单纯形法图解法及原理
- 格式:pptx
- 大小:300.26 KB
- 文档页数:17
线性规划中的最优解求解线性规划是一种在运筹学和数学中广泛应用的数学建模技术,通过确定一组线性约束条件下的最优解,以实现目标最大化或最小化。
最优解是指在满足给定约束条件的前提下,能使目标函数达到最优值的解。
在线性规划问题中,最优解的求解有多种方法。
本文将介绍线性规划中的两种主要方法:图解法和单纯形法。
一、图解法图解法是一种简单直观的方法,适用于只有两个变量的问题。
它通过在平面坐标系上画出约束条件的图形,找到可行域(满足所有约束条件的解集),并在可行域内寻找使目标函数达到最优值的点。
具体步骤如下:1. 绘制坐标系,并画出约束条件的直线或曲线。
每个约束条件都会限制变量的取值范围,在平面上形成一条直线或曲线。
2. 标出可行域。
根据所有约束条件的交集,确定满足所有约束条件的解的集合,即可行域。
可行域通常是一个多边形区域。
3. 确定目标函数。
根据问题的要求确定目标函数,并将其表示为直线或曲线。
4. 在可行域内寻找最优解。
通过平行于目标函数的线,将其移动至与可行域相切,并找到使目标函数取得最优值的点。
图解法的优点是简单易懂,能够提供初步的解决方案。
然而,对于复杂问题和具有多个变量的大规模问题,图解法可能不适用。
二、单纯形法单纯形法是一种基于矩阵运算的高效方法,适用于多变量和大规模问题。
它通过不断进行迭代计算,寻找最优解。
具体步骤如下:1. 将线性规划问题转化为标准形式。
标准形式要求目标函数为最小化问题,并且所有约束条件均为等式形式。
如果原问题不符合标准形式,可以进行线性变换进行转化。
2. 构建初始单纯形表。
将原问题的线性规划模型表示为矩阵形式,并构建单纯形表,包括目标函数系数、基变量和非基变量等信息。
3. 迭代计算。
根据单纯形表中的信息,进行迭代计算,通过选择合适的主元(即最大系数法则)和更新各个单元的值,逐步接近最优解。
4. 判断终止条件。
在每一次迭代计算后,判断是否满足终止条件,即目标函数是否达到最优解。
盐城师范学院运筹学期末论文题目: 用单纯形法解决线性规划问题**: **二级学院: 数学科学学院专业: 数学与应用数学班级: 111 班学号: ********成绩评定:前言线性规划问题是数学以及日常生活中最基本的问题之一,如何快速有效的解决线性规划问题是数学家也在努力研究的科目之一。
以前中学时我们解决线性规划问题一般采用的是图解法,即画出所给条件的可行域,找出目标函数的最优解。
这种方法的优点是直观性强,计算方便,但缺点是只适用于问题中有两个变量的情况。
下面我们介绍另外一种方法—单纯形法,来解决图解法不能解决的问题。
1 单纯形法1.1 单纯形法的基本思路利用求线性规划问题基本可行解的方法求解较大规模的问题是不可行的。
有选择地取基本可行解,即从可行域的一个极点出发,沿着可行域的边界移动到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。
在线性规划的可行域中先找出一个可行解,检验它是否为最优解,如果是最优解,计算停止;如果不是最优解,那么可以判断线性规划无有限最优解,或者根据一定步骤得出使目标函数值接近最优值的另一个基本可行解。
由于基本可行解的个数有限,所以总可以通过有限次迭代,得到线性规划的最优基本可行解或判定线性规划无有限最优解。
1.2 单纯形法的基本步骤第1步求初始基可行解,列出初始单纯形表。
对非标准型的线性规划问题首先要化成标准形式。
由于总可以设法使约束方程的系数矩阵中包含一个单位矩阵(P1,P2,…,Pm),以此作为基求出问题的一个初始基可行解。
为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行比较。
为了书写规范和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表(见表1—1)。
迭代计算中每找出一个新的基可行解时,就重画一张单纯形表。
含初始基可行解的单纯形表称初始单纯形表,含最优解的单纯形表称最终单纯形表。
第2步:最优性检验如表中所有检验数c j−z j≤0,且基变量中不含有人工变量时,表中的基可行解即为最优解,计算结束。