单纯形法的基本思路和原理
- 格式:pdf
- 大小:707.96 KB
- 文档页数:25
第 六 次课 2学时本次课教学重点:单纯形法原理、基变换、最优检验 本次课教学难点:单纯形法原理、基变换、最优检验 本次课教学内容:第五章 单 纯 形 法§1 单纯形法的基本思路和原理一、 单纯形法的基本思路:从可行域中某一个顶点开始,判断此顶点是否是最优解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此点是否是最优解。
直到找到一个顶点为其最优解,就是使得其目标函数值最优的解,或者能判断出线性规划问题无最优解为止。
通过第二章例1的求解来介绍单纯形法:在加上松弛变量之后我们可得到标准型如下: 目标函数: max 50x1+100x2 约束条件:x1+x2+s1≤300, 2x1+x2+s2≤400, x2+s3≤250.xj ≥0 (j=1,2),sj ≥0 (j=1,2,3) 它的系数矩阵⎪⎪⎪⎭⎫ ⎝⎛==100100101200111),,,,(54321p p p p p A其中pj 为系数矩阵A 第j 列的向量。
A 的秩为3,A 的秩m 小于此方程组的变量的个数n ,为了找到一个初始基本可行解,先介绍以下几个线性规划的基本概念。
二、基本概念基: 已知A 是约束条件的m ×n 系数矩阵,其秩为m 。
若B 是A 中m ×m 阶非奇异子矩阵(即可逆矩阵),则称B 是线性规划问题中的一个基。
基向量:基B 中的一列即称为一个基向量。
基B 中共有m 个基向量。
非基向量:在A 中除了基B 之外的一列则称之为基B 的非基向量。
基变量:与基向量pi 相应的变量xi 叫基变量,基变量有m 个。
非基变量:与非基向量pj 相应的变量xj 叫非基变量,非基变量有n -m 个。
由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m 元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解。
在此例中我们不妨找到了 ⎪⎪⎪⎭⎫ ⎝⎛=1010010113B 为A 的一个基,令这个基的非基变量x 1,s2为零,这时约束方程就变为基变量的约束方程:x2+s1≤300,x2=400, x2+s3=250.求解得到此线性规划的一个基本解:x1=0,x2=400,s1=-100,s2=0,s3=-150由于在这个基本解中s1=-100,s3=-150,不满足该线性规划s1≥0,s3≥0的约束条件,显然不是此线性规划的可行解,一个基本解可以是可行解,也可以是非可行解,它们之间的主要区别在于其所有变量的解是否满足非负的条件。
单纯形法的基本原理单纯形法是一种用于求解线性规划问题的数学方法,它的基本原理是通过不断地移动解空间中的顶点来逼近最优解。
在解决实际问题中,我们经常会遇到一些资源有限,而需要在这些资源限制下最大化或最小化某个指标的情况,这时就需要用到线性规划问题。
而单纯形法正是针对这类问题提出的一种高效的求解方法。
单纯形法的基本原理可以用几个关键步骤来概括。
首先,我们需要将线性规划问题转化为标准型,即目标函数为最大化,约束条件为等式的形式。
接着,我们需要找到一个初始可行解,这个可行解需要满足所有的约束条件。
然后,我们通过一系列的基本变量的替换,不断地移动解空间中的顶点,直到找到最优解为止。
在单纯形法中,我们需要利用单纯形表来进行计算。
单纯形表是一个表格,其中包含了目标函数、约束条件、基本变量等信息。
通过对单纯形表的不断变换和计算,我们可以逐步逼近最优解。
在每一步的计算中,我们需要选择一个入基变量和一个出基变量,通过一系列的行变换和列变换来更新单纯形表,直到找到最优解为止。
单纯形法的基本原理虽然看起来比较复杂,但实际上它是建立在一些简单的数学原理之上的。
通过对解空间中的顶点进行移动,我们可以逐步逼近最优解,这是单纯形法能够高效求解线性规划问题的关键所在。
在实际应用中,单纯形法已经被证明是一种非常有效的方法,它可以帮助我们在资源有限的情况下做出最优的决策。
总的来说,单纯形法是一种用于求解线性规划问题的高效方法,它的基本原理是通过不断地移动解空间中的顶点来逼近最优解。
通过对单纯形表的计算和变换,我们可以逐步找到最优解。
在实际应用中,单纯形法已经被广泛地应用于各个领域,它为我们解决资源有限的最优化问题提供了一个强大的工具。
希望本文对单纯形法的基本原理有所帮助,谢谢阅读!。
线性规划中的单纯形法优化思路线性规划是一种优化问题的数学建模工具,通过数学模型的建立和求解,寻找使目标函数取得最大或最小值的变量取值。
而在线性规划中,单纯形法是一种经典的解法,通过迭代比较线性规划问题的可行解,逐步接近最优解的方法。
在本文中,将详细介绍单纯形法的优化思路。
1. 线性规划问题概述在介绍单纯形法之前,先了解线性规划问题的基本概念和常见形式。
线性规划问题由目标函数和约束条件构成,其中目标函数是一个线性函数,约束条件也是一组线性不等式或等式。
线性规划问题的求解目标是找到满足所有约束条件下使目标函数取得最优值的变量取值。
2. 单纯形法的基本思路单纯形法是一种通过不断迭代改进可行解来求解线性规划问题的方法。
其基本思路是从一个初等可行解开始,通过不断地迭代,每次选取一个更优的可行解,最终达到最优解。
3. 单纯形法的步骤3.1 初等可行解的选取单纯形法的第一步是选取一个初等可行解,该可行解必须满足所有约束条件,并且可以通过线性规划问题的约束条件和目标函数来确定。
3.2 进行单纯形表的构造单纯形表是单纯形法中的一种重要表格,通过将线性规划问题的约束条件和目标函数进行整理,能够更清晰地观察问题的结构和计算过程。
3.3 计算单纯形表中的优化函数值在单纯形表的基础上,通过计算表中各行最右侧的数值,可以得出当前目标函数的值,并判断是否满足最优解的条件。
3.4 确定进入变量和离开变量单纯形法中,每一次迭代都需要选择一个进入变量和一个离开变量来进行优化。
进入变量被选取为能够提高目标函数值最多的变量,而离开变量则是根据约束条件限制来确定的。
3.5 更新单纯形表通过选择好进入变量和离开变量后,需要对单纯形表进行更新,以得出下一次迭代的最优解。
3.6 终止条件的判断在每一次迭代过程中,都需要判断是否满足终止条件,即最优解的判断。
如果不满足终止条件,则继续进行下一次迭代,直到达到最优解。
4. 单纯形法的优化思路单纯形法的优化思路在于不断地找到使目标函数值更优的可行解,通过迭代的方式逐步接近最优解。
单纯形法原理
单纯形法是线性规划中常用的一种方法,用于求解极值问题。
它的基本思想是通过不断迭代的方式,逐渐接近最优解。
单纯形法的基本步骤如下:
1. 将线性规划问题转化为标准型。
标准型的约束条件为≤,目标函数为最大化,且所有变量的取值范围为非负数。
2. 利用人为变量引入的方法,将标准型问题转化为初始单纯形表。
3. 选择合适的初始基变量,并计算出对应的基变量解。
4. 计算单纯形表中的评价函数。
如果所有评价函数中的系数都为非负数,则当前基变量解为最优解,过程结束。
否则,继续进行下一步。
5. 选择进入变量和离开变量。
进入变量是指取值为负的评价函数系数对应的变量,离开变量是指进入变量在当前基变量解中最先达到0的变量。
6. 迭代计算,通过变换基变量,逐渐接近最优解。
具体的计算方式为将进入变量对应列调整为单位向量,同时更新初始单纯形表中其它列的数值。
7. 重复步骤4至步骤6,直至得到最优解为止。
值得注意的是,单纯形法的执行依赖于初始基变量的选择,不同的初始基变量可能会得到不同的最优解。
因此,在实际应用中,需要通过灵活选择初始基变量来提高求解效果。
单纯形法一、单纯形法的原理线性方程组的解:⎩⎨⎧=----=+-+-4322425432154321x x x x x x x x x x (1) 5个未知数,两个方程组。
方程的解多于1个。
两种初等变换:51)方程组的任一方程乘上一个不为零的数。
2)方程组的任一方程两边同乘上一个常数,分别加到另一个方程的两边。
式(1)做变换得到:(①×-1)⎩⎨⎧=-+-=+-+-2322242543254321x x x x x x x x x (2) 式(2)做变换得到:(②×2)⎩⎨⎧=-+-=---232642354325431x x x x x x x x (3)方程组(1)、(2)、(3)同解,可令0543===x x x 。
得到:61=x ,22=x 。
选择3x ,4x ,5x 不同的值,相应地有不同的1x 和2x 的值,因此方程组有多组解。
基本变量:如果变量i x 的系数在某一个方程为1,而在其它所有方程为0,则称i x 为该方程组中的基本变量。
非基本变量:凡不是基本变量的变量都叫做非基本变量。
1x ,2x 为基本变量;3x ,4x ,5x 为非基本变量。
旋转运算:运用初等变换,可使一给定变量化为基本变量,这一运算,成为旋转运算。
基本变量的个数,与方程的个数相同。
基本解:设非基本变量为0,求得相应的基本变量的值,得到一组解,这组解称为基本解。
基本可行解:基变量的值为非负时的基本解称为基本可行解。
单纯形法的思路;1)先不考虑目标函数,从满足约束条件开始,寻求一个初始基本可行解; 2)求具有较佳目标函数值的另一个基本可行解,以改进初始解;3)对目标函数做有限次的改善。
当某一个基本可行解不能再得到改善时,即求得最优解,单纯形法结束。
二、单纯形算法例:54321325max x x x x x Z +-++= 约束条件为:⎪⎩⎪⎨⎧≥≥≥≥≥=+++=+++0,0,0,0,0743********53214321x x x x x x x x x x x x x (5) 以上线性规划问题中,具有: 1)全部变量非负;2)全部约束条件都是等式;5 3)右端常数都是正的。
单纯形算法的一般原理单纯形法的基本思路是有选择地取基本可行解,即是从可行域的一个极点出发,沿着可行域的边界移到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。
考虑到如下线性规划问题:其中A一个m ×n 矩阵,且秩为m ,b总可以被调整为一个m 维非负列向量,C为n 维行向量,X为n 维列向量。
根据线性规划基本定理:如果可行域D={ X∈Rn / AX=b,X≥0}非空有界,则D上的最优目标函数值Z=CX一定可以在D的一个顶点上达到。
这个重要的定理启发了Dantzig 的单纯形法,即将寻优的目标集中在D 的各个顶点上。
Dantzig 的单纯形法把寻优的目标集中在所有基本可行解(即可行域顶点)中。
其基本思路是从一个初始的基本可行解出发,寻找一条达到 最优基本可行解的最佳途径。
单纯形法的一般步骤如下:(1)寻找一个初始的基本可行解。
(2)检查现行的基本可行解是否最优,如果为最优,则停止迭代,已找到最优解,否则转一步。
(3)移至目标函数值有所改善的另一个基本可行解,然后转会到步骤(2)。
求解思想如下图所示:maxZ=CX AX=b X 0⎧⎨≥⎩确定初始的基本可行解等价于确定初始的可行基,一旦初始的可行基确定了,那么对应的初始基本可行解也就唯一确定为了讨论方便,不妨假设在标准型线性规划中,系数矩阵A中前m 个系数列向量恰好构成一个可行基,即A=(BN),其中B=(P1,P2,…Pm )为基变量x1,x2,…xm 的系数列向量 构成的可行基,N=(Pm+1,Pm+2, …Pn)为非基变量xm+1,xm+2, …xn 的 系数列向量构成的矩阵。
那么约束方程AX=b 就可表示为:用可行基B的逆阵B-1左乘等式两端,再通过移项可推得:若令所有非基变量 ,则基变量由此可得初始的基本可行解B B N N X AX=(BN)=BX +NX =b X ⎛⎫ ⎪⎝⎭-1-1B N X =B b-B NX N X =0-1B X =B b 1B b X=0-⎛⎫ ⎪⎝⎭-1-1-1B N B N N B AX=b BX +NX =b X =B b-B NX X =0,X =B b →→→● 问题:➢ 要判断m 个系数列向量是否恰好构成一个基并不是一件容易的事。