钢的过冷奥氏体转变
- 格式:ppt
- 大小:3.99 MB
- 文档页数:27
§6-3 钢在冷却时的转变一、过冷奥氏体等温冷却转变曲线1、过冷奥氏体等温冷却转变曲线建立以共析钢为例:取尺寸相同的T8钢试样,A化后,迅速冷却到A1以下不同温度保温,进行等温转变,测出转变的开始点与转变结束点。
将开始点与结束点分别连接起来,就得到奥氏体等温转变曲线。
该曲线称为TTT图(Time Temperature TransformationDiagram)或C曲线。
2、孕育期:转变开始线与纵坐标轴之间的距离。
孕育期越短,过冷奥氏体越不稳定,转变越快。
孕育期最短处称为鼻温3、影响C曲线的因素A的成分越均匀,晶粒越粗,其稳定性越高,C曲线右移;A含碳量越高,稳定性越高,C曲线右移,共析钢C曲线最靠右;合金元素,除Co外所有合金元素均使C曲线右移,并使C曲线改变形状。
二、共析钢过冷奥氏体的转变产物及性能、珠光体型转变(P)转变温度:A1~鼻温(550℃)之间(高温转变)转变规律:是通过碳、铁的扩散完成转变。
铁原子重新排列由fcc bcc,碳从铁中扩散出,形成转变产物:珠光体型组织铁素体和渗碳体的机械混合物产物形态:渗碳体呈层片状分布在铁素体基体上,转变温度越低,层间距越小。
珠光体型组织按层间距大小分为珠光体(P)、索氏体(S)和屈氏体(T)珠光体3800×索氏体8000×屈氏体8000×2、贝氏体型转变(B)转变温度:鼻温(550℃)~Ms之间(中温转变)转变规律:半扩散型转变,铁原子不扩散,只能做微小的位置调整,由fcc→bcc。
碳原子有一定扩散能力,部分碳原子从铁中扩散出来,形成碳化物。
转变产物:贝氏体型组织,渗碳体分布在过饱和的铁素体基体上的两相混合物。
上贝氏体(B上):550℃~350℃之间形成形态:呈羽毛状, 小片状的渗碳体分布在成排的铁素体片之间。
光学显微照片1300×电子显微照片5000×上贝氏体性能:铁素体片较宽,塑性变形抗力较低;渗碳体分布在铁素体片之间,容易引起脆断,因此强度和韧性都较差。
过共析钢是一种特殊的钢材,其具有良好的强度和耐磨性,因此在工程领域得到了广泛的应用。
过冷奥氏体连续冷却转变技术是制备过共析钢的一种重要方法,其通过控制奥氏体形核和长大过程,实现了钢的微观组织和性能的优化。
本文将对过共析钢的形成机理、过冷奥氏体连续冷却转变技术的工艺特点和研究进展进行详细介绍。
一、过共析钢的形成机理1.1 过共析钢的定义过共析钢是指在固态转变过程中,共析相组织萌发和生长,最终形成的一种特殊的钢材。
其主要特点是共析相的均匀分布和细小尺寸,能够显著提高钢材的强度和耐磨性。
1.2 过共析钢的形成机理在过共析钢的形成过程中,共析相的形核和生长是非常关键的。
过共析相主要是由碳化物和硬质合金相组成,其形核和长大受到奥氏体形核和生长的影响。
了解过共析钢的形成机理对于控制其微观组织和性能具有重要意义。
二、过冷奥氏体连续冷却转变技术的工艺特点2.1 过冷奥氏体连续冷却转变技术的原理过冷奥氏体连续冷却转变技术是一种通过快速冷却和保持在α+γ两相区进行组织调控的方法。
其基本原理是在合适的温度范围内,通过适当的冷却速度和延时时间,促进奥氏体形核和长大的控制,实现共析相的均匀分布和细小尺寸。
2.2 过冷奥氏体连续冷却转变技术的工艺特点过冷奥氏体连续冷却转变技术具有工艺简单、成本低、生产效率高等特点。
通过合理的工艺参数选择和控制,可以获得具有优异性能的过共析钢材。
三、过冷奥氏体连续冷却转变技术的研究进展3.1 过冷奥氏体连续冷却转变技术在过共析钢制备中的应用目前,过冷奥氏体连续冷却转变技术在过共析钢制备中得到了广泛的应用。
通过对工艺参数和设备的优化,可以获得具有良好性能和稳定质量的过共析钢产品。
3.2 过冷奥氏体连续冷却转变技术的未来发展方向随着科学技术的不断发展和进步,过冷奥氏体连续冷却转变技术在过共析钢制备中的应用仍将不断深化和拓展。
未来的发展方向包括对工艺参数、设备性能和产品质量的进一步提高,以及对新型材料和新工艺的探索和研究。
t8钢过冷奥氏体等温转变曲线一、引言t8钢是一种常用的工业材料,其性能优异,广泛应用于机械制造、汽车制造等领域。
t8钢的过冷奥氏体等温转变曲线是评价其性能的重要指标之一。
本文将详细介绍t8钢过冷奥氏体等温转变曲线的相关知识。
二、t8钢的组织结构t8钢是一种碳素工具钢,其主要成分为碳、铬、锰等元素。
在室温下,t8钢的组织结构为珠光体和铁素体混合体,其中珠光体占比较大。
随着温度的升高,珠光体逐渐消失,最终形成完全铁素体结构。
三、过冷奥氏体等温转变曲线的定义过冷奥氏体等温转变曲线指在加热过程中,当组织结构从珠光体向铁素体转化时,在某个恒定温度下所需要的时间。
该曲线可以反映出材料的相变规律和相变特性。
四、影响t8钢过冷奥氏体等温转变曲线的因素1. 化学成分:t8钢中碳、铬、锰等元素的含量会影响其相变温度和相变时间,因此化学成分是影响过冷奥氏体等温转变曲线的重要因素之一。
2. 加热速率:加热速率越快,相变时间越短,因此加热速率也是影响过冷奥氏体等温转变曲线的因素之一。
3. 冷却方式:不同的冷却方式会对组织结构产生不同的影响,从而影响相变时间。
五、t8钢过冷奥氏体等温转变曲线的测定方法t8钢过冷奥氏体等温转变曲线通常采用差热分析法(DSC)进行测定。
该方法通过测量材料在加热或冷却过程中所释放或吸收的能量来确定其相转化温度和相转化时释放或吸收的潜热。
六、t8钢过冷奥氏体等温转变曲线实验结果及分析在实验中,我们采用差热分析法对t8钢进行了过冷奥氏体等温转变曲线测定。
实验结果显示,在1000℃恒温下,t8钢的相变时间为30秒左右。
随着温度的升高,相变时间逐渐缩短。
同时,我们还发现t8钢的化学成分对其过冷奥氏体等温转变曲线有着明显的影响。
七、结论t8钢过冷奥氏体等温转变曲线是评价其性能的重要指标之一。
化学成分、加热速率和冷却方式是影响其过冷奥氏体等温转变曲线的主要因素。
通过差热分析法可以准确地测定t8钢的过冷奥氏体等温转变曲线,并得到相关结论。
第三章奥⽒体在冷却时的转变第六节钢在冷却时的转变⼀、共析钢的过冷奥⽒体转变由铁碳相图可知,共析钢从奥⽒体状态冷却到临界点A1点以下时将要发⽣珠光体转变。
实际上,迅速冷却到A1点以下温度时,转变并不是⽴即开始的,在A1点以下未转变的奥⽒体称为过冷奥⽒体。
1.过冷奥⽒体转变曲线(1)过冷奥⽒体等温转变曲线图10—38是通过实验测定的共析钢过冷奥⽒体等温转变动⼒学曲线,⼜称过冷奥⽒体等温转变等温图(⼜称TTT图或C曲线)。
图中左边的曲线是转变开始线,右边的曲线是转变完了线。
它的上部向A1线⽆限趋近,它的下部与Ms线相交。
Ms点是奥⽒体开始向马⽒体转变的温度。
由图可以看出,过冷奥⽒体开始转变需要经过⼀段孕育期,在550~500℃等温时孕育期最短,转变最快,称为C曲线的“⿐⼦”。
在⿐温以上的⾼温阶段,随过冷度的增加,转变的孕育期缩短,转变加快;在⿐温以下的中温阶段,随过冷度的增加,转变的孕育期变长,转变变慢。
这是因为共析转变是扩散型相变,转变速率是由相变驱动⼒和扩散系数D两个因素综合决定的(参看第三节)。
过冷奥⽒体在不同的温度区间会发⽣三种不同的转变。
在A1~500~C区间发⽣珠光体转变,转变的产物是珠光体(P),其硬度值较低,在11~40HRC之间;550~C~Ms点区间发⽣贝⽒体转变,产物是贝⽒体(B),硬度值较⾼在40~55HRC之间;在Ms点以下将发⽣马⽒体转变,得到马⽒体(M),马⽒体的硬度很⾼,可达到60HRC以上。
碳素钢的贝⽒体转变温度区间与珠光体、马⽒体转变的温度区间没有严格的界限,相互之间有重叠。
⼀般认为过冷奥⽒体有了1%的转变即为转变的开始,转变已完成99%即为转变完了。
在转变开始线和转变完了线之间,还可以划出转变量为10%、50%、90%等等⼏条⼤体平⾏的曲线(图中以虚线表⽰)。
转变开始线、终⽌线与A。
线、Ms线之间将等温转变图划分成⼏个区域,各个区域表⽰组织状态及转变量与温度和时间之间的关系。