21世纪陶瓷-金属封接技术展望(上)
- 格式:pdf
- 大小:276.44 KB
- 文档页数:7
工艺材料本文2002202209收到,王申和谭惠民分别系北京理工大学讲师及教授;李淑华系军械工程学院副教授陶瓷2金属的连接技术王 申 李淑华 谭惠民 摘 要 介绍了陶瓷与金属连接的几种方法的机理及特点,重点讨论了对未来动力工程和先进发动机有重要意义的陶瓷与金属纳米复合粘接剂连接、钎焊连接、部分瞬间液相连接及自蔓延高温合成(SHS )连接。
主题词 陶瓷 金属 连接 粘合剂 焊接近年来,随着陶瓷材料的大规模研究开发,陶瓷与陶瓷或陶瓷与金属的连接技术也越来越引起人们的关注[1]。
实现陶瓷与金属的有效连接可进一步扩大陶瓷的应用范围,尤其在航空航天领域,如飞行器及导弹关键部件的连接,但由于陶瓷和金属是两类性质不同的材料,相互结合时在界面上存在着化学及物理性能的差异,特别是化学键差异较大,采用常规的焊接方法不能实现有效连接[2];因此,陶瓷2金属的连接成为近几年来异种材料连接研究的重点[3]。
为探讨陶瓷与金属的连接机理,本文围绕陶瓷与金属的连接介绍几种主要方法及其性能。
1 粘合剂粘接连接粘接具有固化速度快、使用温度范围宽、抗老化性能好等特点,被用于飞机应急修理、炮射导弹辅助件连接、修复涡轮、修复压气机转子等方面。
澳大利亚和美国自70年代以来就采用复合材料补片对损伤的飞机结构进行胶接修理,目前已成功地在多种飞机上得到了应用[4]。
国内,胶接技术的应用也比较广泛,其中在导弹发动机部位四周对称地粘上四块加强瓣,既保护了发动机壳体,又提高了导弹发射时的承载能力。
但这种技术要求胶粘剂可以室温固化、粘接强度高,既要耐冲击力,又要使加强瓣在导弹出炮口时便于分离。
文献[6]认为橡胶型的胶粘剂虽具有优良的耐冲击力,但抗剪切强度不高,胶层破坏时的变形能力大,有可能造成炮射导弹上粘接的四块加强瓣不能同时分离的危险。
因此,选取胺类固化剂加入不同的增韧剂,研究出在通用的环氧树脂中加入室温固化剂和两种液体橡胶共同增韧的配方,解决了炮射导弹上粘接加强瓣问题。
1前言先进陶瓷材料具有硬度高、强度大、耐高温、耐磨性能好、抗腐蚀、抗氧化等优良的特性和广阔的应用前景,尤其是在电子、能源、交通、发动机制造、航空航天等领域。
然而,陶瓷的韧性值较低,属于脆性材料,采用机械加工的方法难以制备出尺寸较大和复杂结构的构件,为了克服先进陶瓷的脆性及难加工等问题,拓宽其进一步的应用与发展,常将陶瓷与金属连接起来,在性能上形成一种互补关系,使之成为理想的结构和工程材料,以满足现代工程的应用[1-2]。
陶瓷与金属的连接既是连接领域的热点问题又是难点问题,首先金属与陶瓷在化学键型、物理和化学特性、力学性能及微观结构等方面具有较大的差异;其次,陶瓷与金属的热膨胀系数相差较大,连接时在界面处导致残余应力的集中,致使接头强度下降。
生产中常用钎焊或扩散焊的方法将陶瓷与金属(陶瓷)连接起来,随着连接技术的深入研究,相继研发了一些新的方法(中性原子束焊、激光焊、超声波焊、微波焊以及燃烧合成技术等)[3]。
本文针对近年陶瓷与金属连接而开发的连接技术进行阐述,总结最新的研究成果并对其进行展望。
2陶瓷与金属的连接技术15世纪中叶,我国明代景泰蓝的制作开创了陶瓷与金属连接技术的先河,但是,具有产业化的、工业规模的连接技术则始于20世纪30年代。
Wattery 和德律风根公司的Pulfrich于1935~1939年在陶瓷表面喷涂一层高熔焦仁宝1,2,荣守范1,李洪波1,朱永长1,刘文斌1,张圳炫1(1.佳木斯大学材料科学与工程学院,佳木斯154007;2.佳木斯大学机械工程学院,佳木斯154007)陶瓷与金属连接是陶瓷面向工程应用的关键技术。
本文阐述了适用于陶瓷与金属连接的各种方法及其机理、特点和工程上的应用。
指出钎焊和扩散焊具有很好的适应性,并对陶瓷与金属连接的研究前景进行了展望。
金属;连接方法(1980年~),男,黑龙江省佳木斯人,博士研究生。
黑龙江省教育厅项目(2016-KYYWF-0567). All Rights Reserved.点金属(Ni 、W 、Fe 、Cr 、Mo )进行活化处理,采用间接钎焊的方法,制造陶瓷电子管,该项技术于1940年获得专利,称之为德律风根法。
浅谈真空炉中陶瓷—金属封接工艺本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!陶瓷—金属件的封接以往是在具有还原性气氛的氢炉中进行的,随着设备的更新和工艺流程的调整,陶瓷—金属封接要求在真空炉中进行。
为了确定合理的真空炉陶瓷—金属封接工艺,保证封接件的质量,我们对此项工作进行了全面的策划、试验和研究。
通过试验验证工艺中设定的各项工艺参数,并查看升温速率、一次保温、二次保温的温度和时间,降温的速率,充氮的温度等是否为最佳,工艺时间是否为最短,能否满足产品质量和公司扩产的需要。
1 陶瓷—金属封接的特点及质量要求特点陶瓷—金属封接是一种特殊的焊接,是使陶瓷制件与金属零件牢固连接的技术。
通常,这种连接还要求具有一定的密封性能。
这种封接与金属之间的钎焊相比,其特点在于能够使熔融的焊料润湿陶瓷金属化层表面,而且一般陶瓷的断裂强度比金属要低很多,导热性差,不能塑性变形。
所以,设计结构、封接工艺、陶瓷金属化的质量等因素是影响封接件质量的关键因素。
质量要求质量要求主要有:①机械强度。
通常以封接件的抗拉强度和抗折强度衡量。
②气密性。
对于气密性要求高的电真空器件封接件,常用氦质谱检漏仪检验,用封口的漏气率来衡量气密性的好坏。
③耐热性能,包括耐热冲击性能和耐热烘烤性能。
耐热冲击性能是指在固定的高、低温两个温度之间封接件反复加热、冷却所能承受的冲击次数;耐热烘烤性能是指在某一固定温度下(根据具体应用而定)封接件经受一段较长时间的烘烤的能力。
2 工艺试验方案采用检验合格的金属化瓷件,根据目前产品不同的封接结构和金属化瓷件外径尺寸将其分为A,B,C,D 四大类进行封接工艺试验:①A 类。
平封、一节瓷件的封接结构,瓷壳外径<110 mm。
②B 类。
平封加夹封瓷环、一节瓷件,瓷壳外径≥110 mm。
③C类。
平封、两节瓷件,瓷壳外径<110 mm。
陶瓷的封接技术及研究进展摘要:介绍了陶瓷与金属连接的主要类型和种类* 对各种连接方法的机理、特点和影响因素进行了重点介绍。
关键词:陶瓷金属连接焊接1引言陶瓷与金属的封接,也称焊接(包括陶瓷与陶瓷的焊接),在现代工业技术中的应用有着十分重要的意义。
近年来,随着陶瓷材料的大规模研究开发,陶瓷与陶瓷或陶瓷与金属的连接技术也越来越引起人们的关注(1-2)。
实现陶瓷与金属的有效连接可以进一步扩大陶瓷的应用范围,诸如电视显像管金属引线的封接,电子元件的封装,飞行器及导弹关键部位的连接等都属于陶瓷—金属封接的范围。
2 陶瓷与金属连接的主要类型陶瓷封装的方法很多,按待焊接材料A和B.是否相同,可以分为同种材料的焊接和异种材料的焊接。
但是还可以根据A、B.间结合材料的有无和种类进行分类。
几种典型的陶瓷封接类型如表所示。
3 陶瓷封接方法3.1 粘合剂粘结粘接具有固化速度快、使用温度范围宽、抗老化性能好等特点,被用于飞机应急修理、导弹辅助件连接、修复涡轮、修复压气机转子方面。
现在胶接技术在国内外都得到了广泛的应用。
一般来讲,陶瓷与金属采用胶接连接,界面作用力为物理力、化学键。
化学粘接较其它工艺得到的界面强度低,据文献+#, 报道:采用有机胶的接头强度小于150MPa,采用无机胶的接头强度小于10MPa,且允许使用的温度有一定的限制(一般低于200度);但粘接技术用在修复上,周期短、工艺简单、修复效率高、成型性能好,因而在动力工程和航空工业中静载荷和超低静载荷中得到了广泛的应用。
3.2 激光焊接将能量密度甚高的激光用于陶瓷的封接,称为激光焊接。
陶瓷用激光焊接装置主要由二氧化碳激光器、反射镜和聚光镜以及预热炉几部分构成。
二氧化碳激光器发出的激光束经反射镜和聚光镜聚焦于试样表面。
预热炉用于预热试样以避免激光照射的局部骤热而产生裂纹。
预热温度和焊接速度对焊接质量影响较大。
陶瓷制品的激光焊接,首先应考虑如何避免由加热、冷却速度和温度梯度所引起的热裂纹。
陶瓷与金属的连接技术1. 引言陶瓷和金属是两种不同性质的材料,它们在物理、化学和力学特性上存在明显差异。
由于这种差异,将陶瓷与金属进行有效连接是一个具有挑战性的任务。
然而,随着科技的发展和工程需求的增加,陶瓷与金属之间的连接技术变得越来越重要。
本文将介绍几种常见的陶瓷与金属连接技术,并对其优缺点进行探讨。
2. 黏结剂连接黏结剂连接是一种常见且简单的方法,用于将陶瓷与金属材料连接在一起。
该方法通过使用黏合剂或粘合剂来实现连接。
黏结剂可以是有机或无机材料,如环氧树脂、聚酰亚胺等。
2.1 优点•黏结剂连接方法简单易行。
•可以实现大面积接触。
•黏结剂具有一定的柔韧性,可以缓解因材料差异而引起的应力集中问题。
2.2 缺点•黏结剂连接的强度受到黏结剂本身性能的限制。
•黏结剂可能会受到温度、湿度等环境因素的影响而失效。
•黏结剂连接需要进行精确的表面处理和涂覆工作,增加了制造成本和复杂度。
3. 焊接连接焊接是一种常用的金属连接技术,它也可以用于将陶瓷与金属材料连接在一起。
在焊接过程中,通过加热和冷却来实现材料之间的结合。
3.1 激光焊接激光焊接是一种高能量密度焊接方法,适用于陶瓷与金属之间的连接。
激光束可以在非常短的时间内加热材料,从而实现快速焊接。
3.1.1 优点•激光焊接可以实现高强度连接。
•焊接区域小,对周围区域影响小。
•可以实现高精度、无损伤的焊接。
3.1.2 缺点•激光设备昂贵且操作复杂。
•对材料表面质量要求较高。
•需要进行精确的焊接参数控制。
3.2 电子束焊接电子束焊接是一种利用高速电子束加热材料并实现连接的方法。
它可以在真空或低压环境下进行,适用于陶瓷与金属之间的连接。
3.2.1 优点•电子束焊接可以实现高强度连接。
•焊接区域小,对周围区域影响小。
•可以实现高精度、无损伤的焊接。
3.2.2 缺点•电子束设备昂贵且操作复杂。
•对材料表面质量要求较高。
•需要进行精确的焊接参数控制。
4. 氧化铝陶瓷与金属连接技术氧化铝陶瓷是一种常见的工程陶瓷材料,具有优异的耐磨、耐腐蚀和绝缘性能。
陶瓷-金属封装技术
陶瓷-金属封装技术是一种将陶瓷和金属材料结合在一起,用
于封装电子元器件的技术。
该技术的主要目的是提供更好的电热性能、耐热性和机械强度,以满足高功率电子元器件的需求。
陶瓷-金属封装技术的主要步骤包括:
1. 材料准备:选取适合的陶瓷和金属材料,并进行加工和处理,以获得符合要求的形状和性能。
2. 材料组装:将陶瓷和金属部件进行组装,通常采用焊接、钎焊或黏合等方式进行。
3. 密封封装:通过包封或焊接等工艺,将组装好的陶瓷-金属
结构封装起来,形成一个完整的电子元器件。
4. 电性测试:对封装好的元器件进行电性能测试,以确保其符合设计要求。
5. 最终组装:将封装好的陶瓷-金属元器件和其他电子组件进
行最终组装,以完成目标产品。
陶瓷-金属封装技术主要应用于高功率电子元器件,如功率模块、散热器和射频电路等。
其主要优点包括高热传导性能、良好的机械强度、优异的电绝缘性能和耐高温性能。
总的来说,陶瓷-金属封装技术是一种重要的封装技术,能够
满足高功率电子元器件对性能和可靠性的要求,推动了电子技术的发展。
陶瓷与金属焊接的技术一,概述陶瓷与金属的焊接中的陶瓷基本上指的是人工将各种金属、氧、氮、碳等合成的新型陶瓷。
其具有高强度、耐高温、耐磨损、耐腐蚀、超硬度等特性,而得到广泛应用;常用的有氧化铝、氮化硅、氧化锆陶瓷等。
二,陶瓷与金属焊接的难点1,陶瓷的线膨胀系数小,而金属的线膨胀系数相对很大,导致接易开裂。
一般要很好处理金属中间层的热应力问题。
2,陶瓷本身的热导率低,耐热冲击能力弱。
焊接时尽可能减小焊接部位及周围的温度梯度,焊后控制冷却速度。
3,大部分陶瓷导电性差,甚至不导电,很难用电焊的方法。
为此需采取特殊的工艺措施。
4,由于陶瓷材料具有稳定的电子配位,使得金属与陶瓷连接不太可能。
需对陶瓷金属化处理或进行活性钎料钎焊。
5,由于陶瓷材料多为共价晶体,不易产生变形,经常发生脆性断裂。
目前大多利用中间层降低焊接温度,间接扩散法进行焊接。
6,陶瓷与金属焊接的结构设计与普通焊接有所区别,通常分为平封结构、套封结构、针封结构和对封结构,其中套封结构效果最好,这些接头结构制作要求都很高。
三,陶瓷与金属焊接的通用工艺1,清洗:金属和钎料的表面必须清洗干净,陶瓷常用洗净剂加超声清洗。
2,涂膏:膏剂大多由纯金属粉末和适当的金属氧化物粉末组成,颗粒度大都在1~5um之间,用有机粘结剂调制成具有一定粘度的膏剂。
然后用粉刷工具将膏剂均匀涂在陶瓷待金属化表面上,涂层厚度一般为30~60um。
3,金属化:将涂好膏剂伪陶瓷件送入氢炉中,在1300~1500℃的温度下保温1h。
4,镀镍:为了更好的钎料润湿,在金属化层上再电镀一层厚约5um的镍层。
当钎焊温度低于1000℃时,则电镀层还需在1000℃氢炉中预烧结15~20min。
5,装架:把处理好的金属件和陶瓷件用不锈钢、石墨、陶瓷模具装配成整体,并在接缝处装上钎科;在整个操作过程中待焊接件应保持清洁,不得用裸手触摸。
6,钎焊:在通有氩气的炉中或通有氢气的炉中或真空炉中进行钎焊,其温度选择,升温速度选择等要根据所使用的钎料特性决定,特别注意的是降温速度不得过快,以防止陶觉件由于温度应力而开裂。
精密陶瓷金属封接
精密陶瓷金属封接是一种将陶瓷与金属紧密结合的技术。
这种技术广泛应用于高精度仪器、航空航天、电子元件等领域。
精密陶瓷具有高硬度、耐磨性、耐高温、耐腐蚀等特点,而金属则具有良好的导电性和机械强度。
通过精密陶瓷金属封接,可以将二者的优点结合起来,实现更高的性能。
精密陶瓷金属封接的主要方法有两种:一种是采用金属化处理,即先在陶瓷表面涂上一层金属,再用焊接或钎焊等方法将其与金属连接起来;另一种是采用无金属化处理,即通过高温烧结等方法将陶瓷与金属直接结合起来。
精密陶瓷金属封接技术的难点在于如何保证陶瓷和金属之间的
紧密结合,以及如何解决不同材料的热膨胀系数不同所引起的热应力问题。
解决这些问题需要深入研究材料的物理和化学性质,以及掌握先进的加工和制备技术。
未来,精密陶瓷金属封接技术将在高端制造领域发挥越来越重要的作用,为制造业的发展带来新的突破。
- 1 -。
书山有路勤为径,学海无涯苦作舟
陶瓷-金属材料的封接工艺
陶瓷-金属封接材料
陶瓷是用各种金属的氧化物、氮化物、碳化物、硅化物为原料, 经适当配料、成形和高温烧结制得的一类无机非金属工程材料。
这类材料通常是由共价键、离子键、或混合键结合而成, 因之与金属相比, 具有许多独特的性能。
陶瓷材料的健合力强, 具有很高的弹性模量, 即刚度大; 硬度仅次于金刚石, 远高于其它材料的硬度; 强度理应高于金属材料, 但因成分、组织不如金属那样单纯, 且缺陷多, 实际强度要比金属低。
在室温下, 陶瓷几乎不具有塑性, 难以发生塑性变形, 加之气孔等缺陷的交互作用, 其内部某些局部很容易形成应力集中而又难以消除, 因而冲击韧度和断裂韧度降低, 脆性大, 对裂纹、冲击应力、表面损伤特别敏感, 容易发生低应力脆性断裂破坏。
陶瓷的熔点高, 且在高温(1000℃以上) 能保持其高温强度和抗氧化的能力。
导热性低, 热膨胀系数小, 耐急冷、急热性能差, 温度的剧烈变化, 很容易使其发生破裂。
陶瓷的组织结构稳定, 不易氧化, 对酸、碱、盐的腐蚀也有很好的抗力。
另外, 陶瓷晶体中没有自由电子, 通常具有很好的绝缘性。
少数陶瓷具有半导体性质。
某些陶瓷具有特殊的光学性能, 如用作固体激光材料、光导纤维、光贮存材料等。
陶瓷-金属封接材料的选用原则如下:
①所选用的陶瓷、金属、钎料在室温到略高于使用钎料熔点的范围内, 应具有相同或接近的热膨胀系数;
②在不匹配封接中, 要选择屈服极限低、塑性好、弹性模量低的金属材料作为封接金属和钎料;。
陶瓷与金属焊接的难点,解决方案,以及常见焊接方法随着现代工业的不断发展,陶瓷及金属焊接技术得到了广泛应用。
但由于陶瓷和金属的物理性质差异较大,陶瓷与金属焊接存在一定的技术难点。
首先,陶瓷与金属的热膨胀系数差异很大。
当陶瓷遭受高温时,会发生强烈的膨胀,而金属则不会有太大的变形。
这种差异造成了焊缝的应力,容易导致焊接区域发生破裂。
其次,陶瓷与金属的表面性质不同。
陶瓷表面光滑、致密、硬度高,而金属表面粗糙,容易生锈。
这也对焊接工艺提出了要求。
针对这些难点,焊接技术领域提出了一些解决方案。
首先,可以在陶瓷和金属之间加入适当的中间介质,如夹层、粉末等,以缓解温度和热膨胀系数的差异。
此外,还可以采用特殊的焊接工艺、材料和设备,以确保焊接接头的质量。
常见的陶瓷与金属焊接方法包括以下几种:1. 烙铁焊接法。
这种方法适用于小型零件的焊接,使用烙铁进行焊接,需要熔化金属焊料,将陶瓷和金属固定在一起。
2. 电弧焊接法。
这种方法较为常见,可以使用钨极等设备进行。
通过电弧产生高温,熔化金属焊料,将陶瓷和金属固定在一起。
3. 激光焊接法。
这种方法适用于精密零件的焊接,使用激光束进行焊接。
激光高能密度的特点使得焊接时间短,对焊接接头的影响较小。
4. 熔体反应焊接法。
这种方法是将陶瓷和金属直接进行化学反应,生成中间相,使其结合在一起。
这种方法的焊接强度高,但需要控制好反应条件,否则容易导致焊缝不牢固。
总之,陶瓷与金属的焊接技术虽然存在一定的难点,但随着技术的不断发展,已经有了一些较为成熟的解决方案和常见的焊接方法。
21世纪陶瓷设计的多元发展趋势探析目录一、内容描述 (2)二、陶瓷设计概述 (3)三、陶瓷设计的历史演变 (5)四、陶瓷设计在21世纪的多元发展趋势 (6)1. 现代科技融合下的陶瓷设计创新 (7)2. 环保理念在陶瓷设计中的应用与发展 (8)3. 文化多元化对陶瓷设计的影响 (9)4. 艺术与商业结合的新趋势 (11)5. 数字化与智能化陶瓷设计的崛起 (12)五、多元发展下的陶瓷设计实践与案例分析 (13)1. 现代陶艺设计的创新实践 (14)2. 功能性陶瓷设计的探索与应用 (16)3. 跨界合作与陶瓷设计的多元化表达 (17)4. 案例分析 (18)六、面临的挑战与未来发展策略 (19)1. 当前面临的挑战分析 (21)2. 未来发展的策略建议 (21)3. 陶瓷设计的未来趋势预测 (23)七、结论与展望 (24)1. 研究结论总结 (25)2. 对未来陶瓷设计的展望 (26)一、内容描述在21世纪的今天,随着科技的飞速进步和全球化的深入发展,陶瓷设计领域正经历着前所未有的变革与创新。
陶瓷设计不再仅仅局限于传统的手工技艺和审美观念,而是逐渐融入了现代科技、环保理念、文化多样性等多元元素,展现出多元化的发展趋势。
随着材料科学的突破,新型陶瓷材料层出不穷,如高性能的氧化铝、氮化硅等陶瓷材料在航空航天、汽车制造等领域得到广泛应用。
这些新型材料的引入为陶瓷设计提供了更多的可能性,使得陶瓷制品既能在高温下保持优异的性能,又能实现更加轻量化、美观化的设计。
在设计理念上,陶瓷设计师们开始更加注重与当代艺术、建筑、景观等领域的跨界融合。
他们借鉴现代设计手法,将陶瓷材料与金属、玻璃、塑料等材料相结合,创造出既具有传统韵味又符合现代审美的新型陶瓷产品。
一些设计师还尝试将陶瓷元素融入到建筑设计中,为建筑领域带来了一种新的视觉体验。
环保理念在陶瓷设计中也得到了充分体现,面对日益严重的资源枯竭和环境污染问题,越来越多的设计师开始关注陶瓷产品的可持续性生产。
陶瓷和金属材料的焊接嘿,朋友们!今天咱来聊聊陶瓷和金属材料的焊接这档子事儿。
你说陶瓷,那可是老祖宗传下来的宝贝啊,精美又脆弱,就像咱家里那祖传的花瓶,得小心翼翼地伺候着。
而金属呢,硬邦邦的,结实得很。
这俩家伙要焊接在一起,那不亚于让猫和狗和谐共处啊!可别小瞧了这事儿,这里头的学问可大着呢!就好像你要把两个性格迥异的人凑一块儿做事,得找对方法才行。
陶瓷和金属焊接,首先得选对焊接材料吧,这就跟给它们找个合适的“月老”牵红线似的。
要是选错了,那可就白折腾啦!然后呢,焊接的温度也得把握好。
温度低了,它们俩“手都拉不紧”;温度高了,嘿,陶瓷可能就“发脾气”裂了。
这就好比你煮饺子,火大了饺子煮破了,火小了饺子皮还是生的,得恰到好处才行。
还有啊,焊接的工艺也很关键。
你得轻手轻脚的,不能太粗鲁。
不然陶瓷那小身板可受不了,这就跟哄小孩子一样,得有耐心、有技巧。
咱可以想象一下,要是能把陶瓷和金属完美地焊接在一起,那能做出多少神奇的东西啊!比如说一个陶瓷手柄的金属锅,既好看又实用,多棒啊!这就像把优雅的白天鹅和强壮的北极熊组合在一起,产生了奇妙的效果。
焊接的时候可得细心再细心,一点小疏忽都可能导致前功尽弃。
这就好像你走在钢丝上,稍不注意就会掉下去。
可别嫌我啰嗦,这都是经验之谈呐!咱中国人自古就心灵手巧,陶瓷和金属的焊接咱也一定能搞定。
只要咱有耐心,肯钻研,就没有办不成的事儿。
这陶瓷和金属的焊接啊,不只是技术活,更是一门艺术。
你得用心去感受它们,才能让它们完美结合。
所以说啊,陶瓷和金属材料的焊接虽然有点难度,但咱可不能退缩。
咱要迎难而上,发挥咱的聪明才智,让陶瓷和金属在咱的手中绽放出不一样的光彩!相信我,只要你肯尝试,就一定能成功!。
陶瓷/金属先进互联技术目前存在的问题:新型精细陶瓷具有优越的高硬度、低比重、高强度、耐高温、耐腐蚀等特性,是公认的最有发展前途的高温结构材料,可望在航天飞行器、武器装备、原子能及汽车等工业领域获得广泛应用。
但由于陶瓷的塑性差、机械加工困难,不易制成大型或形状复杂的构件。
通过陶瓷/金属连接可以获得兼具陶瓷和金属各自优异性能的复合构件,丰富陶瓷和金属材料在各自应用领域的使用范围。
然而陶瓷材料与金属材料在化学键型、微观结构、物理性质和力学性能等方面存在极大的差异,为二者之间高质量连接提出了巨大的挑战。
活性钎焊由于通过活性元素与陶瓷发生界面反应极大地改善了陶瓷与金属连接时的润湿性能,因此是目前陶瓷与金属材料连接时应用最为广泛的方法。
然而,其并没有解决陶瓷与金属由于热膨胀系数、弹性模量等性能差异而导致的焊接接头强度低、高残余应力的问题。
与此同时,传统陶瓷/金属活性钎焊连接还存在接头自身强度低、高温性能差的问题。
研究思想:针对陶瓷/金属活性钎焊过程中对接头自身热力性能以及残余热应力控制的要求,本项目从接头的复合化设计入手,将原位自生反应强韧复合材料的思想应用到钎焊接头的设计当中,结合活性钎焊的方法,通过研究原位自生反应产物在活性钎料中的反应机制、生长动力学以及接头微观组织结构和热力性能的基础上,结合对陶瓷/金属接头应力的分布、组织结构的数值模拟,对陶瓷/金属钎焊接头进行原位复合化设计,揭示接头的应力控制及强化机理;项目目的:开拓具有自主知识产权的陶瓷/金属连接新技术,从而从根本上控制陶瓷与金属连接质量。
意义:不仅具有重要的学术价值,而且对于开拓陶瓷/金属异种材料连接新方法,加强数据储备,促进陶瓷/金属复合制品在航空、航天等高技术领域的应用具有巨大的、潜在的社会经济效益。
实用!陶瓷与金属的连接方法基本都在这了工程结构陶瓷材料具有耐高温、高强度、高硬度、耐磨损、抗氧化、抗腐蚀等优良性能,广泛应用于航空航天、电力电子、能源交通等领域,成为经济和国防发展中不可缺少的支撑材料。
但是由于陶瓷本身的脆性使其加工性能差,难以制成尺寸大、形状复杂的构件,从而限制了其进一步的应用与发展。
金属材料具有优良的室温强度、延展性、导电性和导热性,与陶瓷材料在性能上形成了一种明显的互补关系。
将两种材料结合起来,就可以充分利用各自的优良性能,制造出满足要求的复杂构件,不仅能够降低成本,对陶瓷与金属材料的应用与发展也具有重要意义。
由于陶瓷与金属在物理、化学性质上的差异,使得二者之间的连接成为国内外学者研究的热点问题。
陶瓷与金属的连接方法陶瓷与金属的连接问题主要表现在以下几个方面:(1)陶瓷与金属键型不同,难以实现良好的冶金连接;(2)陶瓷与金属的热膨胀系数差异大,连接接头容易产生较大的残余应力,致使接头强度低;(3)陶瓷表面润湿性差,连接工艺确定困难。
目前,关于陶瓷与金属连接方法的研究已有很多,包括机械连接、粘接连接、钎焊连接、固相扩散连接、瞬时液相连接、熔化焊、自蔓延高温合成连接、摩擦焊、微波连接、超声连接等方法。
1机械连接机械连接是一种古老的连接方法,包括螺栓连接和热套连接。
其中热套连接是利用陶瓷与金属的热膨胀差异,在高温时将金属套在陶瓷外侧,利用冷却时金属的收缩量较陶瓷大而紧密连接在一起。
虽然热套连接获得的接头具有一定的气密性,但仅限于低温使用,且这种接头具有较大的残余应力。
2粘接连接粘接连接是利用胶粘剂将陶瓷与金属连接在一起,主要应用于飞机的应急修理、炮弹与导弹的辅助件连接、涡轮和压缩机转子的修复等处。
尽管粘接连接可以一定程度缓解陶瓷与金属间的热应力且工艺简单、效率高,但接头强度通常小于100MPa,使用温度一般低于200℃,大多用于静载荷和超低静载荷零件。
3钎焊连接钎焊是最常用的连接陶瓷与金属的方法之一,它是以熔点比母材低的材料做钎料,加热到略高于钎料熔点的温度,利用熔化的液态钎料润湿被连接材料表面,从而填充接头间隙,通过母材与钎料间元素的互扩散实现连接。
陶瓷修复过程中金属材料加工和封接技术
徐圆圆
【期刊名称】《铸造》
【年(卷),期】2022(71)5
【摘要】21世纪是新材料推陈出新的时代,材料科学成为世界经济发展的重要承载。
经过六十多年的发展,最初仅用于真空电子器件封接的陶瓷-金属封接技术已经逐步走向成熟,并广泛应用于集成电路封装、界面显微结构分析、高能物理、宇航、化
工等众多行业及领域,具有远大的应用前景。
虽然我国开展陶瓷-金属封接技术研究多年,有大量从事相关研究和生产的专家,取得了众多科研成果,但仍然与国外先进国家存在较大的差距,在生产线上也经常出现工艺及质量问题,陶瓷-金属封接技术接近成熟,但并不是真正成熟,这就要求陶瓷-金属封接领域的专家学者及从业技术人员不断地研究开发。
【总页数】1页(P667-667)
【作者】徐圆圆
【作者单位】南京师范大学
【正文语种】中文
【中图分类】F42
【相关文献】
1.钠硫电池中与陶瓷封接的金属材料研究
2.焊料与金属材料对陶瓷/金属封接强度
的影响3.电子陶瓷、陶瓷-金属封接第十五届会议暨真空电子与专用金属材料分会
2015年年会征文通知4.真空电子与专用金属材料、陶瓷-金属封接第十一届技术研讨会征文通知5.真空电子与专用金属材料、陶瓷—金属封接第十二届技术研讨会征文通知
因版权原因,仅展示原文概要,查看原文内容请购买。