位错重点
- 格式:ppt
- 大小:1.74 MB
- 文档页数:50
位错规律总结
位错是晶体中原子位置的偏移或错位,是晶体中的结构缺陷之一。
位错可以分为边界位错和螺旋位错两种类型。
位错是晶体材料中塑性变形的主要机制之一,并且具有重要的影响。
针对位错的规律总结如下:
1. 弗兰克-瓦尔斯位错规律:当晶体中存在一组边界位错时,
位错的总长度必须守恒。
具体来说,当两个滑移面之间发生位错滑移时,位错长度之和保持不变。
2. 彼勒斯位错规律:在材料的塑性变形过程中,位错沿着最密堆积晶面方向滑动,位错的伸长方向与滑动面垂直。
3. 剪切位错规律:在晶体中,剪切位错能够沿着特定的面和方向滑动,从而引起晶体的塑性变形。
剪切位错滑移的方向与剪切应力的方向相同。
4. 螺旋位错规律:螺旋位错是一种沿晶体的螺旋线形成的位错,它具有一个以单位长度平行于位错线方向的错向矢量。
螺旋位错滑移的过程中,晶体发生类似螺旋的变形。
5. 位错相互作用规律:位错之间的相互作用和排斥是晶体塑性变形的重要因素。
当两个位错靠近时,它们可能相互吸引或排斥,从而影响晶体的位错滑移和塑性形变。
总之,位错的规律总结了位错在晶体中的行为和相互作用,对于理解晶体的塑性变形和材料性能的研究具有重要意义。
晶体中的位错晶体是由大量的原子或离子按照一定的规律排列形成的,具有高度的有序性和周期性。
然而,在晶体中,由于制备、加工等原因,有时候不同的晶体原子并不完全对齐,形成了一些错位,这些错位就称作位错。
位错是晶格缺陷的一种,是晶体中最常见的缺陷之一。
本文将重点介绍晶体中的位错。
一、位错的定义和分类位错是晶体中的缺陷,是一种原子排列顺序的失误或对晶体构造发生的不规则的紊乱。
从形式上来看,位错其实是一条线,称为位错线。
位错线是一个平面的分界线,分别将位错的正侧和负侧分开,两侧的原子堆积方式互不相同。
按照线向和方向,位错可分为长位错和短位错;按照线型,位错可分为直线位错和环状位错;按照纵向位置,位错可分为面内位错和面间位错;按照能量点的数量,位错可分为单位错、双位错、三位错等等。
二、位错的形成原因晶体中的位错是由于应力和温度的变化等原因,导致原子在晶体内部的位置和晶格结构发生变化而形成的。
晶体中的一些应力和原子偏移最终会形成位错,进而影响构造和性能。
常见的位错形成原因有以下几种:1.加工过程中导致的位错:金属加工可能会引起位错的发生,因为加工会施加一定的应力,从而导致晶格变形。
例如,扭曲或拉伸材料时,原子可能会脱离原来的顺序,最终形成位错。
2.晶体生长过程中导致的位错:晶体在生长过程中,由于固态、液相界面的移动推进,产生压力分布变化,从而造成位错的形成。
在原子或离子加入了其他元素或化合物的情况下,位错也会在晶体中发生。
3.晶体性能的变化导致的位错:晶体的性质随着应力和温度的变化而变化。
温度和离子浓度等的变化可能会改变晶体的构造,导致位错。
三、位错的作用位错是晶体中的缺陷,但它并不总是会对晶体的性质产生不良影响。
实际上,位错可以对晶体的某些性质产生正向、负向改变,主要包括以下几种:1.塑性变形:位错的存在使晶体产生了柔韧性,容易受到力的作用产生塑性变形。
2.材料的硬度:如果位错数量越大,晶体的硬度就会变差,同时晶体的脆性就会增加。
位错总结一. 位错概念1.晶体的滑移与位错2. 位错模型● 刃型位错: 正负刃型位错, ※位错是已滑移区与未滑移区的边界※位错线必须是连续的-位错线不能中止在晶体内部。
∴ 起止与晶体表面(或晶界)或在晶体内形成封闭回路或三维网络● 螺型位错: 左螺旋位错,右螺旋位错 ● 混合位错3.位错密度 单位元体积位错线总长度,3/m m或单位面积位位错露头数,2m4. 位错的柏氏矢量 (Burgers Vector )● 确定方法: 柏氏回路 ●意义:1) 柏氏矢量代表晶体滑移方向(平行或反平行)和大小 2) 位错引起的晶格畸变的大小3)决定位错的性质(类型)刃型位错 b ┴位错线 螺型位错 b//位错线混合位错 位错线与b斜交s e b b b+→,sin θb b e= θcos b b s=4)柏氏矢量的表示 ]110[2a b =或 ]110[21=b●柏氏矢量的性质1)柏氏矢量的守恒性-流入节点的柏氏矢量之和等于流出节点的柏氏矢量之和2)一条为错只有一个柏氏矢量二.位错的运动1.位错的运动方式●刃型位错滑移―――滑移面: l⨯,唯一确定的滑移面滑移方向:l v b v⊥,//滑移应力: 滑移面上的切应力-沿b 或b-攀移――攀移面: 附加半原子面攀移方向:)(b l v⨯⊥攀移应力:攀移面上的正应力; 拉应力-负攀移 压应力-正攀移 攀移伴随原子扩散,是非守恒运动,在高温下才能发生 ● 螺型位错滑移―――滑移面:包含位错线的任何平面滑移方向:l v b v⊥⊥,滑移应力 滑移面上的切应力-沿b 或b-交滑移―――同上●混合位错滑移(守恒运动)――同刃型位错非守恒运动 ――在非滑移面上运动-刃型分量的攀移和螺型分量的滑移的合成运动2.位错运动与晶体变形的关系1)滑移面两边晶体运动方向 V右手定则――以位错运动面为界, )(b l⨯所指的那部分晶体向b方向运动位错运动相关量: v b l j i,,,,σb l⇔ : 确定位错的性质V j i⇒σ: 确定晶体相对运动V v l⇔⇔b ⇒确定位错运动方向或晶体运动方向上述规则对位错的任何运动方式均使用2)位错运动与晶体变形的定量关系vb ρε=, v b ρε=3) 位错增殖Frank-Read 源 LGb LGb ≈=ατ2L 型增殖 双交滑移4)位错的交割刃-刃交割――21//b b 21b b ⊥ 刃-螺交割 螺-螺交割三.实际晶体的位错 (FCC ) 1.全位错的分解2. 堆垛层错内禀层错―――滑移型, 抽出型 A B C A B C A B C A B C↓↓↓↓↓↓ B C A B C A A B C A B C ∣B C A B C A外禀层错―――插入型C A B C A C B C A B C A3.分位错――完整晶体和层错的边界● Shockley 分位错 :特点: 1)><=11261b 滑移型层错的边界 2) 只能滑移,刃型不能攀移,螺型不能交滑移● Frank 分位错特点: 1) ><=11131b插入型或抽出型层错与完整晶体的边界2)只能攀移不能滑移4.扩展位错特点: 扩展宽度 πγπγ2422210Gab b G d =⋅=只能滑移,不能交滑移;但束集后可交滑移5.位错反应● 位错反应的条件1) 几何条件:∑∑='iibb2) 能量条件:∑∑≤'22)()(i i b b● Thompson 记号 ●形成扩展位错的反应 ●形成压杆位错的反应。
2.2 位错的基本概念晶体中的线缺陷是各种类型的位错。
其特点是原子发生错排的范围,在一个方向上尺寸较大,而另外两个方向上尺寸较小,是一个直径为3—5个原子间距,长几百到几万个原子间距的管状原子畸变区。
虽然位错种类很多,但最简单,最基本的类型有两种:一种是刃型位错,另一种是螺型位错。
位错是一种极为重要的晶体缺陷,对金属强度、塑变、扩散、相变等影响显著。
一位错学说的产生位错:晶体中某处一列或若干列原子有规律的错排。
意义:(对材料的力学行为如塑性变形、强度、断裂等起着决定性的作用,对材料的扩散、相变过程有较大影响。
)人们很早就知道金属可以塑性变形,但对其机理不清楚。
在位错被提出之前,人们对晶体的塑性变形作了广泛的研究。
实验发现在塑性变形的晶体表面存在大量的台阶,因此,提出了塑性变形是通过晶体的滑移来实现的观点。
晶体的滑移过程如图1所示。
根据晶体塑性变形后台阶产生的方向,发现滑移总是沿着某些特定的晶面和晶体学方向进行的。
这些晶面被称为滑移面;晶体学方向被称为滑移方向。
一个滑移面和其面上的一个滑移方向组成一个滑移系。
当外界应力达到某一临界值时,滑移系才发生滑移,使晶体产生宏观的变形,将这个应力称之为临界切应力。
本世纪初到30年代,许多学者对晶体塑变做了不少实验工作。
1926年弗兰克尔利用理想晶体的模型,假定滑移时滑移面两侧晶体象刚体一样,所有原子τ=G/2π(G为切变模量),与实验结果相比相差3—4同步平移,并估算了理论切变强度mτ值也为G/30,仍与实测临个数量级,即使采用更完善一些的原子间作用力模型估算,m界切应力相差很大。
这一矛盾在很长一段时间难以解释。
1934年泰勒(G.I.Tayor),波朗依(M.Polanyi)和奥罗万(E.Orowan)三人几乎同时提出晶体中位错的概念。
泰勒把位错与晶体塑变的滑移联系起来,认为位错在切应力作用下发生运动,依靠位错的逐步传递完成了滑移过程,如图2。
与刚性滑移不同,位错的移动只需邻近原子作很小距离的弹性偏移就能实现,而晶体其他区域的原子仍处在正常位置,因此滑移所需的临界切应力大为减小。
材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。
螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。
刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。
B.位错线:位错产生点阵畸变区空间呈线状分布。
对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。
为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。
C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。
(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。
晶体中位错线的形状可以是任意的。
)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。
(金属中位错密度通常在106~8—1010~121/c㎡之间。
)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。
位错规律总结位错是晶体中原子或离子的位置偏离其理想的坐标位置,可以导致晶体的畸变和性质的变化。
位错规律是研究位错形成和运动的基本原理和关系的科学,对于理解晶体缺陷行为、晶体生长、相变及其它相关现象具有重要意义。
下文将详细介绍位错规律及其总结。
1.位错分类根据晶体中原子位移方向和位移面的不同,位错可以分为线位错、面位错和体位错。
线位错是晶体中一维的位错,描述了某一面或平行于某一方向面的原子位置发生偏移。
常见的线位错有边位错和螺旋位错。
面位错是晶体中二维的位错,描述了某一层面或平行于某一层面的原子位置发生偏移。
常见的面位错包括错配位错、平移位错和层错。
体位错是晶体中三维的位错,描述了晶体中原子整体发生平移的情况。
体位错可以看作是线位错或面位错的堆叠。
2.位错的形成和移动位错的形成通常由外界应力或温度变化引起。
当晶体中的原子或离子受到应力作用时,原子可能发生位移以消除或缓解应力。
这种位移会导致新的晶体结构缺陷形成,即位错的形成。
位错的移动可以通过原子的滑移或旋转来实现。
滑移是指位错沿晶体晶面发生平行位移,而旋转则是指位错沿某一方向发生转动。
位错的移动过程中,原子之间发生相互切变、滑动和扩散,从而引起位错的传播和畸变。
3.位错的影响位错对晶体的性质和行为具有重要影响。
首先,位错会引起晶体的畸变。
位错形成后,晶体中的原子排列发生变化,导致晶体形状和结构的变化。
这种畸变可以通过适当的外界条件下进行修正,如加热退火或应力释放。
其次,位错会影响晶体的力学性能。
位错会引起晶体中应力场的存在,导致力学性能如强度、韧性、硬度等发生变化。
一些金属的加工硬化、回复等性质变化都与位错的运动和积累有关。
此外,位错还会影响晶体的电学和输运性能。
位错附近的原子排列不规则,会导致晶体中电荷的扩散障碍、介质常数的变化和电导率的变化,从而影响晶体的电学性质和输运行为。
4.位错和晶体缺陷位错是晶体中最常见的缺陷之一。
晶体中的其他缺陷如点缺陷、面缺陷等也与位错有密切关系。
第2章晶体缺陷晶体缺陷实际晶体中某些局部区域,原子排列是紊乱、不规则的,这些原子排列规则性受到严重破坏的区域统称为“晶体缺陷”。
晶体缺陷分类:1)点缺陷:如空位、间隙原子和置换原子等。
2)线缺陷:主要是位错。
3)面缺陷:如晶界、相界、层错和表面等。
2.1 点缺陷空位——晶体中某结点上的原子空缺了,则称为空位。
点缺陷的形成:肖特基空位:脱位原子迁移到晶体表面或者内表面的正常结点位置,从而使晶体内部留下空位,这样的空位称为肖特基(Schottky)空位。
(内部原子迁移到表面)肖特基(Schottky)空位弗仑克耳(Frenkel)空位弗仑克耳空位:脱位原子挤入点阵空隙,从而在晶体中形成数目相等的空位和间隙原子,称为弗仑克耳(Frenkel)空位。
(由正常位置迁移到间隙)外来原子:外来原子也可视为晶体的点缺陷,导致周围晶格的畸变。
外来原子挤入晶格间隙(间隙原子),或置换晶格中的某些结点(置换原子)。
空位的热力学分析:空位是由原子的热运动产生的,晶体中的原子以其平衡位置为中心不停地振动。
对于某单个原子而言,其振动能量也是瞬息万变的,在某瞬间原子的能量高到足以克服周围原子的束缚,离开其平衡位置从而形成空位。
空位是热力学稳定的缺陷点缺陷的平衡浓度系统自由能F=U- TS (U为内能,S为总熵值,T为绝对温度)平衡机理:实际上为两个矛盾因素的平衡a 点缺陷导致弹性畸变使晶体内能U增加,使自由能增加,降低热力学稳定性b 使晶体中原子排列混乱度增加,熵S增加,使自由能降低,增加降低热力学稳定性熵的变化包括两部分:①空位改变它周围原子的振动引起振动熵,Sf。
②空位在晶体点阵中的存在使体系的排列方式大大增加,出现许多不同的几何组态,使组态熵Sc增加。
空位浓度,是指晶体中空位总数和结点总数(原子总数)的比值。
随晶体中空位数目n的增多,自由能先逐渐降低,然后又逐渐增高,这样体系中在一定温度下存在一个平衡空位浓度,在平衡浓度下,体系的自由能最低。