单纯形法的基本思路和原理
- 格式:pdf
- 大小:708.26 KB
- 文档页数:25
第 六 次课 2学时本次课教学重点:单纯形法原理、基变换、最优检验 本次课教学难点:单纯形法原理、基变换、最优检验 本次课教学内容:第五章 单 纯 形 法§1 单纯形法的基本思路和原理一、 单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此点是否是最优解。
直到找到一个顶点为其最优解,就是使得其目标函数值最优的解,或者能判断出线性规划问题无最优解为止。
通过第二章例1的求解来介绍单纯形法:在加上松弛变量之后我们可得到标准型如下: 目标函数: max 50x1+100x2 约束条件:x1+x2+s1≤300, 2x1+x2+s2≤400, x2+s3≤250.xj ≥0 (j=1,2),sj ≥0 (j=1,2,3) 它的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛==100100101200111),,,,(54321p p p p p A其中pj 为系数矩阵A 第j 列的向量。
A 的秩为3,A 的秩m 小于此方程组的变量的个数n ,为了找到一个初始基本可行解,先介绍以下几个线性规划的基本概念。
二、基本概念基: 已知A 是约束条件的m ×n 系数矩阵,其秩为m 。
若B 是A 中m ×m 阶非奇异子矩阵(即可逆矩阵),则称B 是线性规划问题中的一个基。
基向量:基B 中的一列即称为一个基向量。
基B 中共有m 个基向量。
非基向量:在A 中除了基B 之外的一列则称之为基B 的非基向量。
基变量:与基向量pi 相应的变量xi 叫基变量,基变量有m 个。
非基变量:与非基向量pj 相应的变量xj 叫非基变量,非基变量有n -m 个。
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m 元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到了 ⎪⎪⎪⎭⎫ ⎝⎛=1010010113B 为A 的一个基,令这个基的非基变量x 1,s2为零,这时约束方程就变为基变量的约束方程:x2+s1≤300,x2=400, x2+s3=250.求解得到此线性规划的一个基本解:x1=0,x2=400,s1=-100,s2=0,s3=-150由于在这个基本解中s1=-100,s3=-150,不满足该线性规划s1≥0,s3≥0的约束条件,显然不是此线性规划的可行解,一个基本解可以是可行解,也可以是非可行解,它们之间的主要区别在于其所有变量的解是否满足非负的条件。
单纯形法的基本原理单纯形法是一种用于求解线性规划问题的数学方法,它的基本原理是通过不断地移动解空间中的顶点来逼近最优解。
在解决实际问题中,我们经常会遇到一些资源有限,而需要在这些资源限制下最大化或最小化某个指标的情况,这时就需要用到线性规划问题。
而单纯形法正是针对这类问题提出的一种高效的求解方法。
单纯形法的基本原理可以用几个关键步骤来概括。
首先,我们需要将线性规划问题转化为标准型,即目标函数为最大化,约束条件为等式的形式。
接着,我们需要找到一个初始可行解,这个可行解需要满足所有的约束条件。
然后,我们通过一系列的基本变量的替换,不断地移动解空间中的顶点,直到找到最优解为止。
在单纯形法中,我们需要利用单纯形表来进行计算。
单纯形表是一个表格,其中包含了目标函数、约束条件、基本变量等信息。
通过对单纯形表的不断变换和计算,我们可以逐步逼近最优解。
在每一步的计算中,我们需要选择一个入基变量和一个出基变量,通过一系列的行变换和列变换来更新单纯形表,直到找到最优解为止。
单纯形法的基本原理虽然看起来比较复杂,但实际上它是建立在一些简单的数学原理之上的。
通过对解空间中的顶点进行移动,我们可以逐步逼近最优解,这是单纯形法能够高效求解线性规划问题的关键所在。
在实际应用中,单纯形法已经被证明是一种非常有效的方法,它可以帮助我们在资源有限的情况下做出最优的决策。
总的来说,单纯形法是一种用于求解线性规划问题的高效方法,它的基本原理是通过不断地移动解空间中的顶点来逼近最优解。
通过对单纯形表的计算和变换,我们可以逐步找到最优解。
在实际应用中,单纯形法已经被广泛地应用于各个领域,它为我们解决资源有限的最优化问题提供了一个强大的工具。
希望本文对单纯形法的基本原理有所帮助,谢谢阅读!。
线性规划中的单纯形法优化思路线性规划是一种优化问题的数学建模工具,通过数学模型的建立和求解,寻找使目标函数取得最大或最小值的变量取值。
而在线性规划中,单纯形法是一种经典的解法,通过迭代比较线性规划问题的可行解,逐步接近最优解的方法。
在本文中,将详细介绍单纯形法的优化思路。
1. 线性规划问题概述在介绍单纯形法之前,先了解线性规划问题的基本概念和常见形式。
线性规划问题由目标函数和约束条件构成,其中目标函数是一个线性函数,约束条件也是一组线性不等式或等式。
线性规划问题的求解目标是找到满足所有约束条件下使目标函数取得最优值的变量取值。
2. 单纯形法的基本思路单纯形法是一种通过不断迭代改进可行解来求解线性规划问题的方法。
其基本思路是从一个初等可行解开始,通过不断地迭代,每次选取一个更优的可行解,最终达到最优解。
3. 单纯形法的步骤3.1 初等可行解的选取单纯形法的第一步是选取一个初等可行解,该可行解必须满足所有约束条件,并且可以通过线性规划问题的约束条件和目标函数来确定。
3.2 进行单纯形表的构造单纯形表是单纯形法中的一种重要表格,通过将线性规划问题的约束条件和目标函数进行整理,能够更清晰地观察问题的结构和计算过程。
3.3 计算单纯形表中的优化函数值在单纯形表的基础上,通过计算表中各行最右侧的数值,可以得出当前目标函数的值,并判断是否满足最优解的条件。
3.4 确定进入变量和离开变量单纯形法中,每一次迭代都需要选择一个进入变量和一个离开变量来进行优化。
进入变量被选取为能够提高目标函数值最多的变量,而离开变量则是根据约束条件限制来确定的。
3.5 更新单纯形表通过选择好进入变量和离开变量后,需要对单纯形表进行更新,以得出下一次迭代的最优解。
3.6 终止条件的判断在每一次迭代过程中,都需要判断是否满足终止条件,即最优解的判断。
如果不满足终止条件,则继续进行下一次迭代,直到达到最优解。
4. 单纯形法的优化思路单纯形法的优化思路在于不断地找到使目标函数值更优的可行解,通过迭代的方式逐步接近最优解。
运筹学单纯形法各个步骤详解1. 引言大家好,今天咱们来聊聊一个听起来有点高深莫测,但其实特别有意思的东西——运筹学的单纯形法。
别看它名字复杂,其实它就是解决线性规划问题的绝招,像一把钥匙,打开了优化的宝藏。
想象一下,如果你有一大堆资源,要把它们分配到不同的地方,听起来就像玩拼图一样。
好了,废话不多说,咱们直接进入正题!2. 单纯形法的基本概念2.1 线性规划的起源首先,线性规划是啥?简单来说,它就是在一系列限制条件下,想要最大化或最小化某个目标函数。
这听起来像是在做一场抉择,你得在各种选择中找到最优解。
有点像在超市里,看到一堆零食,犹豫不决,最后只能选那包最爱吃的,既美味又划算。
2.2 单纯形法的基本思路而单纯形法就是解决这个问题的武器。
它的核心思想很简单,跟追求完美一样,咱们要一步步地朝着最优解迈进。
想象你在爬山,每一步都在找那个最容易走的路,直到你站在山顶,俯瞰整个美景,啊,真是太棒了!3. 单纯形法的步骤3.1 初始化那么,怎么开始呢?首先,咱们得把问题转化为标准形式。
这就像把一个繁杂的图案简化成几何图形,让它看起来更清晰。
要把不等式转换为等式,添加松弛变量,这样就可以把问题整理得干干净净。
3.2 构建初始单纯形表接下来,咱们构建初始单纯形表。
这个表就像一本菜单,上面列出了所有可能的选择和它们的成本。
每个变量都有自己的“价格”,而咱们的目标就是尽量少花钱,最大化收益。
想想你逛街时,总是想着要花最少的钱买到最好的东西,嘿,这就是单纯形法的精神!3.3 寻找基变量和入基变量然后,咱们得找出“基变量”和“入基变量”。
基变量就像在舞台上表演的演员,而入基变量就是准备加入的“新人”。
在这个过程中,咱们得判断哪个新人能让整个表演更精彩。
如果找对了,舞台瞬间就能变得熠熠生辉,若是找错了,哎呀,那可就尴尬了。
3.4 更新单纯形表一旦找到了合适的入基变量,咱们就得更新单纯形表。
这一步就像在调味,添加新的元素,让整体味道更加丰富。
单纯形法原理
单纯形法是线性规划中常用的一种方法,用于求解极值问题。
它的基本思想是通过不断迭代的方式,逐渐接近最优解。
单纯形法的基本步骤如下:
1. 将线性规划问题转化为标准型。
标准型的约束条件为≤,目标函数为最大化,且所有变量的取值范围为非负数。
2. 利用人为变量引入的方法,将标准型问题转化为初始单纯形表。
3. 选择合适的初始基变量,并计算出对应的基变量解。
4. 计算单纯形表中的评价函数。
如果所有评价函数中的系数都为非负数,则当前基变量解为最优解,过程结束。
否则,继续进行下一步。
5. 选择进入变量和离开变量。
进入变量是指取值为负的评价函数系数对应的变量,离开变量是指进入变量在当前基变量解中最先达到0的变量。
6. 迭代计算,通过变换基变量,逐渐接近最优解。
具体的计算方式为将进入变量对应列调整为单位向量,同时更新初始单纯形表中其它列的数值。
7. 重复步骤4至步骤6,直至得到最优解为止。
值得注意的是,单纯形法的执行依赖于初始基变量的选择,不同的初始基变量可能会得到不同的最优解。
因此,在实际应用中,需要通过灵活选择初始基变量来提高求解效果。
运筹学第2章单纯形法 2.1 单纯形法的基本思想该方法简捷、规范,是举世公认的解决LP问,题行之有效单纯形法(Simplex Method)是美国著名运筹学家丹捷格(Dantzig)1947年首先提出的通用方法。
单纯形法不仅是解决LP问题的最基本的算法之一,而且成为解决整数规划和非线性规划某些算法的基础。
2、单纯形法的3种形式——方程组形式(代数形式)、表格形式、矩阵形式3、单纯形法的基本思路——基于LP问题的标准形,先设法找到某个基本可行解(称为初始基本可行解);开始实施从这个基本可行解向另一个基本可行解的转换,要求这种转换不仅容易实现,而且能改善(至少保持)目标函数值;继续寻找更优的基本可行解,进一步改进目标函数值。
当某一个基本可行解不能再改善时,该解就是最优解。
(或者是出现无可行解、无最优解、无穷多最优解的情况)2.1.1 方程组形式的单纯形法例1 一个企业需要同一种原材料生产甲、乙两种产品,它们的单位产品所需要的原材料的数量及所耗费的加工时间各不相同,获得的利润也不相同(如下表)。
请问,该企业应如何安排生产计划,才能使获得的利润达到最大?解:该问题的LP模型为:将该问题的LP模型化为标准形⎪⎩⎪⎨⎧≥≤+≤++=,1202410032..4621212121xxxxxxt sxxzm ax函数约束的增广矩阵为:很显然 R (A ) = R (A ,b )= 2 < 5,即该方程组有无穷多组解。
系数矩阵为:决策变量向量为:选取 为基,则 为基变量, 为非基变量令非基变量 ,则可以得到一基本 可行解为: 下面的计算都是以它为初始点逐次实施转换,故将其称为初始基本可行解。
此时,Z=0,其经济含义为:该企业没 有安排甲、乙两种产品的生产,当然也就没有利润可言。
条典☐ 初始基本可行解所对应的可行基是一个m 阶的单位阵; ☐ 目标函数表达式中所有的基变量的系数全部为0。
☐ 这是单纯形法所必需的!!! ☐ 分析目标函数表达式☐ 非基变量的系数都是正数,若将它们转换为基变量,目标函数值则就会可能增加。