2.4 线段、角的轴对称性(2)教案
- 格式:doc
- 大小:57.50 KB
- 文档页数:2
D
C B A (第1题图) (第2题图)
D C
E B
A 图92
1D E B C A
B E A D
C B A E D
C
F B A E C 八年级数学每日一练 编号 201508007
内容:2.4线段、角的轴对称性(2)
1.已知:如图,∠BAC=1200,AB=AC, AC 的垂直平分线交BC 于D 则∠ADC= .
2.如图,△ABC 中,AB=AC=17,BC=16,DE 垂直平分AB ,则△BCD 的周长是 .
3.已知如图,四边形ABCD 关于直线MN 对称,其中A 、C 是对称点,则直线MN 与线段AC 的关系是_______.
4.如图所示,在ABC ∆中,︒=∠90C ,AB 的垂直平分线交AC 于D 点,垂足为E ,且221∠=∠,A ∠= .
5.在Rt △ABC 中,∠C=900,BD 平分∠ABC 交AC 于点D ,DE 垂直平分线段AB ,
(1) 试找出图中相等的线段,并说明理由。
(
2) 若DE=1cm ,BD=2cm ,求AC 的长。
6. 已知:如图,AB=AC=12 cm ,AB 的垂直平分线分别交AC 、AB 于D 、E ,△ABD 的周长等于29 cm ,求
DC 的长.
7.已知,如图在△ABC 中,AB,AC 的垂直平分线分别交BC 于点E,F ,若BC =10,你能求出△AEF 的周长吗?
8.市政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.
C B A。
苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.1 轴对称与轴对称图形一、自主先学1. 观察下列各种图形,判断是否为轴对称图形?如果是,并找出该轴对称图形的对称轴。
2. 下列图片有什么共同特性?二、合作助学3. 折纸印墨迹:在纸的一侧滴一滴墨水后,对折,压平.(1)你发现折痕两边的墨迹形状一样吗?为什么?(2)两边墨迹的位置与折痕有什么关系?(3)归纳:把一个图形沿着某一条直线翻折,如果它能够与另一个图形,那么称这两个图形关于这条直线,也称这两个图形成,这条直线叫做,两个图形中的对应点叫做.4. 观察下列图案,它们有什么共同特征?(1)归纳:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相,那么称这个图形是图形,这条直线叫做.(2)画出上面各图的对称轴.5. 轴对称与轴对称图形的区别与联系.如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个;如果把一个轴对称图形位于轴对称两旁的部分看成两个图形,那么这两部分就成.三、拓展导学6. (1) 正五边形(各边相等且各角也相等的五边形,如图①)有几条对称轴?(2)在图中画一条对角线得到图②,图②有几条对称轴?(3 ) 如果在图②中再画一条对角线,那所得的图形有几条成轴对称?①②四、检测促学7. 下列图形中,是.轴对称图形的为()A. B. C. D.8. 如图,由4个全等的正方形组成L形图案,(1)请你在图案中改变1个正方形的位置,使它变成轴对称图案;(2)请你在图中再添加一个小正方形,使它变成轴对称图案.五、反思悟学9. (1)剪两个全等的三角形,并把它们叠合在一起;(2)把其中的一个三角形沿一边翻折,所得的图形是轴对称图形吗?如果是,指出它的对称轴;(3)再改变其中一个三角形的位置,使这两个三角形成轴对称.lA'B'C'A BCCBAAA'B'苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(1)一、自主先学1. 操作:把一张纸折叠后,用针扎一个孔,再把纸展开,两针孔分别记为点A 、点A ’,折痕记为l . (1) 在下面空白处画出你得到的图形 . (2)连接AA ’, AA ’与 l 相交于点O , 线段AA ’与 l 有什么关系?(可以从位置、数量两个角度考虑)二、合作助学2. 操作:将一张长方形的纸片对折;在纸上画△ABC ;用针尖沿△ABC 各顶点扎小孔将纸展开,连接AA ’、BB ’、CC ’ .① ② ③(1)线段AA ’、BB ’、CC ’与折痕l 有什么关系?(2)图中,线段AB 与''A B 有什么关系?BC 与''B C 呢?(3)图中ABC ∆与'''C B A ∆有什么关系?(4)归纳:垂直并且 一条线段的直线,叫做这条线段的 .如图,直线l 交线段AB 于点O ,∠1 = 90º , AO = BO ,直线l 是线段AB 的垂直平分线. (5) 轴对称的性质:成轴对称的两个图形 , 对应点的连线被对称轴 .3. 如图,线段AB 与''A B 关于直线l 对称. 连接AA ’、BB ’,设它们分别与l 相交于点P 、Q.(1)在所画的图形中,相等的线段有: ; (2)AA ’与BB ’ 平行吗?为什么?三、拓展导学4. 你能求出这7个角的和吗?321BCDA 第5题第6题四、检测促学5.下列说法中,正确的是 ( ) A .关于某直线对称的两个三角形是全等三角形; B .两个全等的三角形是关于某直线对称的;C .两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧;D .若点A 、B 关于直线MN 对称,则AB 垂直平分MN .6.如图,所示的两个三角形关于某条直线对称,∠1=110°,∠2=46°则∠3=_ __°. 7.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积是 cm 2. 8.分别画出下列各图中成轴对称的两个图形的对称轴.① ② ③五、反思悟学9.如何画成轴对称的两个图形或轴对称图形的对称轴?lAlllBAABABl ABC苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.2 轴对称的性质(2)一、自主先学1. 思考:如图,点 A 、B 、C 都在方格纸的格点上. 请你再找一个格点D ,使点 A 、B 、C 、D 组成一个轴对称图形.小结:画轴对称图形,应先确定 ,再找出 .2. 如果直线l 外有一点A ,那么怎样画出点A 的对称点A ’?画法图形1. 画AO ⊥l , 垂足为O.2. 在AO 的延长线上截取OA ’,使 OA ’ =AO.点A ’ 就是点A 关于直线l 对称的点.二、合作助学3. 操作:(1)在图①中,用三角尺画线段AB 关于直线l 对称的线段A ’B ’; (2)在图②中,用三角尺画△ABC 关于直线l 对称的△A ’B ’C ’.① ②小结:画一个图形关于一条直线对称的图形,关键是确定 .4. 讨论:在图中,四边形ABCD 与四边形EFGH 关于直线l 对称.连接AC 、BD .设它们相交于点P .怎样找出点P 关于l 的对称点Q ?C ABll BCAOA'B'BAl 第6题第7题DACB小结:成轴对称的两个图形的 也成轴对称. 三、拓展导学5. 如图,三角形Ⅰ的2个顶点分别在直线上1l 和2l 上 ,且1l ⊥2l .画三角形Ⅱ,使它与三角形Ⅰ关于直线2l 对称; 画三角形Ⅲ,使它与三角形Ⅱ关于直线1l 对称; 画三角形Ⅳ,使它与三角形Ⅲ关于直线2l 对称. 所画的三角形Ⅳ与三角形Ⅰ成轴对称吗? 四、检测促学6. 用三角尺画△ABC 关于直线l 对称的三角形.① ②7. 如图,线段AB 与A ’B ’关于对称,AA ’ 交直线 l 于点O.(1)把线段AB 沿直线 l 翻折,重合的线段有: .(2)因为 △OAB 与 △O ’A ’B ’关于直线 l ,所以△OAB ≌△O ’A ’B ’,直线 l 垂直平分线段 ,∠ABO = ,∠AOB ’= . 五、反思悟学8. 如图,长方形的台球桌CDEF 内有黑、白两 球分别位于A 、B 两点,试问怎样撞击白球 A 才能使A 先碰到桌边DE ,反弹后再击中 黑球B?苏教版初中数学八年级上册第2章《轴对称图形》教学设计及课堂练习2.3设计轴对称图案一、自主先学观察、欣赏课本上的绿色食品标志、中国环境标志、国家免检产品标志等,说出这些标志的含义,判断它们是否是轴对称图形,它们是怎么样设计的?你还见过哪些在生活中见过的图案,成轴对称的?(可从一些商标、会徽、车标等方面去发挥)二、合作助学1.对称的美术图案,除图形对称外,有时颜色也要“对称”。
2.4 线段、角的轴对称性〔4〕教材:义务教育教科书·数学〔八年级上册〕点P在∠A的角平分线上.分析:要证明点P在∠A的角平分线上,根据角的内部到角两边距离相等的点在角平分线上,只要点P到∠A两边的距离相等,所以过点P做两边的垂线段PD、PE,证出PD=PE,而要证PD=PE,因为点P是∠ABC、∠ACB的角平分线的交点,根据角平分线的性质,点P到∠ABC、∠ACB两边的距离都相等,所以只要做出BC边上的垂线段PF,就可得PD=PF,PE =PF,从而PD=PE,所以得证.通过解决上述问题,你发现三角形的三个内角的角平分线有什么位置关系?2.分析、讨论证明思路.3.口述证明思路及证明过程.4.讨论归纳得到结论:三角形的三个内角的角平分线相交于一点.性质定理和逆定理.采用“要证,只要证〞的思考方法引导学生逐步学会“分析法〞.问题解决完后及时进行小结归纳,得出三角形“内心〞,为学习三角形的内切圆打好根底.例3 :如图2-28,AD是△ABC的角平分线,DE⊥AB,DF AC,垂足为E、F.求证:AD垂直平分EF.学生利用分析法填空;阐述证明思路;完成证明过程.利用分析法引导学生学会分析问题,培养学生良好的思考习惯.开放的分析过程,提供了多样化的思分析:要证AD垂直平分EF,只要证:,.∠BAD=∠CAD,DE⊥AB,DF AC,只要证,只要证.……考路径.指导学生完成练习.解完题后,说说你的发现,提出你的问题.练习:课本P56练习.学生发现:三角形两外角的角平分线与第三个角的角平分线所在的直线相交于一点;可能提出“三角形三个外角的角平分线所在直线是否相交于一点的问题〞.此题是角平分线性质定理和逆定理的综合应用,实际上是例2的变式应用.学生“一折,二画,三验证〞有利于学生动手操作,获得成功,调动学生学习的积极性,再次鼓励学生使用逆推的思路寻找证明方法.布置作业课本P58-59习题2.4,分析第9、10、11题的思路,任选2题写出过程.学生根据自身实际情况,选题作业.实行作业分层,便于不同开展水平的学生自我开展.9.1 单项式乘单项式力.教学重点:理解单项式相乘的法那么,会进行单项式的乘法运算.教学难点:能运用单项式乘以单项式的法那么解决实际问题.【情景创设】用6个边长为a的小正方体拼成一个长方体,并用不同的方法表示你所拼出来的长方体的体积,从不同的表示方法中,你能发现些什么?〔1〕体积的表示方法;〔2〕面对你的侧面积的表示方法.探索新知让学生在交流的根底上思考以下问题:〔1〕体积的表示方法:①3a ·2a ·a =________________=6a 3,②3a ·2a ·b =________________=6a 2b .侧面积的表示方法:3a ·2a =________________=6a 2. 〔2〕从不同的表示中你发现了什么? 〔3〕通过下面两个计算我们来进一步的探讨:〔2a 2b 〕〔3ab 2〕=[2 ×3]•〔a 2•a 〕〔b •b 2〕=6a 3b3系数相乘 相同字母 相同字母〔4ab 2〕〔5b 〕=[4×5]•〔b 2• b 〕•a =20ab 3系数相乘 相同字母 只在一个单项式中出现的字母你能告诉大家你算出的结果吗?你是怎样来思考的呢? 通过探索得到单项式乘单项式的计算法那么: 〔1〕将它们的系数相乘; 〔2〕相同字母的幂相乘;〔3〕只在一个单项式中出现的字母,那么连同它的指数一起作为积的一个因式.【展示交流】例 1 计算:① -13a 2·(-6ab ); ② 6x 2·(-2x 2y ).注:教师强调格式标准,板书过程.〔通过计算引导学生发现单项式与单项式相乘时,一找系数,二找相同字母的幂,三找只在一个单项式里出现的字母.〕 练习1: 判断正误:〔1〕3x 3·(-2x 2)=5x 3; 〔2〕3a 2·4a 2=12a 2; 〔3〕3b 3·8b 3=24b 9; 〔4〕-3x ·2xy =6x 2y ; 〔5〕3ab +3ab =9a 2b 2. 练习2:课本练一练 第1、2题.例 2 计算:〔1〕(2x )3·(-3xy 2); 〔2〕(-2a 2b )·(-a 2)·14bc .注:遇到乘方形式先用积的乘方公式展开,然后转化为单项式乘以单项式的形式,再根据今天所学内容计算. 练习3:计算:〔1〕(a 2)2·(-2ab ); 〔2〕-8a 2b ·(-a 3b 2) ·14b 2 ;〔3〕(-5an +1b ) ·(-2a )2;〔4〕[-2(x-y)2]2·(y-x)3.【盘点收获】【课后作业】补充习题和同步练习。
【学习目标】:1﹑通过丰富的生活实例认识轴对称,能够识别简单的轴对称图形及轴对称,并能找出对称轴;2﹑通过亲自实验、探索,研究、发现、应用轴对称,实现真正的“做数学”;3﹑欣赏现实生活中的轴对称,体会轴对称在现实生活中的广泛应用和它的丰富文化价值;【重点难点】:认识轴对称与轴对称图形并会找对称轴;轴对称图形和轴对称的区别与联系.【预习指导】:1、(投影片)4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流.2、动手操作:将一张纸片先滴上一滴墨水,然后对折压平,再重新打开,观察两滴墨水之间的关系.3、观察、思考:议一议:观察图片揭示轴对称概念:像这样,把一个图形沿着某一条直线翻折过去,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线就是对称轴,两个图形中的对应点(即两个图形重合时互相重合的点)叫做对称点.4、动手操作:(1)演示操作(2)用一张正方形的纸片,折叠后,把下列图形剪出来,并与同学交流你的剪法.5、探索思考:观察图示轴对称图形概念:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴.【典题选讲】:指出下列图形中的轴对称图形,画出它们的对称轴.是轴对称图形的是(填写序号).【学习体会】;1、讨论、交流:轴对称与轴对称图形的区别与联系.2、说说生活中的轴对称和轴对称图形,与同学讨论、交流,同小组互相补充.【课堂练习】:1、课本第8页练习:1、2、32、判断题:(1).轴对称图形只有一条对称轴.………()(2).两个图形成轴对称,这两个图形是全等图形.………………()(3).全等的两个图形一定成轴对称. ……………()(4).轴对称图形指一个图形,而轴对称是指两个图形而言………()(编写者:李晓红)1.2轴对称的性质(1)【学习目标】:1、掌握轴对称性质;2、会利用轴对称的性质,作对称点,对称图形等.【重点难点】:掌握轴对称性质,会利用轴对称性质作对称点、对称图形等.【预习指导】:一.学前准备1、完成课本第10页的操作,即图1—6,并将你完成的操作带到课堂上来.2、思考:1)、针孔A、A’折痕l之间有什么关系?请记录下你的发现..2)、线段AA’与折痕l之间有什么关系?请记录下你的发现。
苏科版数学八年级上册2.4《线段角的轴对称性》教学设计2一. 教材分析《苏科版数学八年级上册2.4《线段角的轴对称性》》这一节主要让学生理解线段和角的轴对称性质,学会运用轴对称性质解决实际问题。
教材通过丰富的实例,引导学生探究线段和角的轴对称性质,培养学生的动手操作能力和抽象思维能力。
二. 学情分析学生在七年级已经学习了轴对称的概念,对轴对称有了初步的认识。
但是,对于线段和角的轴对称性质,他们可能还比较陌生。
因此,在教学过程中,需要通过大量的实例和动手操作,让学生加深对线段和角的轴对称性质的理解。
三. 教学目标1.理解线段和角的轴对称性质。
2.学会运用轴对称性质解决实际问题。
3.培养学生的动手操作能力和抽象思维能力。
四. 教学重难点1.线段和角的轴对称性质的理解和运用。
2.如何引导学生发现和总结轴对称性质。
五. 教学方法1.实例教学:通过丰富的实例,让学生直观地感受线段和角的轴对称性质。
2.动手操作:让学生亲自动手操作,发现和总结线段和角的轴对称性质。
3.小组讨论:让学生分组讨论,培养学生的合作意识和沟通能力。
六. 教学准备1.准备相关的实例和图片。
2.准备一些线段和角的模型。
3.准备黑板和粉笔。
七. 教学过程1.导入(5分钟)通过一些生活中的实例,如剪纸、折叠等,引导学生回顾轴对称的概念。
然后,提出本节课的主要学习内容:线段和角的轴对称性质。
2.呈现(10分钟)呈现一些线段和角的轴对称的实例,让学生直观地感受线段和角的轴对称性质。
同时,引导学生发现和总结线段和角的轴对称性质。
3.操练(10分钟)让学生分组讨论,每组选择一个线段或角,找出它的轴对称线,并动手操作验证。
然后,各组汇报自己的发现,全班交流。
4.巩固(10分钟)出示一些练习题,让学生运用轴对称性质解决问题。
同时,引导学生总结解题思路和方法。
5.拓展(10分钟)出示一些相关的实际问题,让学生运用轴对称性质解决问题。
如:设计一个轴对称的图案、计算线段的长度等。
2.4 线段、角的轴对称性(2)教案一、教学目标1.理解线段的轴对称性概念,并能够判断线段是否具有轴对称性;2.掌握角的轴对称性概念,并能够判断角是否具有轴对称性;3.能够运用轴对称性的知识解决相关问题。
二、教学重点1.理解线段的轴对称性概念;2.掌握角的轴对称性概念。
三、教学内容3.1 线段的轴对称性3.1.1 概念引入在上节课我们学习了线段的概念,今天我们将进一步探讨线段的性质。
请同学们回顾一下,如果一条线段可以沿着某条直线旋转180度后能够重合,我们就称这条线段具有轴对称性。
请大家思考,如何判断一条线段是否具有轴对称性?3.1.2 判断方法线段的轴对称性可以通过观察来判断。
我们可以找一根铅笔或者尺子,将线段的中点作为旋转的中心点,然后将线段旋转180度后尝试对折,如果能够完全重合,说明线段具有轴对称性;反之,则不具有轴对称性。
3.1.3 深化理解请同学们思考以下问题:•线段的中点在轴对称性中起到了什么作用?•如果一条线段有多个对称轴,那么它是否具有轴对称性?3.2 角的轴对称性3.2.1 概念引入角是由两条射线共同确定的形状。
我们知道,线段具有轴对称性,那么角是否也具有轴对称性呢?请思考一下。
3.2.2 判断方法角的轴对称性可以通过观察来判断。
我们可以找一张纸,将角的顶点与纸的一个端点重合,然后将纸沿着角的边旋转180度后尝试对折,如果能够完全重合,说明角具有轴对称性;反之,则不具有轴对称性。
3.2.3 深化理解请同学们思考以下问题:•角的顶点在轴对称性中起到了什么作用?•如果一个角有多个对称轴,那么它是否具有轴对称性?四、教学设计4.1 概念讲解通过黑板演示和讲解,向学生介绍线段和角的轴对称性的概念及判断方法。
引导学生思考相关问题,并与学生进行互动讨论。
4.2 实践练习让学生分成小组,互相配对进行实践练习。
每个小组准备一张纸和一支铅笔或尺子,根据老师提供的线段和角的图形,判断其是否具有轴对称性,并给出相应的理由。
2.4 线段、角的轴对称性(1)说课稿-苏科版八年级数学上册一、教材分析本节课是苏科版八年级数学上册中的第2.4节,主要介绍线段和角的轴对称性。
通过本节课的学习,学生将掌握线段和角的轴对称定义、判断和绘制轴对称图形的方法。
在前面的学习中,学生已经学习了线段和角的基本概念和性质,理解了线段和角的度量和运算方法。
通过本节课的学习,可以进一步加深对线段和角的理解,并通过绘制轴对称图形的练习,提高学生的问题解决能力和几何思维能力。
二、教学目标知识与技能目标:1.理解线段的轴对称定义及其性质;2.理解角的轴对称定义及其性质;3.掌握判断线段和角是否具有轴对称的方法;4.能够根据已知条件绘制具有轴对称性的图形。
过程与方法目标:1.注重观察和思考,培养学生的几何思维和推理能力;2.引导学生通过实例分析和讨论,理解轴对称性的概念和特点;3.鼓励学生进行合作学习和探究,培养团队合作意识和解决问题的能力。
情感态度与价值观目标:1.培养学生的观察力和细致心思,培养学生对几何学习的兴趣和热情;2.培养学生的合作精神和团队意识,鼓励学生互帮互助,共同进步。
三、教学重点与难点教学重点:1.线段的轴对称性及其判断方法;2.角的轴对称性及其判断方法;3.绘制具有轴对称性的图形。
教学难点:1.引导学生理解轴对称的概念和特点;2.培养学生观察和分析问题的能力。
四、教学过程与方法引入新知:1.利用实例引入轴对称的概念,例如一把剪刀、一个图形等,让学生观察并发现其中的特点;2.引导学生分析并总结轴对称的特点,例如镜面对称;3.引入线段和角的轴对称性的概念,让学生讨论并理解。
讲解与练习:1.通过示例和图形,讲解线段的轴对称性,并引导学生掌握判断线段是否具有轴对称性的方法;2.通过示例和图形,讲解角的轴对称性,并引导学生掌握判断角是否具有轴对称性的方法;3.组织学生进行练习,巩固判断线段和角是否具有轴对称性的能力。
拓展与应用:1.引导学生思考如何绘制具有轴对称性的图形;2.组织学生进行绘制图形的练习,培养他们的几何思维和创造力;3.引导学生分析和讨论绘制图形的方法和策略。
八年级数学上册教案课题: 2.4 线段、角的轴对称性(3)课时: 3 课型:新授课教学目标:1.探索并掌握角平分线的性质定理和逆定理;2.能利用所学知识提出问题并能解决生活中的实际问题;3.能利用基本事实有条理的进行证明,做到每一步有根有据;4.经历探索角的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性.教学重点:利用角的轴对称性探索角平分线的性质.教学难点:理解“点在角平分线上”的证明方法.教学设计:设计说明及补充:情境导入同学们,上节课我们充分研究了线段的轴对称性,那么另一个基本图形“角”的轴对称性又如何呢?与线段有什么异同和联系呢?下面,我们就进入今天愉快的数学探究之旅.让学生动手操作,感知角的轴对称性,猜想对称轴的位置,为后续研究作铺垫。
问题虽然比较简教学过程实践探索一:在一张薄纸上画∠AOB,它是轴对称图形吗?如果是,对称轴在哪里?为什么?实践探索二如图2-23,直线OC是∠AOB的角平分线,如果沿直线OC翻折,你有什么发现?角平分线是线段的对称轴吗?实践探索三P54操作证明方法不一1.利用“AAS”证明△ODP≌△O EP后,说明PD与PE相等.OAB2-23C2.利用角的轴对称性和基本事实“过一点有且只有一条直线与已知直线垂直”,说明PD 与PE 相等.通过证明,你发现了什么?用语言描述你得到的结论. 总结角平分线上的点有什么特点? 实践探索四如果任意一个点在角平分线上,那么这个点到这个角的两边距离相等.反过来,结合上节课所学,你有什么猜想? 如图2-26,若点Q 在∠AOB 内部,QD ⊥OA ,QE ⊥OB ,且QD =QE ,点Q 在∠AOB 的角平分线上吗?为什么?通过上述探索,你得到了什么结论? 学生讨论、归纳得到角平分线性质定理的逆定理。
练习:课本P55练习.延伸:在平面内确定一点M ,使它到AB 、AC 的距离相等且MB =MC . 小结1.经历了画图、折纸、猜想、归纳的活动过程,探索得到了角的轴对称性:角是轴对称图形,对称轴是角平分线所在的直线.2.本节课我们还证明了角平分线的性质定理:角平分线上的点到角的两边的距离相等;反过来,角的内部到角的两边距离相等的点在角的平分线上,从中我们可以发现图形的位置关系与数量关系的内在联系,你能举例说明这种内在的联系吗?课堂作业 补充练习单,学生都能感受到PD 与PE 相等,但是要让学生进行推理说明还是有困难的,要提示学生从角平分线的定义入手,说明角相等,再结合证明两个角相等的思路。
1.4 线段、角是轴对称性(2)--- ( 教案)班级姓名学号教学目标:1、使学生掌握角是轴对称图形,角平分线的性质.2、使学生通过类比的思想和方法掌握本节课的内容,培养学生主动探索学习的能力通过让学生在原有的知识基础上.3、通过类比方法,掌握了新的知识,可以提高学生自学的兴趣和信心.教学重点:角平分线的性质:Array教学难点:角平分线的性质应用教学过程:一、情境创设:张庄、李庄和马庄的位置如图,每两个村庄之间都有笔直的道路相连,他们计划共同打一眼机井.希望机井到三条道路的距离相等,你能设计出机井的位置吗?通过本课的学习,我相信大家将不难解决这个问题.今天,我们来学习角的轴对称性.(二)新授1、请同学们将事先准备的薄纸拿出来,在上面任意画一个角(∠AOB),折纸使两边OA、OB 重合,你发现折痕与∠AOB有什么关系?学生通过动手和讨论得到结论:角是轴对称图形,角平分线所在的直线是它的对称轴.2、在∠AOB的内部任意取折痕上的一点P,分别作点P到OA和OB的垂线段PD、PE,再沿学生作图探究,可得到很多结论,如PC=PD,PC、PD关于折痕对称等等,点评学生的各种结论并强调重点:角平分线上的点到角的两边距离相等.在上面第二个结论中,有两个条件(1)OC 是∠AOB 的平分线;(2)点P 在OC 上,PD ⊥OA ,PE ⊥OB ,才能得出PD =PE ,两者缺一不可.下图中PD =PE 吗?各缺少了什么条件?3、上节课我们已经学习了:若点P 在线段AB 的垂直平分线上,那么PA=PB ,如果QA=QB ,那么点Q 在线段AB 的垂直平分线上.今天我们又学了若点P 在∠AOB 的平分线上,那么点P 到OA 、OB 的距离相等;反过来,你能提出什么猜想吗部分学生能猜想出来:若点P 到OA 、OB 的距离相等,则点P 在∠AOB 的平分线上.让学生完成P24图1-19的相关问题,学生通过作图、测量、观察得到:到角的两边距离相等的点,在这个角的平分线上.4、上节课我们学习了线段的垂直平分线是到线段两端距离相等的点的集合.那么角平分线就是……?部分学生会回答出:角平分线是到角两边距离相等的点的集合.二、例题示范:例1、任意画∠O ,在∠O 的两边上分别截取OA 、OB ,使OA=OB ,过点A 画OA 的垂线,过P ,点O 在∠APB 的平分线上吗?为什么? 例2、如下图(1)所示,在△ABC 中,∠C = 90°,BD 是角平分线,交AC 于点D ,DE ⊥AB ,垂足为点E ,AD =3DE.AD 和3DC 是什么关系?为什么?三、课堂小结:角平分线的作法及性质A OB CD E P P E D C B O A O四、课后作业:P22 4,5五、教学后记:。
初中数学轴对称教案初中数学轴对称教案(精选10篇)作为一名优秀的教育工作者,有必要进行细致的教案准备工作,借助教案可以提高教学质量,收到预期的教学效果。
那么大家知道正规的教案是怎么写的吗?下面是小编整理的初中数学轴对称教案,欢迎阅读与收藏。
初中数学轴对称教案篇1教学目的1.使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。
2.通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。
重点、难点判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。
教学过程一、知识回顾问题1:轴对称图形的定义是什么?它是判断图形是否是轴对称图形的依据。
问题2:是否会画轴对称图形的对称轴?找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。
问题3:轴对称图形对称点的连线与对称轴有什么关系?轴对称图形对称点的连线被对称轴垂直平分。
问题4:线段垂直平分线、角平分线具有什么性质?线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。
问题5:等腰三角形有什么性质?等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60。
问题6:如何判断三角形是等腰三角形?等边三角形?如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60的三角形是等边三角形,有一个角是60的等腰三角形是等边三角形。
二、例题1.书本中下列是轴对称图形的有( )A.1个 D.2个 C.3个 D.4个2.所示,已知,OC平分AOB,D是OC上一点,DEOA,DFOB,垂足为E、F点,那么(1)DEF与DFE相等吗?为什么?(2)OE与OF相等吗?为什么?三、巩固练习所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,A=491454.求△BCD的周长和DBC度数。
姓名: 班级2.4 线段、角的轴对称性本课重点(1)垂直平分线与角平分线的性质与判定 本课难点 (2)利用垂直平分线与角平分线的性质与判定解决实际问题全卷共25题,满分:120分,时间:90分钟一、单选题(每题3分,共30分)1.(2021·河北保定市·八年级期末)ABC 内一点P 到三边距离相等,则点P 一定是ABC ( ) A .三条角平分线的交点B .三边垂直平分线的交点C .三条高的交点D .三条中线的交点【答案】A【分析】根据角平分线上的点到角两边的距离相等即可求解.【详解】解:∵点P 到三边距离相等,∴点P 一定在三条角平分线的交点上,故选:A .【点睛】本题考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.2.(2021·河北保定市·八年级期末)如图,在ABC 中,BC 的垂直平分线分别交AC ,BC 于点D ,E ,若ABC 的周长为16,3BE =,则ABD △的周长为( )A .6B .10C .12D .20【答案】B 【分析】根据线段垂直平分线的性质可得BD CD =,BE CE =,即可得到10AB AC +=、ABD △的周长为AB AD BD AB AD CD AB AC ++=++=+,即可求解.【详解】解:∵DE 为BC 的垂直平分线,∴BD CD =,BE CE =,∵ABC 的周长为16,3BE =,∴10AB AC +=,∴ABD △的周长为10AB AD BD AB AD CD AB AC ++=++=+=,故选:B .【点睛】本题考查线段垂直平分线的性质,掌握线段垂直平分线的定义与性质是解题的关键.3.(2021·河南省实验中学八年级月考)元旦联欢会上,同学们玩抢凳子游戏,在与A 、B 、C 三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A 、B 、C 三名同学所在位置看作△ABC 的三个顶点,那么凳子应该放在△ABC 的( )A .三边中线的交点B .三条角平分线的交点C .三边上高的交点D .三边垂直平分线的交点 【答案】D【分析】为使游戏公平,要使凳子到三个人的距离相等,于是利用线段垂直平分线上的点到线段两端的距离相等可知,要放在三边垂直平分线的交点上. 【详解】∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,∴凳子应放在△ABC 的三条垂直平分线的交点最合适,故选:D . 【点睛】本题主要考查了线段垂直平分线的性质的应用,理解基本性质是解题关键.4.(2021·吉林九年级二模)如图,在锐角三角形ABC 中,BC BA >,按以下步骤作图:①以点B 为圆心,BA 长为半径作圆弧,交AC 于点D ;②分别以点A 、D 为圆心,大于12AD 长为半径作圆弧,计两弧交于点E ;③作射线BE ,交AC 于点P ,若60A ∠=︒,则ABP ∠的大小为( )A .20︒B .25︒C .30D .35︒【答案】C【分析】根据作图步骤可知BP ⊥AC ,根据直角三角形两锐角互余的性质即可得答案.【详解】由作图步骤可知:BP ⊥AC ,∴∠BP A =90°,∵60A ∠=︒,∴ABP ∠=90°-∠A =30°,故选:C .【点睛】本题考查尺规作图——作垂线,熟练掌握各基本作图的步骤是解题关键.5.(2021·成都西川中学八年级期中)如图,AD 是△ABC 的角平分线,DF ⊥AB 于点F ,且DE =DG ,S △ADG =24,S △AED =18,则△DEF 的面积为( )A .2B .3C .4D .6【答案】B 【分析】过点D 作DH ⊥AC 于H ,根据角平分线的性质得到DH =DF ,进而证明Rt △DEF ≌Rt △DGH ,根据全等三角形的性质得到△DEF 的面积=△DGH 的面积,根据题意列出方程,解方程得到答案.【详解】解:过点D 作DH ⊥AC 于H ,∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC ,∴DH =DF ,在Rt △DEF 和Rt △DGH 中,DF DH DE DG =⎧⎨=⎩,∴Rt △DEF ≌Rt △DGH (HL ), ∴△DEF 的面积=△DGH 的面积,设△DEF 的面积=△DGH 的面积=S ,同理可证,Rt △ADF ≌Rt △ADH ,∴△ADF 的面积=△ADH 的面积,∴24-S =18+S ,解得,S =3,故选:B .【点睛】本题考查的是全等三角形的判定与性质、角平分线的性质,作辅助线构造出全等三角形并利用角平分线的性质是解题的关键.6.(2021·辽宁九年级二模)如图,将△ABC 绕点A 逆时针旋转得到AB C ''△,点C 的对应点为点C ',C B ''的延长线交BC 于点D ,连接AD .则下列说法错误的是( )A .△ABC △ABC ''≅ B .//AB BC ' C .CDC CAC ∠∠''=D .AD 平分BDB '∠【答案】B【分析】A 、根据旋转的性质即可判断;B 、由旋转角的任意性可以判断;C 、由三角形内角和为180︒且两个角相等即可判断;D 、利用角平分线的判定定理即可证明. 【详解】解:A 、由旋转的性质可知:△ABC △ABC ''≅,故A 正确,不符合题意;B 、''ABC 由ABC 绕A 旋转任意角度得到,'//AB BC ∴只是特殊情况,故B 错误,符合题意;C 、''ABC AB C ≌,'C C ∴∠=∠,''1801C AC C ∠=︒-∠-∠,'1802CDC C ∠=︒-∠-∠,''12,CDC CAC ∠=∠∴∠=∠,故C 正确,不符合题意;D 、过A 分别作',C D CB 的垂线,垂直分别是,EF ,''ABC AB C ≌,''BC B C ∴=,''ABC AB C S S =△△; 11''22B C AE BC AF ∴⨯⨯=⨯⨯,AE AF ∴=, ',AE C D AF CB ⊥⊥,AD ∴平分BDB '∠,故D 正确,不符合题意;故选:B .【点睛】本题考查了,旋转的性质、平行线的判定定理、三角形内角和、角平分线,解题的关键是:掌握相关定理依次进行判断.7.(2021·湖南八年级期末)如图,在ABC 中,90C ∠=︒,30B ∠=︒,以A 为圆心,任意长为半径画弧交AB于M 、AC 于N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于D ,下列四个结论:①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:1:3ACD ACB S S =△△.其中正确的有( )A.只有①②③B.只有①②④C.只有①③④D.①②③④【答案】D【分析】利用角平分线的性质以及各内角度数和三角形面积求法分别得出即可.【详解】解:根据作图过程可知AD是BAC∠的角平分线,①正确;∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,故②正确;∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,故③正确;∵∠CAD=30°,∴CD=12AD,∵AD=DB,∴CD=12DB,∴CD=13CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,故④正确,故选D.【点睛】本题主要考查尺规作角平分线、角平分线的性质定理、三角形的外角以及等腰三角形的性质,熟练掌握有关知识点是解答的关键.8.(2021·广东七年级期末)如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE BC=,PG//AD交BC于F,交AB于G,①2ACB APB=∠∠;②S△P AC:S△P AB=PC:PB;③BP垂直平分CE;④∠PCF=∠CPF.其中正确的有()A.①②④B.①③④C.②③④D.①③【答案】B【分析】利用角平分线的性质以及已知条件对①②③④进行一一判断,从而求解.【详解】解:∵P A平分∠CAB,PB平分∠CBE,∴∠P AB=12∠CAB,∠PBE=12∠CBE,∵∠CBE=∠CAB+∠ACB,∠PBE=∠P AB+∠APB,∴∠ACB=2∠APB;故①正确;过P作PM⊥AB于M,PN⊥AC于N,PS⊥BC于S,∴PM=PN=PS,∴PC平分∠BCD,∵S △P AC :S △P AB =(12AC •PN ):(12AB •PM )=AC :AB ;故②不正确;∵BE =BC ,BP 平分∠CBE ∴BP 垂直平分CE ,故③正确;∵PG ∥AD ,∴∠FPC =∠DCP ∵PC 平分∠DCB ,∴∠DCP =∠PCF ,∴∠PCF =∠CPF ,故④正确.本题正确的有:①③④故选:B .【点睛】此题主要考查了角平分线的性质和定义,平行线的性质,线段的垂直平分线的判定,等腰三角形的性质等.9.(2021·内蒙古中考真题)如图,在Rt ABC 中,90ACB ∠=︒,根据尺规作图的痕迹,判断以下结论错误的是( )A .BDE BAC ∠=∠B .BAD B =∠∠C .DE DC =D .AE AC =【答案】B 【分析】先通过作图过程可得AD 平分∠BAC ,DE ⊥AB ,然后证明△ACD ≌△AED 说明C 、D 正确,再根据直角三角形的性质说明选项A 正确,最后发现只有AE =EB 时才符合题意.【详解】解:由题意可得:AD 平分∠BAC ,DE ⊥AB ,在△ACD 和△AED 中∠AED =∠C ,∠EAD =∠CAD ,AD =AD∴△ACD ≌△AED (AAS )∴DE =DC ,AE =AC ,即C 、D 正确;在Rt △BED 中,∠BDE =90°-∠B 在Rt △BED 中,∠BAC =90°-∠B ∴∠BDE =∠BAC ,即选项A 正确;选项B ,只有AE =EB 时,才符合题意.故选B .【点睛】本题主要考查了尺规作图、全等三角形的性质与判定、直角三角形的性质,正确理解尺规作图成为解答本题的关键.10.(2021·江西八年级期末)如图,在ABC 中,DE 是边AC 的垂直平分线,交AC 于点D ,交AB 于点E ,点P 是直线DE 上的一个动点,若5AB =,则PB PC +的最小值为( )A .5B .6C .7D .8【答案】A 【分析】由条件可得点A 是点C 冠以ED 的对称点,即求PB+PC 的最小值就是求PB+PA 的最小值,在点P 运动的过程中,P 与E 重合时有最小值.【详解】解:∵ED 是AC 的垂直平分线,∴PC+PB=PA+PB ,∵P 运动的过程中,P 与E 重合时有最小值,∴PB+PC 的最小值=AB=5.故选:A 【点睛】本题主要考查动点最短路径问题,结合对称,寻找对称点,判断最值状态是解题的关键.二、填空题(每题3分,共24分)11.(2021·静宁县阿阳实验学校八年级期末)如图,123,,l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有 ____ 处.【答案】4.【分析】作直线l 1、l 2、l 3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P 1、P 2、P 3,内角平分线相交于点P 4,然后根据角平分线的性质进行判断.【详解】解:如图示,作直线l 1、l 2、l 3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P 1、P 2、P 3,内角平分线相交于点P 4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等. 故答案是:4.【点睛】本题考查了角平分线的性质,熟悉相关性质是解题的关键.12.(2021·全国九年级专题练习)如图,在△ABC中,AB=6,AC=8,BC=11,AB的垂直平分线分别交AB,BC于点D、E,AC的垂直平分线分别交AC,BC于点F、G,则△AEG的周长为__.【答案】11.【分析】根据线段垂直平分线的性质可得EA=EB,GA=GC,所以可求出△AEG的周长.【详解】解∵DE是线段AB的垂直平分线,∴EA=EB,同理,GA=GC,∴△AEG的周长=AE+EG+GA=EB+EG+GC=BC=11,故答案为:11.【点睛】本题考查了线段垂直平分线的性质.线段垂直平分线上的点到线段两端点的距离相等.13.(2021·全国八年级专题练习)已知:如图,点P在线段AB外,且P A=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则下列作法正确的是________.①作∠APB的平分线PC交AB于点C②过点P作PC⊥AB于点C且AC=BC③取AB中点C,连接PC④过点P作PC⊥AB,垂足为C【答案】①③④ 【分析】利用判断三角形全等的方法判断四个选项是否成立即可.【详解】解:①利用SAS 判断出△PCA ≌△PCB ,∴CA =CB ,∠PCA =∠PCB =90°,∴点P 在线段AB 的垂直平分线上,故正确; ②过线段外一点作已知线段的垂线,不能保证也平分此条线段,故错误;③利用SSS 判断出△PCA ≌△PCB ,∴∠PCA =∠PCB =90°,∴点P 在线段AB 的垂直平分线上,故正确;④利用HL 判断出△PCA ≌△PCB ,∴CA =CB ,∴点P 在线段AB 的垂直平分线上,故正确;故答案为:①③④.【点睛】此题主要考查了全等三角形的判定,线段垂直平分线的判定,熟练掌握全等三角形的判断方法是解本题的关键.14.(2021·广东八年级期末)在△ABC 中,AB =5,BC =8,AC =6,AD 平分∠BAC ,则S △ABD :S △ACD =___.【答案】5:6【分析】过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,根据角平分线的性质得出DE =DF ,根据三角形的面积公式求出答案即可.【详解】解:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ,∵AD 平分∠BAC ,∴DE =DF ,设DE =DF =R ,∵S △ABD =12AB DE ⨯⨯=152⨯⨯R ,S △ACD =12AC DF ⨯⨯=162R ⨯⨯, ∴S △ABD :S △ACD =5:6,故答案为:5:6.【点睛】本题考查了三角形的面积和角平分线的性质,注意:角平分线上的点到角的两边的距离相等. 15.(2021·四川八年级期末)如图,在Rt ABC 中,90C ∠=︒,利用尺规在BA ,BC 上分别截取BM BN =;分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧在CBA ∠内部交于点E ;作射线BE 交AC 于点F .若2CF =,点H 为线段AB 上的一动点,则FH 的最小值是______.【答案】2【分析】如图,过点F 作FG ⊥AB 于G .根据角平分线的性质定理证明GF =FC =2,利用垂线段最短即可解决问题.【详解】解:如图,过点F 作FG ⊥AB 于G .由作图可知,FB 平分∠ABC ,∵GF ⊥BA ,FC ⊥BC ,∴GF =FC =2,根据垂线段最短可知,HF 的最小值为2,故答案为:2.【点睛】本题考查作图-基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2021·辽宁九年级二模)如图,在Rt ABC 中,90,22,C B PQ ∠∠=︒=︒垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:以点A 为圆心,以适当的长为半径作弧,分别交边AC ,AB 于点D ,E ;分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;作射线AF ,射线AF 与直线PQ 相交于点G ,则AGQ ∠的度数为__________度.【答案】56【分析】根据直角三角形两锐角互余得∠BAC =68°,由角平分线的定义得∠BAG =34°,由线段垂直平分线可得△AQG 是直角三角形,根据直角三角形两锐角互余即可求出∠AGQ .【详解】解:∵△ABC 是直角三角形,∠C =90°,∴∠B +∠BAC =90°,∵∠B =22°,∴∠BAC =90°−∠B =90°−22°=68°,由作法可知,AG 是∠BAC 的平分线,∴∠BAG =12∠BAC =34°,∵PQ 是AB 的垂直平分线,∴△AGQ 是直角三角形,∴∠AGQ +∠BAG =90°,∴∠AGQ =90°−∠BAG =90°−34°=56°,故答案为:56.【点睛】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质等知识,熟知角平分线和中垂线的尺规作法是解题的关键.17.(2021·山东济南市·七年级期末)如图,在ABC 中,120BAC ∠=︒,分别作AC ,AB 两边的垂直平分线PM 、PN ,垂足分别是点M 、N .以下说法正确的是______(填序号).①60P ∠=︒;②EAF B C ∠=∠+∠;③PE PF =;④点P 到点B 和点C 的距离相等.【答案】①②④【分析】根据垂直的定义、四边形内角和等于360°计算,判断①;根据线段垂直平分线的性质得到EC =EA ,FB =F A ,进而得到∠EAC =∠C ,∠F AB =∠B ,经过计算判断②;根据等腰三角形的性质判断③,根据线段垂直平分线的性质判断④.【详解】解:∵PM 垂直平分AC ,PN 垂直平分AB ,∴∠PMA =∠PNA =90°,∠BAC =120°∴∠P =360°-90°-90°-120°=60°,①说法正确;∵∠BAC =120°,∴∠B +∠C =180°-120°=60°,∵PM 垂直平分AC ,PN 垂直平分AB ,∴EC =EA ,FB =F A ,∴∠EAC =∠C ,∠F AB =∠B , ∴∠EAF =∠BAC -∠EAC -∠F AB =∠BAC -(∠B +∠C )=120°-60°=60°,∴ ∠EAF =∠B +∠C ,②说法正确;△ABC 不一定是等腰三角形,∴PE 与PF 的大小无法确定,③说法错误;连接PC 、P A 、PB ,∵PM 垂直平分AC ,PN 垂直平分AB ,∴PC =P A ,PB =P A ,∴PB =PC ,即点P 到点B 和点C 的距离相等,④说法正确,故答案为:①②④.【点睛】本题考查的是线段垂直平分线的性质、三角形内角和定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.18.(2021·四川成都铁路中学八年级期中)已知:△ABC 是三边都不相等的三角形,点P 是三个内角平分线的交点,点O 是三边垂直平分线的交点,当P 、O 同时在不等边△ABC 的内部时,那么∠BOC 和∠BPC 的数量关系是___.【答案】4360BPC ∠-︒【分析】根据三角形角平分线的性质以及三角形内角和定理,即可得到2180BAC BPC ∠=∠-︒;再根据三角形垂直平分线的性质以及三角形内角和定理,即可得到2BOC BAC ∠=∠,进而得出BOC ∠和BPC ∠的数量关系.【详解】解:BP 平分ABC ∠,CP 平分ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠180(=︒-11)22ABC ACB ∠+∠1180()2ABC ACB =︒-∠+∠ 1180(180)2BAC =︒-︒-∠1902BAC =︒+∠,即2180BAC BPC ∠=∠-︒; 如图,连接AO .点O 是这个三角形三边垂直平分线的交点,OA OB OC ∴==,OAB OBA ∴∠=∠,OAC OCA ∠=∠,OBC OCB ∠=∠,1802AOB OAB ∴∠=︒-∠,1802AOC OAC ∠=︒-∠,360()BOC AOB AOC ∴∠=︒-∠+∠360(18021802)OAB OAC =︒-︒-∠+︒-∠,22OAB OAC =∠+∠2BAC =∠2(2180)BPC =∠-︒4360BPC =∠-︒,故答案为:4360BPC ∠-︒.【点睛】本题考查了三角形的垂直平分线与角平分线,熟练掌握三角形的垂直平分线与角平分线的性质是解题的关键.三、解答题(19-22题每题9分,其他每题10分,共66分)19.(2021·山东八年级期末)某地有两所大学和两条相交的公路,如图所示(点M ,N 表示大学,OA ,OB 表示公路)现计划修建一座物资仓库到两所大学的距离相等,到两条公路的距离也相等.请你用尺规确定仓库所在的位置.【答案】作图见解析.【分析】根据题意,分别作AOB ∠的平分线和MN 的垂直平分线即可求得【详解】解:分别作AOB ∠的平分线和MN 的垂直平分线;作图步骤如下:①以O 为圆心,任意长度为半径作弧,交,OA OB 于两点,C D ,分别以,C D 为圆心,以大于12CD 为半径在角的内部分别作弧,交于一点E ,作射线OE ;②分别以,M N 为圆心,以大于12MN 为半径在MN 的两侧分别作弧,交于,F G ,作直线FG ;FG 与OE 的交点P 即为所求如图所示,P 在AOB ∠的平分线和MN 的垂直平分线的交点上,点P 就是仓库应该修建的位置.【点睛】本题考查了角平分线的性质,垂直平分线的性质,以及角平分线和垂直平分线的作图,熟练作图步骤是解题的关键.20.(2021·重庆南开中学七年级期末)如图,在Rt ABC 中,90ACB ∠=︒,点D 在BC 边上,连接AD ,点E 、F 分别为AB 边,AC 边上的点,连接DE 、DF ,使得DA 平分∠EDF ,且DE =DF ,过点D 作DG ⊥AB 于点G .(1)若DF //AB ,求证:AE =DE ;(2)求证:DG =CD .【答案】见详解【分析】(1)先利用平行线性质证得EAD ADF ∠=∠,再利用角平分线的定义证得EDA ADF ∠=∠,利用等量代换可得EDA EAD ∠=∠,即可得到答案AE =DE ;(2)先证AED AFD ≌,得EAD FAD ∠=∠,即可利用角平分线的性质得到答案.【详解】解:(1)∵//DF AB ∴EAD ADF ∠=∠∵DA 平分∠EDF ∴EDA ADF ∠=∠∴EDA EAD ∠=∠∴AE =DE .(2)∵EDA ADF ∠=∠,DE =DF ,AD=AD∴AED AFD ≌∴EAD FAD ∠=∠∵90ACB ∠=︒,DG ⊥AB ∴DG =CD .【点睛】本题考查了平行线的性质、角平分线的性质以及全等的应用,解题关键是利用性质找到角与角之间的关系.21.(2021·福建九年级一模)如图,将ABC 绕点A 按逆时针方向旋转DAC ∠的度数得到AED .(1)尺规作图:确定AED 的顶点E 的位置(保留作图痕迹,不写作法与证明过程);(2)连接AE,DE,设BC的延长线交DE于点G,连接AG.求证:AG平分DGB∠.【答案】(1)作图见解析,(2)证明见解析.【分析】(1)作∠EAB=∠DAC,截取AE=AB即可;(2)作AN⊥DE,AC⊥BC,交ED延长线于N,BG于M,证AN=AM即可.【详解】解:(1) 点E位置如图所示;(2)证明:作AN⊥DE,AC⊥BC,交ED延长线于N,BG于M,由旋转可知AED≌ABC,DE=BC,∴12AEDS DE AN=⋅,12ABCS BC AM=⋅,∴1122DE AN BC AM⋅=⋅,∴AN AM=,∴AG平分DGB∠.【点睛】本题考查了尺规作图和角平分线的判定,解题关键是明确尺规作图方法,熟练运用角平分线的判定证明.22.(2021.江苏八年级期中)如图,ABC中,边AB BC,的垂直平分线交于点P.==.(2)点P是否也在边AC的垂直平分线上?请说明理由.(1)求证:PA PB PC【答案】(1)见解析;(2)在,理由见解析【分析】(1)根据线段的垂直平分线的性质可求得,P A=PB,PB=PC,则P A=PB=PC.(2)根据线段的垂直平分线的性质的逆定理,可得点P在边AC的垂直平分线上.【详解】解:(1)证明:∵边AB、BC的垂直平分线交于点P,∴P A=PB,PB=PC.∴P A=PB=PC.(2)∵P A=PC,∴点P在边AC的垂直平分线上.【点睛】此题主要考查线段垂直平分线的性质定理及逆定理:(1)线段垂直平分线上的点和这条线段的两个端点的距离相等;(2)和一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上.23.(2021·湖南怀化市·八年级期末)如图.在△ABC中,∠C=90 °,∠A=30°.(1)用直尺和圆规作AB的垂直平分线,分别交AB、AC于D、E,交BC的延长线于F,连接EB.(不写作法,保留作图痕迹)(2)求证:EB平分∠ABC.(3)求证:AE=EF.【答案】见解析【分析】(1)先作线段AB的垂直平分线DE,再延长BC即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE,得到答案;(3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC,证得BE=EF,又因为AE= BE,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB ∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE ∴EB 平分∠ABC .(3)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB ∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC ∴BE=EF又∵AE= BE ∴AE=EF 【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形. 24.(2021·石家庄市第四十中学九年级二模)如图,在ABC 中,D 为BC 中点,DE BC ⊥交BAC ∠的平分线AE 于E ,EF AB ⊥于F ,EG AC ⊥交AC 的延长线于G .(1)求证:BF CG =;(2)若5AB =,3AC =,求AF 的长.【答案】(1)见解析;(2)4【分析】(1)连接BE 、EC ,证明Rt BFE △≌Rt CGE △即可;(2)证明Rt AEF Rt AEG △≌△,则AF AG =,继而求得AF 的长【详解】(1)证明:如图,连接BE 、EC ,∵ED BC ⊥,D 为BC 中点,∴BE EC =,∵EF AB ⊥,EG AG ⊥,且AE 平分FAG ∠,∴FE EG =,在Rt BFE △和Rt CGE △中,BE CE EF EG =⎧⎨=⎩,∴Rt BFE △≌Rt CGE △(HL )∴BF CG =. (2)解:在Rt AEF 和Rt AEG 中,AE AE EF EG =⎧⎨=⎩, ∴Rt AEF Rt AEG △≌△(HL ),∴AF AG =,∴2AB AC AF BF AG CG AF +=++-=,∴28AF =,∴4AF =.【点睛】本题考查了角平分线的性质,垂直平分线的性质,直角三角形全等的证明,全等三角形的性质,正确的作出辅助线是解题的关键.25.(2020·湖北)(1)模型:如图1,在ABC 中,AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,求证:::ADB ADC S S AB AC =△△.(2)模型应用:如图2,AD 平分EAC ∠交BC 的延长线于点D ,求证:::AB AC BD CD =.(3)类比应用:如图3,AB 平分DAE ∠,AE AD =,180D E ∠+∠=︒,求证:::BE CD AB AC =.【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析;【分析】(1)由题意得DE=DF,12ADBS AB DE∆=,12ADCS AC DF∆=,即可得出ADBS∆:ADCS∆=AB:AC;(2)在AB上取点E,使得AE=AC,根据题意可证△ACD≌△AED,从而可求出BD DEAB AE=,BD CDAB AD=,即可求解;(3)延长BE至M,使EM=DC,连接AM,根据题意可证△ADC≌△AEM,故而得出AE为∠BAM的角平分线,即AB AM ACBE EM DC==,即可得出答案;【详解】解:(1)∵AD平分∠BAC,DE⊥AB,DE⊥AC,∴DE=DF,∵12ADBS AB DE∆=,12ADCS AC DF∆=,∴ADBS∆:ADCS∆=AB:AC;(2)如图,在AB上取点E,使得AE=AC,连接DE 又∵AD平分∠CAE,∴∠CAD=∠DAE,在△ACD和△AED中,AC AECAD DAEAD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△AED(SAS),∴CD=DE且∠ADC=∠ADE,∴BD DEAB AE=,∴BD CDAB AD=,∴AB:AC=BD:CD;(3)如图延长BE至M,使EM=DC,连接AM,∵∠D+∠AEB=180°,又∵∠AEB+∠AEM=180°,∴∠D=∠AEM,在△ADC与△AEM中,AD AED AEMDC EM=⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△AEM(SAS),∴∠DAC=∠EAM=∠BAE,AC=AM,∴AE为∠BAM的角平分线,故AB AM ACBE EM DC==,∴BE:CD=AB:AC;【点睛】本题考查了全等三角形的判定与性质、角平分线的性质、以及三角形的面积的应用,正确掌握知识点是解题的关键;。
教学课题数学八年级上册第二章——《线段、角的轴对称性》教案课型新授教学目标:1.探索并证明线段垂直平分线的性质定理的逆定理,会用尺规作线段的垂直平分线; 2.能利用所学知识提出问题并解决实际问题;3.经历探索线段的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性教学重点、难点:1、利用线段的轴对称性探索线段垂直平分线的性质定理的逆定理.2、灵活运用线段垂直平分线的性质解决实际问题.教学方法与手段:多媒体教学教学过程:教师活动学生活动设计意图实践探索一在一张薄纸上画一条线段AB,你能找出与线段AB 的端点A、B距离相等的点吗?这样的点有多少个?动手操作,交流发现激发兴趣,点明主题.衔接上一节课,渗透数学“逆向思维”的数学研究策略..实践探索二:如果一个点在一条线段的垂直平分线上,那么这个点到这条线段两端的距离相等.反过来,如果一个点到一条线段的两端的距离相等,那么这个点在这条线段的垂直平分线上吗?如图2-21(1),若点Q在线段AB上,且QA =QB,则Q是线段AB的中点,则点Q在线段AB 的垂直平分线上.1.猜想线段垂直平分线性质定理的逆定理;2.自学课本上点Q在线段上的情形,思考点Q不在线段上时的证明;3.学生证明逆定理.教师提出问题,帮助学生合理猜想,培养学生的逆向思维能力.两个步骤兼顾了“任意性”和“完备性”,让学生感受线段垂直平分线上点的共性,几何画板的一般性图形验证,客观的得到了其是一类点的集合.如图2-21(2),若点Q是线段AB外任意一点,且QA=QB,那么点Q在线段AB的垂直平分线上吗?为什么?通过上述探索,你得到了什么结论?教师利用几何画板验证线段垂直平分线是到线段两端距离相等的点的集合. 4.学生讨论、归纳得到线段垂直平分线性质定理的逆定理,线段垂直平分线是到线段两端距离相等的点的集合实践探索三你能运用实践探索二得到的结论,用尺规画出任一条线段的垂直平分线吗?如果能,说说你作图的依据.课本上用尺规作线段的垂直平分线时,为什么要画“两弧的交点”,而且“半径要大于12 AB”呢?在线段AB所在直线外取一点C,连接AC,用刚学的方法画出AC的垂直平分线l1,与AB的垂直平分线l2交于点O,再连接BC,并作出它的垂直平分线.你发现了什么?得到什么结论?这又是为什么呢?1.学生尝试操作、小组交流;2.小组代表汇报画法,并说明作图依据;3.说明作法中“两弧的交点”“半径要大于12AB”的原因;5.进行延伸作图,观察现象,思考原因.从实践探索二出发,引导学生利用圆规的等距性找到确定线段垂直平分线的两点,强调“两交点”及“半径”,确保作图成功.延伸作图以及图形观察一方面“学以致用”,另一方面为例1的解决作出铺垫.例1 已知:如图2-22,在△ABC中,AB、AC的垂直平分线l1、l2相交于点O.求证:点O 在BC的垂直平分线上. 1.学生结合实践探索三思考;2.尝试证明;在实践探索三的基础上学生开始逐渐学会综合利用性质定A B。
_________________________________.的周,厘米,的垂直平分线..如图,要在公路旁设一个公交车的停车站,停车站应设在什么地方,,边BC的垂直平分线分别交AB、AC于点2.4线段、角的轴对称性(2)课型:新授课主备人:董兰审核人:凌林授课时间:2014.9二次备课【学习目标】1.探索并证明线段垂直平分线的性质定理的逆定理,会用尺规作线段的垂直平分线;2.能利用所学知识提出问题并解决实际问题;3.经历探索线段的轴对称的过程,在“操作——探究——归纳——证明”的过程中培养思考的严谨性和表达的条理性.【学习重点】利用线段的轴对称性探索线段垂直平分线的性质定理的逆定理.【学习难点】灵活运用线段垂直平分线的性质解决实际问题.【预习作业】1.线段的垂直平分线上的点_____________________________________.2.到线段两端距离相等的点,在_________________________________.3.如图.∵QA=QB.∴____________________________.4.到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点5.如图,在△ABC中,分别作AB边、BC边的垂直平分线,两线相交于点P,分别交AB边、BC边于点E、F∵点P是AB边垂直平线上的一点∴_____ =_________ ().同理,PB=______.∴______ = ______(等量代换).∴点P在AC的垂直平分线上.(到线段两端距离相等的点,在这条线段的______________________)∴AB,BC,AC的垂直平分相交于同一点.6.有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处)你能根据图形用符号语言表示你发现的结论吗?在线段的垂直平分线上的点都具有同一个性质而毫无例外;反之,具有这一性质的点都在这条线段的垂直平分线上而无一遗漏。
2.4 线段、角的轴对称性(2)
主备人:周美华 王炜
【教学目标】:
1.进一步探索线段的轴对称性,知道线段的垂直平分线是到线段两点距离相等的点的集合,会用直尺和圆规作线段的垂直平分线;
2.在探索线段轴对称性的过程中,体会分类的数学思想,学会有条理的思考和表达.
【教学重点】:
【教学过程】:
一、复习回顾
垂直平分线的性质
二、探索活动
1、思考:如果一个点在一条线段的垂直平分线上,那么这个点到这条线段两端点的距离相等.反过来,如果一个点到一条线段两端的距离相等,那么这个点在这条线段的垂直平分线上吗?
问题① 命题“如果一个点到线段两端的距离相等,那么这个点在这条线段的垂直平分线上”的条件是什么?结论是什么?
问题② 你能找出到已知线段AB 两端的距离相等的点吗?根据点的位置可以分类吗?
问题③ 如何说明命题是真命题?
定理:到线段两端距离相等的点在线段的垂直平分线上.
几何语言:因为P A =PB
所以点P 在AB 的垂直平分线上
2、如果直线l 是线段AB 的垂直平分线,那么:若点P 在l 上,则P A =PB ;若QA =QB ,则点Q 在l 上.由此,可以说线段的垂直平分线是到线段两端距离相等的点的集合.
操作:
(1)用直尺和圆规作线段AB 的垂直平分线;(课本P 53)
(2)分别作△ABC 的边AB 、AC 的垂直平分线相交于点O .
证明:点O 在BC 的垂直平分线上.
A B P A B C A B
三、例题解析:
例1、已知:如图,∠1=∠2,∠3=∠4,AC 、BD 相交于点E .
求证:AC 是线段BD 的垂直平分线.
练习、如图,在△ABC 中,AD 是高,在线段DC 上取一点E ,使BD =DE ,已知AB +BD =DC . 求证:点E 在线段AC 的垂直平分线上.
例2、直线l 外有点A 、B ,若要在l 上找一点,使这点与点A 、B 的距离相等,这样的点一定能找到吗?请你画图表示各种可能的情况.
例3、如图,已知直线l 及其两侧两点A 、B .
(1)在直线l 上求一点P ,使P A =PB ,并说明理由;
(2)在直线l 上求一点Q ,使l 平分∠AQB ,并说明理由;
(3)能否在直线l 上找一点,使该点到点A 、B 的距离之差的绝对值最大?若能,直接指出该点的位置;若不能,请说明理由.
A B D E C E C B 4321D A l B l A B l B。