程的另一个根为________22、如图,ABCD的顶点在矩形的边上,点与点不重合,若的面积为4,则图中阴影部分两个三角形的面积和为________.23、已知数据:,,,π,﹣2,其中无理数出现的频率是________.24、如图,点是边长为的菱形对角线上的一个动点,点分别是边上的中点,则的最小值是________.25、当时,二次根式的值为________.三、解答题(共5题,共计25分)26、解方程:27、如图,已知四边形中,,,,,,求四边形的面积.28、配方: x-4x+3=(x- )+ 请在空格中填上适当的数,使等式成立。
初二数学期末试卷一、选择(每小题3分共10小题)1.下列说法不正确的是( )A .三角形的内心是三角形三条角平分线的交点.B .与三角形三个顶点距离相等的点是三条边的垂直平分线的交点.C .在任何一个三角形的三个内角中,至少有2个锐角.D .有公共斜边的两个直角三角形全等.2.若三角形三边长为整数,周长为11,且有一边长为4,则此三角形中最长的边是( ) A .7 B .6 C .5 D .43.22592y xy x --因式分解为( )A .)5)(2(y x y x --B .)52)((y x y x -+C .)5)(2(y x y x ++D .)5)(2(y x y x -+4.a 、b 是(a ≠b )的有理数,且0132=+-a a 、0132=+-b b 则221111b a +++的值( )A .21 B .1 C .2 D .4 5.等腰三角形一腰上的高与底边的夹角是45°,则此三角形是( )A .锐角三角形B .钝角三角形C .等边三角形D .等腰直角三角形6.已知:xx x x -=-22||则x 应满足( ) A .x <2 B .x ≤0 C .x >2 D .x ≥0且x ≠27.如图已知:△ABC 中AB =AC ,DE 是AB 边的垂直平分线,△BEC 的周长是14cm ,且BC =5cm ,则AB 的长为( )A .14cmB .9cmC .19cmD .11cm8.下列计算正确的是( )A .632)(a a =- B .236a a a =÷ C .1-=--+b a b a D .aa a 31211=+9.已知2)2(--=a .3)3(--=b .)4(2--=c .则)]([c b a ----的值是( )A .15B .7C .-39D .4710.现有四个命题,其中正确的是( )(1)有一角是100°的等腰三角形全等(2)连接两点的线中,直线最短(3)有两角相等的三角形是等腰三角形(4)在△ABC 中,若∠A -∠B =90°,那么△ABC 是钝角三角形A .(1)(2)B .(2)(3)C .(3)(4)D .(1)(4)二、填空(每小题2分共10小题)1.已知21=+x x 则=+221xx __________________ 2.分解因式=--a a a 223____________________________3.当x =__________________时分式)1)(3(1||+--x x x 值为零. 4.若03441022422=-++-x x x x ,那么x =____________________________ 5.计算=-+-+⋅x y y yx x y x 2222)(________________________________ 6.等腰三角形的两边a 、b 满足0)1132(|2|2=-+++-b a b a 则此等腰三角形的周长=_____________________________7.等腰三角形顶角的外角比底角的外角小30°,则这个三角形各内角为___________ _____________________8.如图在△ABC 中,AD ⊥BC 于D ,∠B =30°,∠C =45°,CD =1则AB =____________9.如图在△ABC 中,BD 平分∠ABC 且BD ⊥AC 于D ,DE ∥BC 与AB 相交于E .AB =5cm 、AC =2cm ,则△ADE 的周长=______________________10.在△ABC 中,∠C =117°,AB 边上的垂直平分线交BC 于D ,AD 分∠CAB 为两部分.∠CAD ∶∠DAB =3∶2,则∠B =__________三、计算题(共5小题)1.分解16824-+-x x x (5分)2.计算329122---m m (5分)3.化简再求值13112-+-+x x x 其中x =-2(5分)4.解方程24422223x x x x +-=-+-(5分)5.为了缓解交通堵塞现象,决定修一条从市中心到飞机场的轻轨铁路.为了使工程提前3个月完成,需将原计划的工作效率提高12%,问原计划此工程需要多少个月?(6分)四、证明计算及作图(共4小题)1.如图已知:在△ABC 中,AB =AC ,∠A =120°,DF 垂直平分AB 交AB 于F 交BC 于D ,求证:DC BD 21=(5分)2.如图C 为AB 上一点,且△AMC 、△CNB 为等边三角形,求证AN =BM (6分)3.求作一点P ,使PC =PD 且使点P 到∠AOB 两边的距离相等.(不写作法)(5分)4.如图点E 、F 在线段BD 上,AB =CD ,∠B =∠D ,BF =DE .(8分)求证(1)AE =CF(2)AE ∥CF (3)∠AFE =∠CEF参考答案一、选择(每小题3分共10小题)1.D 2.C 3.D 4.B 5.D 6.B 7.B 8.C 9.B 10.C二、填空(每小题2分共10小题)1.2 2.)2)(1(-+a a a 3.1 4.5 5.y x +6.7 7.80° 50° 50° 8.2 9.7cm 10.18°三、计算题(共5小题)1.解:16824-+-x x x22)4(-=x x)4)(4(22-++-=x x x x2.解:39122-2--m m9)3(2122-+-=m m9)3(22--=m m32+-=m .3.解:13112-+-+x x x1312----=x x x142--=x当2-=x 时 原式的值34-=. 4.解:24422223xx x x +-=-+-44222)2(32+-=---x x x x2)2(221-=-x x22=-x4=x .检验:x =4是原方程之根. 5.设原计划此工程需要x 月31%)121(1-=+x xx x =-36.312.136.312.0=x28=x检验28=x 是原方程的根.答:原计划28个月完成.四、证明计算及作图(共4小题)1.证:连AD .∵ ∠A =120°AB =AC∴ ∠B =∠C =30°∵ FD ⊥平分AB .∴ BD =AD ∠B =∠1=30°∠DAC =90°∵ 在Rt △ADC 中∠C =30°∴ DC AD 21=即DC BD 21=2.证:∵ C 点在AB 上A 、B 、C 在一直线上.∠1+∠3+∠2=180°∵ △AMC 和△CNB 为等边三角形∴ ∠1=∠2=60°即∠3=60°AC =MC ,CN =CB 在△MCB 和△ACN 中∵ ⎪⎩⎪⎨⎧==∠+∠=∠+∠=︒CB CN MC AC 1202331 ∴ △MCB ≌△ACN (SAS ) ∴ AN =MB .3.4.证① 在△ABF 和△DCE 中∵ ⎪⎩⎪⎨⎧=∠=∠=DE BF D B CD AB∴ △ABF ≌△DCE (SAS )∴ AF =CE ,∠1=∠2∵ B 、F 、E 、D 在一直线上∴ ∠3=∠4(同角的补角相等)即∠AFE =∠CEF ② 在△AFE 和△CEF 中∵ ⎪⎩⎪⎨⎧=∠=∠=EF EF CE AF 43∴ △AFE ≌△CEF (SAS )∴ AE =CF ∠5=∠6∵ ∠5=∠6∴ AE ∥CF .③ ∵ ∠3=∠4 即∠AFE =∠CEF .。
沪科版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,四边形ABCD是正方形,直线l1,l2,l3分别通过A,B,C三点,且l1∥l2∥l 3,若l1与l2的距离为5,l2与l3的距离为7,则正方形ABCD的面积等于( )A.70B.74C.144D.1482、下列计算正确的是()A. ×=B. + =C.D. -=3、如图,已知菱形的顶点且,则菱形两对角线的交点D的坐标为()A. B. C. D.4、将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为( )A.lB.2C.D.5、如图,圆柱的底面直径和高均为4,动点P从A点出发,沿着圆柱的侧面移动到BC的中点S的最短距离是 ( )A. B. C. D.6、下列说法中,错误的是( )A.三角形中至少有一个内角不小于60°B.三角形的角平分线、中线、高均在三角形的内部C.有一个角是60°的等腰三角形是等边三角形 D.多边形的外角和等于360°7、如图,为了检验教室里的矩形门框是否合格,某班的四个学习小组用三角板和细绳分别测得如下结果,其中不能判定门框是否合格的是()A.AB=CD,AD=BC,AC=BDB.AC=BD,∠B=∠C=90°C.AB=CD,∠B=∠C=90°D.AB=CD,AC=BD8、下列计算正确的是A. B. C. D.9、下列数是方程x2-x-6=0的根是()A.-4B.-3C.3D.210、在菱形ABCD中,AC与BD相交于点O ,则下列说法不正确的是().A. AO⊥ BOB.∠ABD=∠CBDC. AO= BOD. AD= CD11、如图,在中,,,,若两阴影部分都是正方形,、、在一条直线上,且它们的面积之比为,则较大的正方形的面积是()A.36B.27C.18D.912、如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为3和4,那么P到矩形两条对角线AC和BD的距离之和是()A. B. C. D.不确定13、下列计算正确的是()A.x 7÷x 4=x 11B.(a 3)2=a 5C.2 +3 =5D.÷=14、某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的的中位数大于乙运动员得分的的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定15、如图,是某校男子足球队的年龄分布条形图,则这些队员年龄的众数为()A.8B.10C.15D.18二、填空题(共10题,共计30分)16、若一组数据1,3,x,5,4,6的平均数是4,则这组数据的中位数是________.17、正方形,,,…按如图所示的方式放置.点,,,…和点,,,…分别在直线和轴上,则点的坐标是________.18、如图,在菱形ABCD中,∠ABC=60°,AB=5,点E是AD边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点D时,点F的运动路径长为________.19、一组数据1,1,2,4,这组数据的方差是________ .20、已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC 边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为________.21、如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC.若AB=,∠BCD=30°,则⊙O的半径为________.22、化简:=________ 。
初中八年级数学试卷一 填空题(每小题3分,共30分)1.若正方形的面积为18cm 2,则正方形对角线长为__________cm.2. 若n 边形的每一个内角都是120°,则边数n 为 .3. 当x 满足条件时.4. 1,1a b ==222a ab b -+= . 5. 如右图,ABCD 中,对角线AC 和BD 相交于点O ,如果AC=12 , BD=10, BC=m ,那么m 的取值范围是 .6.关于x 的一元二次方程2(1)21m x mx +-=的一个根是3,则m = . 7.右图是某校八年级(1)班全班同学1min 心跳次数分布直方图,那么,心跳次数 在 之间的学生最多.8.在实数范围内,分解因式425x -= .9.如果梯子底端离建筑物9m ,那么15m 长的梯子可达建筑物的高度是 m. 10.如下图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,有下列结论: ①AB ∥CD ②AB =BC ③AB ⊥BC ④AO =OC 其中正确的是 .(把你认为正确的序号都.填上).D二选择题(每小题3分,共30分)11. 下列哪组条件能判别四边形ABCD是平行四边形?()A. AB∥CD,AD=BCB. AB=CD,AD=BCC. ∠A=∠B,∠C=∠DD. AB=AD,CB=CD12. 如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A. 3 :4B. 1 :2C. 9 :16D. 5 :813. 下列方程中有两个相等的实数根的是()A.2710x x--= B.291240x x-+=C.2350x x++= D. 220x=14.三角形三边长分别为6、8、10,那么它最长边上的高为()A. 6B. 2.4C. 4.8D. 815. 下列二次根式中,最简二次根式是()A. B. C. D.16. 将统计数据进行适当分组,落在各小组里数据的个数叫做()A.频率B. 样本容量C.组数D.频数17. 平行四边形的两条对角线把它分成的全等三角形的对数是()A.2对B.4对C.6对D.8对C第12题图18.化简二次根式,结果是 ( )A. -B.C.- D.19.关于x 的一元二次方程240x kx +-=的根的情况是 ( )A. 有两个不相等的实数根 C. 有两个相等的实数根B. 没有实数根 D. 无法确定20. 已知三角形两边长分别为2和9,第三边的长为二次方214480x x -+=的一根,则这个三角形的周长为 ( )A.11B.17C.17或19D.19三 解答题(40分)21. 解方程(10分)(1) 0982=-+x x (2) 725102=+-x x22. 计算(求值)(10分)⑴⑵已知1x =,求21x x -+的值密 封 线 内 不 要 答 题23. 已知:在□ABCD 中,∠A 的角平分线交CD 于E ,若1:3: EC DE ,AB 的长为8,求BC 的长。
沪科版八年级下学期期末考试数学试卷含答案1、下列根式不是最简二次根式的是()A。
$10$ B。
$a^2+b^2$ C。
$\frac{1}{3}$ D。
$xy$2、化简$x\cdot\frac{-1}{x}$,正确的是()A。
$-x$ B。
$-\frac{x}{1}$ C。
$-\frac{1}{x}$ D。
$--x$3、方程$x(x+1)=x+1$的解是()A。
$x_1=0$,$x_2=-1$ B。
$x=1$ C。
$x_1=x_2=1$ D。
$x_1=1$,$x_2=-1$4、关于$x$的方程$mx^2+(2m+1)x+m=0$,有实数根,则$m$的取值范围是()A。
$m>-\frac{1}{4}$ 且 $m\neq0$ B。
$m\geq-\frac{1}{4}$ C。
$m\geq-\frac{1}{4}$ 且 $m\neq0$ D。
以上答案都不对5、有下列的判断:①$\triangle ABC$中,如果$a^2+b^2\neq c^2$,那么$\triangle ABC$不是直角三角形②$\triangle ABC$中,如果$a^2-b^2=c^2$,那么$\triangle ABC$是直角三角形③如果$\triangle ABC$是直角三角形,那么$a^2+b^2=c^2$以下说法正确的是()A。
①② B。
②③ C。
①③ D。
②6、定义:如果一元二次方程$ax^2+bx+c\neq0$满足$a+b+c=0$,那么我们称这个方程为“和谐”方程;如果一元二次方程$ax^2+bx+c\neq0$满足$a-b+c=0$,那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是()A。
方程有两个相等的实数根 B。
方程有一根等于$\frac{1}{2}$ C。
方程两根之和等于$-\frac{b}{a}$ D。
方程两根之积等于$\frac{c}{a}$7、三角形两边的长分别是$8$和$6$,第三边的长是方程$x^2-12x+20=0$的一个实数根,则三角形的周长是()A。
期末检测卷一.选择题(共10小题,满分30分,每小题3分)1.下列运算正确的是()A3+6=9B.35−5=2C.24÷6=4D.3×5=152.函数y=x+2x中,自变量x的取值范围是()A.x>−2B.x≥−2C.x>−2且x≠0D.x≥−2且x≠03.在学校数学学科知识竞赛中,我班“YYDS”组的6个同学获得的分数分别为:95、97、97、96、98、95,对于这6个同学的成绩下列说法正确的是()A.众数为95B.众数为97C.平均数为96D.极差为34.若关于x的一元二次方程(12k+1)x2−3x+2=0有两个不相等实数根,则k 的取值范围是( )A.k<14且k≠−2 B.k<14C.k≤14且k≠−2 D.k≤145.如图,是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的数(如6,7,8,13,14,15,20,21,22).如果圈出的9个数中,最小数x与最大数的积为161,那么根据题意可列方程为()A.x(x+8)=161B.x(x+16)=161C.(x−8)(x+8)=161D.x(x−16)=1616.如图,在四边形ABCD中,∠ABC=90°,AB=24,BC=18,CD=DA=17,点P在四边形ABCD的边上,若△APC的面积为120,则满足条件的点P的个数为( )A.1B.2C.3D.47.如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,∠BCD的平分线交AD 于点F,若AB=3,AD=4,则EF的长是()A.2B.1C.3D.3.58.勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入长方形内得到的,∠BAC=90°,AB=6,BC=10,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为()A.420B.440C.430D.4109.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF 的中点,那么CH的长是( )A.2.5B.5C.322D.210.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH,下列结论中结论正确的有()①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AEAB =23,则3S△EDH =13S△DHC,其中结论正确的有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)1148与最简二次根式2a−3是同类二次根式,则a=_____.12.某中学随机抽查了50名学生,了解他们平均每天的睡眠时间,结果如下表所示:时间(小时)6789人数36329根据学生睡眠管理相关规定﹐初中学生平均每天睡眠时间不低于8小时,该校共有学生2000人,试估计该校学生睡眠时间符合要求的约有______人.13.如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠1+∠2的度数为____________.14.关于x的一元二次方程(k+2)x2+6x+k2−4=0有一个根是0,则k的值________.15.如图,在正方形网格中,点A、B、P是网格线的交点,则∠PAB+∠PBA= ________°.16.如图,矩形ABCD的边AD长为4,将△ADC沿对角线AC翻折得到△A D′C,C D′与AB交于点E,再以C D′为折痕,将△BCE进行翻折,得到△B′CE.若两次折叠后,点B′恰好落在△ADC的边上,则AB的长为___________.三.解答题(共7小题,满分52分)17.(6分)计算:(1)(48+20)−(12−5); (2)48+3−21×30+4(22+3)2;18.(6分)解方程(1)x2−6x+5=0; (2)3x(2x−1)=4x−2; (3)x2−22x−2=019.(8分)在正方形网格中,每个小正方形的顶点称为格点,顶点都在格点的三角形叫做格点三角形,现有A,B两个格点,请以AB为边分别画出符合下列要求的格点三角形.(1)在图甲中画一个面积为4的直角三角形;(2)在图乙中画一个等腰(非直角)三角形,且这个等腰三角形的腰长为_______________.20.(8分)公司生产A,B两种型号的扫地机器人,为了解它们的扫地质量,工作人员从某月生产的A,B型扫地机器人中各随机抽取10台,在完全相同的条件下试验,记录下它们的除尘量的数据(单位:g),并进行整理,描述和分析(除尘量用x表示,共分为三个等级:合格80≤x<85,良好85≤x<95,优秀x≥95),下面给出了部分信息:10台A型扫地机器人的除尘量:83,84,84,88,89,89,95,95,95,98.10台B型扫地机器人中“良好”等级包含的所有数据:85,90,90,90,94.抽取的A,B型扫地机器人除尘量统计表型号平均数中位数众数方差“优秀”等级所占百分比A9089a26.640%B90b903030%根据以上信息,解答下列问题.(1)填空:a=______,b=_______,m=_______;(2)这个月公司生产B型扫地机器人共3000台,估计该月B型扫地机器人“优秀”等级的台数.(3)根据以上数据,你认为该公司生产的哪种型号的扫地机器人扫地质量更好?请说明理由(写出一条理由即可).21.(8分)世界杯是世界上级别最高的足球赛事,2023年世界杯在卡塔尔隆重举行,今年世界杯的吉样物是“拉伊卜”,它的设计灵感来源于阿拉伯标志型的白头巾,某网店现售有一大一小两种型号的“拉伊卜”摆件,已知每个大摆件的售价是每个小摆件售价的2倍还多60元,420元可购买一个大摆件和一个小摆件.(1)每个“拉伊卜”大摆件和小摆件的售价分别是多少?(2)第一天该网店按照原售价卖出大摆件30个,小摆件100个,因为小摆件库存量大,第二天商家调整了销售方案,大摆件的价格不变,小摆件的价格下调2m元,调整后,当天大摆件的销量下降了12m个,小摆件的销量增加了52m个,当天的销售额达到了20520元,求降价后的小摆件的价格.22.(8分)在长方形ABCD中,AB=6,AD=8,点E是AD边上的一点,将△ABE 沿BE折叠,点A的对应点为点F,射线EF与线段BC交于点G.(1)如图1,当E点和D点重合时,求证:BG=DG;(2)如图2,当点F正好落在矩形的对角线AC上时,求CG的长度;(3)如图3,连接DF,CF,若DF=CF,求△CDF的面积.23.(8分)△ABC中,D、E分别是AB,AC的中点,O是△ABC内任意一点,连接OB、OC.(1)如图1,点G、F分别是OB、OC的中点,连接DG,GF,FE,DE,求证:四边形DEFG是平行四边形;(2)如图2,若点O恰为BE和CD交点,求证:OB=2OE,OC=2OD;(3)如图3,若点O恰为BE和CD交点,射线AO与BC交于点M,求证:BM=CM.答案一.选择题1.D【分析】根据二次根式的加减乘除四则运算法则,逐项判断即可求解.【详解】解:A3和6不是同类二次根式,无法合并,故本选项错误,不符合题意;B、5−5=25,故本选项错误,不符合题意;C24÷6=4=2,故本选项错误,不符合题意;D3×5=15,故本选项正确,符合题意;故选:D2.D【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x的取值范围.【详解】根据题意得:{x+2≥0x≠0解得:x≥−2且x≠0故选:D.3.D【分析】根据一组数据中出现次数最多的为众数,所有数据和除以数据的个数为平均数,最大数减最小数为极差,逐一进行判断即可.【详解】解:A、95,97两个数据各出现两次,众数为95,97,选项错误,不符合题意;B、95,97两个数据各出现两次,众数为95,97,选项错误,不符合题意;C、x=16(95+97+97+96+98+95)≈96.3,选项错误,不符合题意;D、极差为:98−95=3,选项正确,符合题意;故选D.4.A【分析】依据一元二次方程的定义得12k+1≠0,及一元二次方程有两个不相等实数根时Δ>0,求解不等式即可.【详解】解:依题意得,Δ=(−3)2−4×(12k+1)×2>0且12k+1≠0,解得:k<14且k≠−2,故选:A.5.B【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为161,列出方程即可.【详解】解:根据图表可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为x,则最大数为x+16,根据题意得出:x(x+16)=161,故选:B.6.C【分析】根据三角形ABC的面积和三角形APC面积,可以判断点P可能存在线段AB 和线段BC上;根据点P在四边形ABCD的边上,考虑此时点P存在AD和DC上,利用勾股定理和等腰三角形的性质分别求出AC长度和三角形ADC的高,从而求出三角形ADC的面积,发现与三角形APC面积相等,从而推出点P在点D处.【详解】解:∵AB=24,BC=18,∴S△ABC=12×24×18=216.∴S△ABC>S△APC.当点P在边AB上,如图所示:∴S△APC=1AP⋅BC=120,2.∴AP=403∴AP<AB.∴此时点P满足条件.当点P在边BC上,如图所示:AB⋅PC=120,∴S△APC=12∴PC=10.∴PC<BC.∴此时点P满足条件.过点D作DE⊥AC于点E,∵AB=24,BC=18,∴Rt△ABC中,AC=182+242=30.∵AD=DC=17,DE⊥AC,∴AE=EC=15.∴Rt△DEC中,DE=D C2−C E2=172−152=8∴S△ADC=12AC⋅DE=12×30×8=120=S△APC∵点P在四边形ABCD的边上,∴P点和D点重合,∴点P在点D处.∴满足条件的P点共3个.故答案选:C.7.A【分析】根据平行四边形的性质证明DF=CD,AE=AB,进而可得AF和ED的长,然后可得答案.【详解】解:∵四边形ABCD是平行四边形,∴AD//CB,AB=CD=3,AD=BC=4,∴∠DFC=∠FCB,又∵CF平分∠BCD,∴∠DCF=∠FCB,∴∠DFC=∠DCF,∴DF=DC=3,同理可证:AE=AB=3,∴AF=DE∵AD=4,∴AF=4−3=1,∴EF=4−1−1=2.故选:A.8.B【分析】延长AB交KL于P,延长AC交LM于Q,可得△ABC、△PFB、△QCG全等,根据全等三角形对应边相等可得PB=AC,CQ=AB,然后求出IP和DQ的长,再根据长方形的面积公式列式计算即可得解.【详解】解:如图,延长AB交KL于P,延长AC交LM于Q,由题意得,∠BAC=∠BPF=∠FBC=90°,BC=BF,∴∠ABC+∠ACB=90°=∠PBF+∠ABC,∴∠ACB=∠PBF,∴△ABC≌△PFB(AAS),同理可证△ABC≌△QCG(AAS),∴PB=AC=8,CQ=AB=6,∵图2是由图1放入长方形内得到,∴IP=8+6+8=22,DQ=6+8+6=20,∴长方形KLMJ的面积=22×20=440.故选:B.9.B【分析】连接AC、CF,如图,根据正方形的性质得∠ACD=45°,∠FCG=45°,AC=2,CF=2,则∠ACF=90°,再利用勾股定理计算出AF=25,然后根据直角三角形斜边上的中线求CH的长.【详解】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=2,CF=2,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=A C2+C F2=(2)2+(32)2=25,∵H是AF的中点,∴CH=12AF=12×25=5.故选:B.10.D【分析】根据正方形ABCD,AC为对角线,EF∥AD,可知四边形AEFD是矩形,由此可证△AEG、△CFG、△HFG、△HFC是等腰直角三角形,H为CG的中点,AEAB =23,可知△EHD是等腰直角三角形,由此即可求解.【详解】解:结论①EG=DF,∵正方形ABCD中,AC为对角线,EF∥AD,∴∠EAG=45°,∠AEG=90°,∴AE=AG,四边形AEFD是矩形,△AEG、△CFG是等腰直角三角形,∴AE=DF,∴EG=DF,故结论①正确;结论②∠AEH+∠ADH=180°,由结论①正确可知,△CFG是等腰直角三角形,H为CG的中点,∴FH⊥CG,且△HFG、△HFC是等腰直角三角形,∴HF=HG,∠HFD=45°+90°=135°,∠HGE=180°−45°=135°,∴∠HFD=∠HGE,且EG=DF,∴△HFD≌△HGE(SAS),∴∠HEG=∠HDF,∵∠AEG+∠ADF=∠AEG+∠ADH+∠HDF=∠AEH+∠ADH=180°,故结论②正确;结论③△EHF≌△DHC,∵△AEG、△CFG、△HFG、△HFC是等腰直角三角形,△HFD≌△HGE(SAS),∴HF=HC,∠HFG=∠HCF=45°,∵四边形AEFD是矩形,∴EF=AD=DC,∴△EHF≌△DHC(SAS),故结论③正确;结论④若AEAB =23,则3S△EDH=13S△DHC,由结论②正确,可知△HFD≌△HGE(SAS);由结论③正确可知,△EHF≌△DHC(SAS),且△AEG、△CFG、△HFG、△HGC是等腰直角三角形,∴HE=HD,∠EHD=90°,即△EHD是等腰直角三角形,如图所示,过点H作HM⊥CD于M,设HM=x,则DM=5x,DH=26x,CD=6x,∴S△DHC =12HM•CD=3x2,S△EDH=12D H2=13x2,∴3S△EDH =13S△DHC,故结论④正确;综上所示,正确的有①②③④,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.3【分析】首先化简二次根式48=43,再根据同类二次根式定义可得2a﹣3=3,再解即可.48=16×3=3,48与最简二次根式2a−3是同类二次根式,∴2a﹣3=3,解得:a=3,故答案为:3.12.2000×32+9=1640人50故答案为:1640.13.210°【分析】根据多边形的内角和定理可求得∠B+∠C+∠D+∠E=510°,∠1+∠2+∠B+∠C+∠D+∠E=(6−2)×180°=720°,进而可求解.【详解】解:∵∠A+∠B+∠C+∠D+∠E=(5−2)×180°=540°,∠A=30°,∴∠B+∠C+∠D+∠E=510°,∵∠1+∠2+∠B+∠C+∠D+∠E=(6−2)×180°=720°,∴∠1+∠2=720°−510°=210°,故答案为:210°14.2【分析】将x=0代入方程,结合一元二次方程,k+2≠0,进行求解即可.【详解】解:∵x的一元二次方程(k+2)x2+6x+k2−4=0有一个根是0,∴k2−4=0,解得:k=±2∵(k+2)x2+6x+k2−4=0,是一元二次方程,∴k+2≠0,∴k≠−2,∴k=2;故答案为:2.15.45【分析】取网格上的点C、D、E,连接CP、BC.利用全等三角形的性质和平行线的性质求得∠CPB=∠PAB+∠PBA,再利用勾股定理及其逆定理求得∠PCB=90°,即证明△PCB为等腰直角三角形,便可解答.【详解】解:如图,点C、D、E是网格线交点,连接CP、BC,由图可得△APE≌△PCD(SSS),∴∠CPD=∠PAE,∴PD∥AB,∴∠DPB=∠PBA,∴∠CPB=∠PAB+∠PBA;设小网格的边长为a,由勾股定理可得:PC=5a=BC,PB=10a,∵P B2=10a2,P C2+B C2=5a2+5a2=10a2,∴P B2=P C2+B C2∴∠PCB=90°,∴∠CPB=45°,∴∠PAB+∠PBA=45°.故答案为:45.16.3或4+2【分析】根据题意分两种情况讨论:①当点B'恰好落在AC上时,由翻折以及矩形的性质利用AAS可证明△A D'E≌△CBE,然后根据等腰三角形的性质求出AC的长,再依据勾股定理求解即可;②当点B'恰好落在DC上时,同理利用AAS可证明△A D'E≌△CBE,根据全等三角形的性质可得出AE的长,再根据线段的和差关系即可得出答案.【详解】∵四边形ABCD为矩形,∴BC=AD=4,∠B=∠D=90°,∴∠D '=∠D =90°,A D '=AD =4,∵以C D '为折痕,将△BCE 进行翻折,得到△B 'CE ,∴∠CB E '=∠B =90°,C B '=CB =4,①当点B '恰好落在AC 上时,如图,在△A D 'E 和△CBE 中,{∠AE D '=∠CEB ∠D '=∠B A D '=CB∴△A D 'E ≌△CBE(AAS)∴EA =EC ,即△EAC 为等腰三角形,∵∠C B 'E =∠B =90°∴点B '为AC 中点,∴AC =2C B '=2CB =8,在Rt △ABC 中,有A B 2+B C 2=A C 2,即A B 2+42=82,解得AB =43②当点B '恰好落在DC 上时,如图,∵∠C B 'E =∠B =∠ACB =90°∴四边形B 'EBC 为矩形,∴B 'E =CB =4,∴BE=B'E=4在Rt△CBE中,CE=C B2+B E2=42+42=42,在△A D'E和△CBE中,{∠AE D'=∠CBE∠D'=∠BA D'=CB∴△A D'E≌△CBE(AAS)∴AE=CE=2∴AB=AE+BE=2+4.故答案为:3或4+2.三.解答题17.(1)(48+20)−(12−5)=3+5−23+5=3+5(248+3−214×30+(22+3)2=3+3−2×12×30+11+46=3−30+11+4618.(1)x2−6x+5=0(x−1)(x−5)=0 x−1=0,x−5=0,∴x1=1,x2=5(2)3x(2x−1)=4x−23x(2x−1)−(4x−2)=03x(2x−1)−2(2x−1)=0(3x−2)(2x−1)=03x−2=0,2x−1=0∴x1=23,x2=12(3)x2−22x−2=0a=1,b=−22,c=−2Δ=(−22)2−4×1×(−2)=16>0∴x=22±162=2±2∴x1=2+2,x1=2−219.(1)解:△ABC为所求作的三角形,如图所示:(画出一种情况即可)(2)解:△ABD为所求作的三角形,如图所示:(画出一种情况即可)图1和图232+12=10;图322+32=13.10(画图313).20.(1)解:A型中除尘量为95的有3个,数量最多,所以众数a=95;B型中“良好”等级包含的数据有5个,则所占百分比为50%,所以m%=1−50%−30%=20%,即m=20;因为B型中“合格”等级所占百分比为20%,所以B型中“合格”的有2个,所以B型中中位数b=90+902=90;故答案为:95;90;20;(2)3000×30%=900(台),答:估计该月B型扫地机器人“优秀”等级的台数有900台;(3)A型号更好,理由:在平均数均为90的情况下,A型号的平均除尘量众数95大于B型号的平均除尘量众数90.21.(1)解:设每个小摆件的售价为x元,则每个大摆件的售价为(2x+60)元,根据题意得:x+(2x+60)=420,解得:x=120,2×120+60=300(元),答:每个“拉伊卜”大摆件和小摆件的售价分别是300元和120元.(2)解:调整后,当天大摆件的销量为(30−12m)个,小摆件的销量为(100+52m)个,小摆件的价格为(120−2m)元,根据题意得:300(30−12m)+(120−2m)(100+52m)=20520,解得:m1=6,m2=−16(舍去),120−2×6=108(元),答:降价后的小摆件的价格为108元.22.(1)证明:∵四边形ABCD是矩形,∴AD//BC,∴∠ADB=∠DBC,由折叠得:∠ADB=∠BDF,∴∠BDF=∠DBC,∴BG=DG;(2)解:∵四边形ABCD是矩形,∴∠BAD=90°,AD∥BC,∴∠EAF=∠ACB,由折叠知:∠BFE=∠BAD=90°,AE=EF,BF=AB=6,∴∠BFG=90°,∠EAF=∠AFE,∵∠CFG=∠AFE,∴∠ACB=∠CFG,∴CG=GF,设CG=GF=x,则BG=8−x,在Rt△BFG中,由勾股定理得,B G2−F G2=B F2,∴(8−x)2−x2=62,,∴x=74;∴CG=74(3)如图,作FM⊥CD于M,交AB于N,∴∠NMC=90°,∵DF=CF,CD,∴DM=CM=12∵四边形ABCD是矩形,∴∠ABC=∠BCD=90°,∴四边形BCMN是矩形,∴BN=CM=3,∠MNB=90°,MN=BC=8,在Rt△BNF中,BN=3,BF=AB=6,∴FN=B F2−B N2=62−32=33,∴FM=MN−FN=8−33,∴S△CDF =12CD⋅FM=12×6×(8−33)=24−93.23.(1)∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=12BC,同理:GF∥BC,GF=12BC,∴DE∥GF,DE=GF,∴四边形DEFG是平行四边形;(2)取OB,OC中点G,F,连接DG,GF,FE,DE,∴OB=2OG,OC=2OF,由(1)知,四边形DEFG是平行四边形,∴OE=OG,OD=OF,∴OB=2OE,OC=2OD;(3)在射线OM上截取ON=OA,连接BN,CN,∵D,O分别是AB,AN的中点,∴DO是△ABN的中位线,∴DO∥BN即OC∥BN,同理:OB∥CN,∴四边形BOCN是平行四边形,∴BM=CM.。
一.选择题(本大题10小题,每小题4分,共40分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)• 1.如果a 为任意实数,下列根式一定有意义的是( )A B C D 2.下列式子中y 是x 的正比例函数的是( )A .y=3x-5B .y=2xC .y=25xD .3.直线y=x-2与x 轴的交点坐标是( )A .(2,0)B .(-2,0)C .(0,-2)D .(0,2)A .2-3之间B .3-4之间C .4-5之间D .5-6之间5.为了更好地迎接庐阳区排球比赛,某校积极准备,从全校学生中遴选出21名同学进行相应的排球训练,该训练队成员的身高如下表:则该校排球队21名同学身高的众数和中位数分别是(单位:cm )( )学校 姓名 班级___________ 座位号……装…………订…………线…………内…………不…………要…………答…………题……A.185,178 B.178,175 C.175,178 D.175,175A.第一象限B.第二象限C.第三象限D.第四象限7.如图,在正方形ABCD中,BD=2,∠DCE是正方形ABCD的外角,P是∠DCE的角平分线CF上任意一点,则△PBD的面积等于()A.1 B.1.5 C.2 D.2.58.如图,在Rt△ABC中,∠ACB=90°.AC=BC.边AC落在数轴上,点A表示的数是1,点C表示的数是3,负半轴上有一点B₁,且AB₁=AB,点B₁所表示的数是()A.-2 B.C.-1 D.()A .x≥3B .x≤3C .x≤2D .x≥210.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…按照此规律继续下去,则S 2016的值为( )A .(2)2013B .(2)2014C .(12)2013D .(12)201412.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这7名同学成绩的 (填”平均数”“众数”或“中位数”)13.如图,△ABC 的中位线DE=5cm ,把△ABC 沿DE 折叠,使点A 落在边BC 上的点F 处,若A 、F 两点间的距离是8cm ,则△ABC 的面积为 cm 2.14.如图,将平行四边形ABCD 折叠,使顶点D 恰好落在AB 边上的点M 处,折痕为AN ,有以下四个结论①MN ∥BC ;②MN=AM ;③四边形MNCB 是矩形;④四边形MADN 是菱形,以上结论中,你认为正确的有 (填序号).(2)求第几天每千克的利润w(元)最大?最大利润是多少?(利润=售价-成本)19.如图:在正方形ABCD中,点P、Q是CD边上的两点,且DP=CQ,过D作DG⊥AP 于H,交AC、BC分别于E,G,AP、EQ的延长线相交于R.(1)求证:DP=CG;(2)判断△PQR的形状,请说明理由.20.为了把巴城建成省级文明城市,特在每个红绿灯处设置了文明监督岗,文明劝导员老张某天在市中心的一十字路口,对闯红灯的人数进行统计.根据上午7:00~12:00中各时间段(以1小时为一个时间段),对闯红灯的人数制作了如图所示的扇形统计图和条形统计图,但均不完整.请你根据统计图解答下列问题:(1)问这一天上午7:00~12:00这一时间段共有多少人闯红灯?(2)请你把条形统计图补充完整,并求出扇形统计图中9~10点,10~11点所对应的圆心角的度数.(3)求这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数.21.某项工程由甲、乙两个工程队合作完成,先由甲队单独做3天,剩下的工作由甲、乙两工程队合作完成,工程进度满足如图所示的函数关系:(1)求出图象中②部分的解析式,并求出完成此项工程共需的天数;(2)该工程共支付8万元,若按完成的工作量所占比例支付工资,甲工程队应得多少元?22.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.【发现与证明】▱ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连结B′D.结论1:△AB′C与▱ABCD重叠部分的图形是等腰三角形;结论2:B′D∥AC…【应用与探究】在▱ABCD中,已知BC=2,∠B=45°,将△ABC沿AC翻折至△AB′C,连结B′D.若以A、C、D、B′为顶点的四边形是正方形,求AC的长.(要求画出图形)参考答案与试题解析1.【分析】根据二次根式的性质,被开方数大于等于0【解答】解:被开方数大于或等于0时,二次根式一定有意义,几个被开方数中,不论a取何值,一定大于0的只有a2+1.故选C.【点评】(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.【分析】根据正比例函数的定义:形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数进行分析即可.【解答】解:A、y=3x-5,是一次函数,不是正比例函数,故此选项错误;B、y=2x,是反比例函数,不是正比例函数,故此选项错误;C、y=25x是正比例函数,故此选项正确;D、故选:C.【点评】此题主要考查了正比例函数定义,关键是掌握正比例函数的一般形式.3.【分析】令y=0,求出x的值即可.【解答】解:∵令y=0,则x=2,∴直线y=x-2与x轴的交点坐标为(2,0).故选:A.【点评】本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的坐标特点是解答此题的关键.4.【分析】在哪两个整数之间.【解答】解:∵22=4,32=9,∴23;∴3<4.故选:B.【点评】此题主要考查了无理数的估算能力,需掌握二次根式的基本运算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据.【解答】解:因为175出现的次数最多,所以众数是:175cm;因为第十一个数是175,所以中位数是:175cm.故选:D.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.6.【分析】根据ab>0,ac<0,可以得到a、b、c的正负,从而可以判断一次函数a c y xb b =--的图象经过哪几个象限,不经过哪个象限,本题得以解决.【解答】解:∵ab>0,ac<0,∴当a>0时,b>0,c<0,当a<0时,b<0,c>0,∴当a>0时,b>0,c<0时,一次函数a cy xb b=--的图象经过第一、二、四象限,不经过第三象限,当a<0时,b<0,c>0时,一次函数a cy xb b=--的图象经过第一、二、四象限,不经过第三象限,由上可得,一次函数a cy xb b=--的图象不经过第三象限,故选:C.【点评】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.7.【分析】由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.【解答】解:过C点作CG⊥BD于G,∵CF是∠DCE的平分线,∴∠FCE=45°,∵∠DBC=45°,∴CF∥BD,∴CG等于△PBD的高,∵BD=2,∴CG=1,△PBD的面积等于12×2×1=1.故选A.【点评】考查了三角形面积公式以及代入数值求解的能力,注意平行线间三角形同底等高的情况.8.【分析】先求出AC的长度,再根据勾股定理求出AB的长度,然后根据B1到原点的距离是-1,即可得到点B1所表示的数.【解答】解:根据题意,AC=3-1=2,∵∠ACB=90°,AC=BC,∴AB=∴B1到原点的距离是-1.又∵B′在原点左侧,∴点B1表示的数是1-.故选:D.【点评】本题主要考查了实数与数轴,勾股定理,求出AB的长度是解题的关键.解题时注意实数与数轴上的点是一一对应关系.9.【分析】以交点为分界,结合图象写出不等式kx≥-12x+4的解集即可.【解答】解:∵函数y=kx和y=-12x+4的图象相交于点A(3,m),∴由图象知,当x≥3时,kx≥-12x+4.即:不等式kx≥-12x+4的解集为:x≥3.故选:A.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.10.【分析】根据等腰直角三角形的性质可得出S2+S2=S1,写出部分S n的值,根据数的变化找出变化规律“S n=(12)n−3”,依此规律即可得出结论.【解答】解:在图中标上字母E,如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S3=12S2=1,S4=12S3=12,…,∴S n=(12)n−3.当n=2016时,S2016=(12)2016−3=(12)2013.故选:C.【点评】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“S n=(12)n−3”.本题属于中档题,难度不大,解决该题型题目时,写出部分S n的值,根据数值的变化找出变化规律是关键.11.【分析】先将二次根式化为最简,然后合并同类二次根式即可.【解答】解:原式=63⨯==故答案为:【点评】本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.12.【分析】七名选手的成绩,如果知道中位数是多少,与自己的成绩相比较,就能知道自己是否能进入前四名,因为中位数是七个数据中的第四个数,【解答】解:因为七个数据从小到大排列后的第四个数是这七个数的中位数,知道中位数,然后与自己的成绩比较,就知道能否进入前四,即能否参加决赛.故答案为:中位数.【点评】考查中位数、众数、平均数反映一组数据的特征,中位数反映之间位置的数,说明比它大的占一半,比它小的占一半;众数是出现次数最多的数,平均数反映一组数据的平均水平和集中趋势,理解意义是正确判断的前提.13.【分析】根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,BC=2DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=12BC×AF=12×10×8=40cm2.故答案为:40.【点评】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.14.【分析】根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵根据折叠可得∠D=∠NMA,∴∠B=∠NMA,∴MN∥BC;①正确;∵四边形ABCD是平行四边形,∴DN∥AM,AD∥BC,∵MN∥BC,∴AD∥MN,∴四边形AMND是平行四边形,根据折叠可得AM=DA,∴四边形AMND为菱形,∴MN=AM;②④正确;没有条件证出∠B=90°,④错误;故答案为:①②④.【点评】本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.15.【分析】首先取绝对值以及化简二次根式和利用二次根式乘法运算去括号,进而合并同类项得出即可.【解答】|3|3(3-=-6.【点评】此题主要考查了二次根式的混合运算,正确掌握运算法则是解题关键.16.【分析】(1)根据四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD即可得出结论;(2)四边形ABCD中有直角.根据勾股定理得到CD=5,再根据勾股定理的逆定理即可求解.【解答】解:(1)如图,∵四边形ABCD的面积=S矩形AEFH-S△AEB-S△BFC-S△CGD-S梯形AHGD=5×5-12×1×5-12×2×4-12×1×2-12×(1+5)×1=1412;(2)四边形ABCD中有直角.理由:连结BD ,CD=5,∵CD 2=BC 2+CD 2,∴∠C=90°,∴四边形ABCD 中有直角.【点评】本题考查的是勾股定理的逆定理、勾股定理,熟知勾股定理及勾股定理的逆定理是解答此题的关键.17. 【分析】根据AAS 证△AFE ≌△DBE ,推出AF=BD .结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF 是菱形.【解答】证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE ,BD=CD ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠∠∠∠⎧⎪⎨⎪⎩===,∴△AFE ≌△DBE (AAS );∴AF=DB .∵DB=DC ,∴AF=CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D 是BC 的中点,E 是AD 的中点,∴AD=DC=12BC , ∴四边形ADCF 是菱形.【点评】本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,演艺圈的三角形的性质解决问题,属于中考常考题型.18. 【分析】(1)根据题意和当x=10时,y=7,当x=15时,y=6.5,可以求得一次函数的解析式并写出自变量x 的取值范围;(2)根据题意,可以得到w 与x 的函数关系式,再根据一次函数的性质和(1)中x 的取值范围即可解答本题.【解答】解:(1)设成本y (元千克)与第x 天的函数关系式是y=kx+b ,10715 6.5k b k b ⎩+⎨+⎧==,得0.18k b -⎧⎨⎩==, 即成本y (元千克)与第x 天的函数关系式是y=-0.1x+8(0<x≤20且x 为整数);(2)w=15-(-0.1x+8)=0.1x+7,∵0<x≤20且x 为整数,∴当x=20时,w 取得最大值,此时w=0.1×20+7=9,答:第20天每千克的利润w (元)最大,最大利润是9元/千克.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答.19. 【分析】(1)正方形对角线AC 是对角的角平分线,可以证明△ADP ≌△DCG ,即可求证DP=CG .(2)由(1)的结论可以证明△CEQ ≌△CEG ,进而证明∠PQR=∠QPR .故△PQR 为等腰三角形.【解答】解:(1)证明:在正方形ABCD 中,AD=CD ,∠ADP=∠DCG=90°,∠CDG+∠ADH=90°,∵DH ⊥AP ,∴∠DAH+∠ADH=90°,∴∠CDG=∠DAH ,∴△ADP ≌△DCG ,∵DP ,CG 为全等三角形的对应边,∴DP=CG .(2)△PQR 为等腰三角形.∠QPR=∠DPA ,∠PQR=∠CQE ,∵CQ=DP ,由(1)的结论可知∴CQ=CG ,∵∠QCE=∠GCE ,CE=CE ,∴△CEQ ≌△CEG ,即∠CQE=∠CGE ,∴∠PQR=∠CGE,∵∠QPR=∠DPA,且(1)中证明△ADP≌△DCG,∴∠PQR=∠QPR,所以△PQR为等腰三角形.【点评】本题中证明△ADP≌△DCG是关键,并且利用(1)的结论来证明(2)的推论.本题考查的是正方形对角线即角平分线,考查全等三角形的证明,并把所求角转换为全等三角形对应角进行证明.20.【分析】(1)根据11-12点闯红灯的人数除以所占的百分比即可求出7-12这一时间段共有的人数;(2)根据7-8点所占的百分比乘以总人数即可求出7-8点闯红灯的人数,同理求出8-9点及10-11点的人数,补全条形统计图即可;求出9-10及10-11点的百分比,分别乘以360度即可求出圆心角的度数;(3)找出这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数和中位数即可.【解答】解:(1)根据题意得:40÷40%=100(人),则这一天上午7:00~12:00这一时间段共有100人闯红灯;(2)根据题意得:7-8点的人数为100×20%=20(人),8-9点的人数为100×15%=15(人),9-10点占10100=10%,10-11点占1-(20%+15%+10%+40%)=15%,人数为100×15%=15(人),补全图形,如图所示:9~10点所对的圆心角为10%×360°=36°,10~11点所对应的圆心角的度数为15%×360°=54°;(3)根据图形得:这一天上午7:00~12:00这一时间段中,各时间段闯红灯的人数的众数为15人,中位数为15人.【点评】此题考查了条形统计图,扇形统计图,中位数,以及众数,弄清题意是解本题的关键.21.【分析】(1)由题意知道甲乙合作了2天,完成了总工程的111244-=,剩余的工程还是合作,那么需要的天数=112424⎛⎫÷⨯=⎪⎝⎭(天),已经做了5天,总天数=5+4=9;(2)根据甲的工作效率是112,于是得到甲9天完成的工作量是9×112=34,即可得到结论.【解答】解:(1)设一次函数的解析式(合作部分)是y=kx+b(k≠0,k,b是常数).∵(3,14),(5,12)在图象上.代入得134152k bk b ⎧=+⎪⎪⎨⎪=+⎪⎩解得:1818 kb⎧=⎪⎪⎨⎪=-⎪⎩∴一次函数的表达式为y=18x-18.当y=1时,18x-18=1,解得x=9,∴完成此房屋装修共需9天;(2)由图象知,甲的工作效率是1 12,∴甲9天完成的工作量是:9×112=34,∴34×8=6万元.【点评】本题主要考查了一次函数的应用,待定系数法求函数解析式,数学公式(工作效率=工作总量÷工作时间)的灵活运用,能根据图象提供的数据进行计算是解此题的关键,题型较好.22.【分析】[发现与证明]由平行四边形的性质得出∠EAC=∠ACB,由翻折的性质得出∠ACB=∠ACB′,证出∠EAC=∠ACB′,得出AE=CE;得出DE=B′E,证出∠CB′D=∠B′DA= 12(180°-∠B′ED),由∠AEC=∠B′ED,得出∠ACB′=∠CB′D,即可得出B′D∥AC;[应用与探究]:分两种情况:①由正方形的性质得出∠CAB′=90°,得出∠BAC=90°,再由三角函数即可求出AC;②由正方形的性质和已知条件得出AC=BC=2.【解答】解:[发现与证明]:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠EAC=∠ACB,∵△ABC≌△AB′C,∴∠ACB=∠ACB′,BC=B′C,∴∠EAC=∠ACB′,∴AE=CE,即△ACE是等腰三角形;∴DE=B′E,∴∠CB′D=∠B′DA=12(180°-∠B′ED),∵∠AEC=∠B′ED,∴∠ACB′=∠CB′D,∴B′D∥AC;[应用与探究]:分两种情况:①如图1所示:∵四边形ACDB′是正方形,∴∠CAB′=90°,∴∠BAC=90°,∵∠B=45°,;∴AC=2②如图2所示:AC=BC=2;综上所述:AC2.【点评】本题考查了平行四边形的性质、正方形的性质、翻折变换、等腰三角形的判定以及平行线的判定;熟练掌握平行四边形的性质、翻折变换的性质,并能进行推理计算是解决问题的关键.。