河北省东光县第二中学九年级数学下册28.2解直角三角形及其应用教案3(新版)新人教版【精品教案】
- 格式:doc
- 大小:86.51 KB
- 文档页数:3
人教初中数学九年级下册《28-2 解直角三角形及其应用》(教学设计)一. 教材分析《28-2 解直角三角形及其应用》是人教初中数学九年级下册的一章内容。
这一章节主要介绍了解直角三角形的知识和方法,以及直角三角形在实际生活中的应用。
本章内容是学生在学习了三角函数和勾股定理的基础上进行的,是初中数学的重要内容之一。
二. 学情分析学生在学习本章内容时,已经具备了一定的数学基础,如算术、代数和几何知识。
但是,对于解直角三角形的实际应用,可能还比较陌生。
因此,在教学过程中,需要引导学生将理论知识与实际应用相结合,提高学生的应用能力。
三. 教学目标1.知识与技能:使学生掌握解直角三角形的方法,能够运用勾股定理和三角函数解决实际问题。
2.过程与方法:通过小组合作、探究学习,培养学生的团队协作能力和问题解决能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和实践能力。
四. 教学重难点1.重点:解直角三角形的方法和技巧。
2.难点:如何将解直角三角形的知识应用到实际问题中。
五. 教学方法1.情境教学法:通过生活实例,引导学生理解直角三角形的应用。
2.小组合作学习:让学生在小组内进行讨论和实践,提高学生的团队协作能力。
3.探究学习法:引导学生主动探究解直角三角形的方法,培养学生的创新能力。
六. 教学准备1.教学素材:准备相关的生活实例和问题,以便进行情境教学。
2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。
七. 教学过程1.导入(5分钟)通过一个实际问题,如测量旗杆的高度,引出直角三角形和解直角三角形的重要性。
让学生思考如何解决这个问题,激发学生的学习兴趣。
2.呈现(10分钟)讲解解直角三角形的基本方法,如使用勾股定理和三角函数。
通过示例,引导学生理解并掌握这些方法。
3.操练(10分钟)让学生进行一些解直角三角形的练习题,巩固所学知识。
教师可以给予学生一定的指导,帮助学生解决问题。
4.巩固(10分钟)通过一些实际问题,让学生运用解直角三角形的知识解决问题。
28.2 解直角三角形及其应用课题28.2 解直角三角形及其应用(3)授课类型课标依据能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。
教学目标知识与技能1.了解什么是方位角,能准确找到方位角是指哪一个角;2.了解坡角、坡度的概念,知道坡角和坡度的关系;3. 掌握运用解直角三角形有关知识解决关于方位角、坡角的实际问题. 过程与方法经历解直角三角形的实际应用的过程,运用转化思想,把实际问题转化为数学问题来解决,进一步培养学生分析问题、解决问题的能力,渗透数形结合的数学思想和方法.情感态度与价值观渗透理论联系实际的观点,培养学生用数学的意识,感受生活与数学的密不可分.教学重点难点教学重点用三角函数有关知识解决方位角、坡角问题.教学难点学会准确分析问题,并将实际问题转化成数学模型,解决问题.教学师生活动设计意图过程 一、复习引入 问题1:结合上节课学习,谈谈运用解直角三角形知识解决实际问题的一般思路是什么? 二、探究新知 问题2:教材76页例5: 如图,一艘海轮位于灯塔P 的北偏东65方向,距离灯塔80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34方向上的B 处.这时,海轮所在的B 处距离灯塔P 有多远? 思考:1.回顾方位角概念: 题中“一艘海轮位于灯塔P 的北偏东65方向”是什么意思? “位于灯塔P 的南偏东34方向上”呢? 2.尝试画出几何图形,找出已知什么,要求什么?怎么求? (引导学生阅读、思考、尝试画出几何图形,结合图形分析,把实际问题中的已知和求解转化为数学问题中的已知和求解。
) 归纳:运用解直角三角形解决实际问题的一般步骤: (1) 将实际问题转化为数学问题; (2) 选用适当的锐角三角函数求解; (3) 求出数学问题的答案; (4) 得到实际问题的答案。
三、巩固训练 课本77页练习1. 四、补充讲解 坡度与坡角的概念坡度:坡面的铅直高度h 和水平宽度l 的 比叫做坡度(或叫做坡比),一般用i 表示。
28.2 解直角三角形及其应用28.2.1 解直角三角形知识与技能在理解解直角三角形的含义、直角三角形五个元素之间关系的基础上,会运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.过程与方法通过综合运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.情感、态度与价值观在探究学习的过程中,培养学生合作交流的意识,使学生认识到数与形相结合的意义与作用,体会到学好数学知识的作用,并提高学生将数学知识应用于实际的意识,从而体验“从实践中来,到实践中去”的辩证唯物主义思想,激发学生学习数学的兴趣.让学生在学习过程中感受到成功的喜悦,产生后继学习的激情,增强学好数学的信心.重点直角三角形的解法. 难点灵活运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.一、复习回顾师:你还记得勾股定理的内容吗? 学生叙述勾股定理的内容.师:直角三角形的两个锐角之间有什么关系呢? 生:两锐角互余.师:直角三角形中,30°的角所对的直角边与斜边有什么关系? 生:30°的角所对的直角边等于斜边的一半. 二、共同探究,获取新知 1.概念.师:由sin A =ac,你能得到哪些公式?生甲:a =c ·sin A.生乙:c =asin A.师:我们还学习了余弦函数和正切函数,也能得到这些式子的变形.我们知道,在直角三角形中有三个角、三条边共六个元素,能否从已知的元素求出未知的元素呢?教师板书:在直角三角形中,由已知的边角关系,求出未知的边与角,叫做解直角三角形. 2.练习.教师多媒体课件出示:(1)如图(1)和(2),根据图中的数据解直角三角形.(1) (2)师:图(1)中是已知一角和一条直角边解直角三角形的类型,你怎样解决这个问题呢?生1:根据cos 60°=AC AB ,得到AB =ACcos 60°,然后把AC 边的长和60°角的余弦值代入,求出AB 边的长,再用勾股定理求出BC 边的长,∠B 的度数根据直角三角形两锐角互余即可得到.生2:先用直角三角形两锐角互余得到∠B 为30°,然后根据30°的角所对的直角边等于斜边的一半,求出AB 的值,再由sin 60°=BCAB得到BC =AB ·sin 60°,从而得到BC 边的长.师:同学们说出的这几种做法都是对的.下面请同学们看图(2),并解这个直角三角形. 学生思考,计算. 三、例题讲解例1 如图,在Rt △ABC 中,∠C =90°,AC =2,BC =6,解这个直角三角形.解:∵tan A =BC AC =62=3,∴∠A =60°,∠B =90°-∠A =90°-60°=30°, AB =2AC =2 2.例2 如图,在Rt △ABC 中,∠C =90°,∠B =35°,b =20,解这个直角三角形.(结果保留小数点后一位)解:∠A =90°-∠B =90°-35°=55°.∵tan B =ba ,∴a =b tan B =20tan 35°≈28.6.∵sin B =bc ,∴c =b sin B =20sin 35°≈34.9.四、巩固练习1.在△ABC 中,∠C =90°,下列各式中不正确的是( ) A .b =a ·tan B B .a =b ·cos AC .c =b sin BD .c =acos B答案 B2.在Rt △ABC 中,∠C =90°,c =10,b =53,则∠A =________,S △ABC =________.答案 30° 2523五、课堂小结师:本节课,我们学习了什么内容?学生回答.师:你还有什么不懂的地方吗?学生提问,老师解答.本节课在教学过程中,能灵活处理教材,敢于放手让学生通过自主学习、合作探究达到理解并掌握知识的目的,并能运用知识解决问题.在本章开头,我带领学生复习了与解直角三角形有关的知识点,使学生在解决问题时能想到并能熟练运用.在解有特殊角的三角形时有不止一种解法,我鼓励学生勇于发言,给了他们展示自我的机会,锻炼他们表达自己想法的能力,并且增强了他们的自信心.28.2.2应用举例知识与技能使学生掌握仰角、俯角的概念,并会正确运用这些概念和解直角三角形的知识解决一些实际问题.过程与方法让学生体验方程思想和数形结合思想在解直角三角形中的用途.情感、态度与价值观使学生感知本节课与现实生活的密切联系,进一步认识到将数学知识运用于实践的意义.重点将实际问题转化为解直角三角形问题.难点将实际问题中的数量关系如何转化为直角三角形中元素间的关系求解.一、新知讲授1.讲解.师:在实际生活中,解直角三角形有着广泛的应用,例如我们通常遇到的视线、水平线、铅垂线就构成了直角三角形.教师在黑板上作图.师:当我们测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角;在水平线下方的角叫做俯角.注意:(1)仰角和俯角必须是视线与水平线所夹的角,而不是与铅垂线所夹的角;(2)仰角和俯角都是锐角.师:测量仰角、俯角有专门的工具,是测角仪.2.练习新知.教师多媒体课件出示:如图,∠C =∠DEB =90°,FB ∥AC ,从A 看D 的仰角是________;从B 看D 的俯角是________;从A 看B 的________角是________;从D 看B 的________角是________;从B 看A 的________角是________.答案:从A 看D 的仰角是∠2,从B 看D 的俯角是∠FBD ,从A 看B 的仰角是∠BAC ,从D 看B 的仰角是∠3,从B 看A 的俯角是∠1.二、例题讲解例1 2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343 km 的圆形轨道上运行,如图,当组合体运行到地球表面P 点的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与P 点的距离是多少?(地球半径约为6 400 km ,π取3.142,结果取整数)分析:从组合体中能直接看到的地球表面最远点,是视线与地球相切时的切点.如图,本例可以抽象为以地球中心为圆心、地球半径为半径的⊙O 的有关问题:其中点F是组合体的位置,FQ 是⊙O 的切线,切点Q 是从组合体中观测地球时的最远点,PQ ︵的长就是地球表面上P ,Q 两点间的距离.为计算PQ ︵的长需先求出∠POQ(即α)的度数.解:设∠POQ =α,在图中,FQ 是⊙O 的切线,△FOQ 是直角三角形.∵cos α=OQ OF = 6 4006 400+343≈0.9491.∴α≈18.36°, ∴PQ ︵的长为18.36π180×6 400≈18.36×3.142180×6 400≈2 051(km ).由此可知,当组合体在P 点正上方时,从中观测地球表面时的最远点距离P 点约2051 km . 例2 热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m ,这栋楼有多高?(结果取整数)解:如图,α=30°,β=60°,AD =120.∵tan α=BD AD ,tan β=CDAD,∴BD =AD ·tan α=120×tan 30°=120×33=403, CD =AD ·tan β=120×tan 60°=120×3=120 3. ∴BC =BD +CD =403+1203=1603≈277(m ). 因此,这栋楼高约为277 m .例3 如图,一艘海轮位于灯塔P 的北偏东65°方向,距离灯塔80 n mile 的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东34°方向上的B 处.这时,B 处距离灯塔P 有多远?(结果取整数)解:如图,在Rt △APC 中, PC =PA ·cos (90°-65°) =80×cos 25° ≈72.505.在Rt △BPC 中,∠B =34°,∵sin B =PCPB ,∴PB =PC sin B =72.505sin 34°≈130(n mile ).因此,当海轮到达位于灯塔P 的南偏东34°方向时,它距离灯塔P 大约130 n mile . 三、巩固提高1.如图,小雅家(图中点O 处)门前有一条东西走向的公路,现测得有一水塔(图中点A 处)在她家北偏东60°方向500 m 处,那么水塔所在的位置到公路的距离AB 长是( )A .250 mB .250 3 mC .500 33 m D .250 2 m 答案 A2.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60°,已知水平距离BD =10 m ,楼高AB =24 m ,则树CD 的高度为( )A .(24-1033)m B .(24-103) mC .(24-53) mD .9 m答案B四、课堂小结师:本节课,我们学习了什么内容?学生回答.师:你还有什么不懂的地方吗?学生提问,教师解答.解直角三角形的内容是初中阶段数学教学中的重点之一,使学生对所学知识有了更好的巩固,同时让学生体会到数学与实际生活的联系,例题设置具有一定坡度,由浅入深,步步深入.。
人教版数学九年级下册28.2《解直角三角形(3)》教学设计一. 教材分析人教版数学九年级下册28.2《解直角三角形(3)》这一节,是在学生已经掌握了直角三角形的性质,三角函数的概念和应用的基础上进行讲解的。
本节主要让学生了解解直角三角形的实际应用,通过具体例题让学生掌握解直角三角形的方法和技巧,提高学生解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。
但是,解直角三角形的实际应用可能还存在一些困难,需要通过具体的例题来进行引导和讲解。
此外,学生在学习过程中可能对一些解题技巧和方法还不够熟练,需要通过大量的练习来加以巩固。
三. 教学目标1.让学生掌握解直角三角形的方法和技巧。
2.培养学生解决实际问题的能力。
3.提高学生对数学的兴趣和信心。
四. 教学重难点1.解直角三角形的实际应用。
2.解题技巧和方法的掌握。
五. 教学方法1.采用讲练结合的方法,通过具体例题让学生掌握解直角三角形的方法和技巧。
2.通过小组合作交流,让学生在讨论中解决问题,提高学生的合作能力。
3.通过家庭作业的布置,让学生在课后进行巩固和提高。
六. 教学准备1.准备相关的中考真题和模拟题,用于课后作业和巩固。
2.准备PPT,用于讲解和展示例题。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容,让学生思考如何解决这个问题,从而引出解直角三角形的方法。
2.呈现(10分钟)讲解一个具体的例题,让学生了解解直角三角形的方法和技巧。
通过讲解,让学生掌握直角三角形的性质,以及如何运用三角函数来解决问题。
3.操练(10分钟)让学生独立完成一些类似的题目,巩固刚刚学到的知识和技巧。
教师在旁边进行辅导,解答学生的疑问。
4.巩固(10分钟)让学生进行小组合作交流,共同解决一些综合性较强的问题。
通过合作,提高学生的解决问题能力。
5.拓展(10分钟)讲解一些中考真题和模拟题,让学生了解解直角三角形在实际考试中的应用。
师:尝试写出∠A 的三角函数。
生:∠A 的正弦值:sin A=∠A 所对的边斜边= ac∠A 的余弦值:cos A= ∠A 所邻的边斜边= bc∠A 的正切值:tan A=∠A 所对的边邻边= ab师:将 30°、45°、60°角的正弦值、余弦值和正切值填入下表:生:变式1-1 在Rt △ABC 中,∠C =90°,a = 30, b = 20,根据条件解直角三角形.变式1-2 在△ABC 中,∠C =90∘, AB =6, cosA =13,则AC 等于( )A .18B .2C .12D .118变式1-3在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .msin35° B .mcos35° C .m sin35°D .mcos35°变式1-4 如图,在Rt △ABC 中,∠C=90°,∠B=35° ,b=20,解这个直角三角形(结果保留小数点后一位). 变式1-5 如图,太阳光线与水平线成70°角,窗子高AB =2米, 要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不 能直接射入室内,则遮阳板DC 的长度至少是( ) A .2tan70°米 B .2sin70°米 C .2.2tan70°米 D .2.2cos70°米平线下方的叫做俯角。
指南或指北的方向线与目标方向线构成小于900的角,叫做方位角. 师:尝试说出A,B关于坐标原点O的位置?生:点A位于点O北偏东30°位置,点B位于点O南偏西45°位置[多媒体展示]热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)。
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计3一. 教材分析《人教版数学九年级下册28.2《解直角三角形及其应用》》这一章节是在学生已经掌握了锐角三角函数的基础上进行学习的,目的是让学生能够运用解直角三角形的知识解决实际问题。
本章节主要包括解直角三角形的概念、方法及其应用。
通过本章节的学习,学生能够进一步理解和掌握解直角三角形的方法,提高解决实际问题的能力。
二. 学情分析学生在学习本章节之前,已经掌握了锐角三角函数的知识,具备了一定的几何基础。
但是,对于解直角三角形的应用,学生可能还不够熟悉,需要通过实例讲解和练习来提高理解。
同时,学生可能对于实际问题的解决还缺乏一定的思路和方法,需要教师进行引导和指导。
三. 教学目标1.知识与技能:使学生理解和掌握解直角三角形的概念、方法及其应用。
2.过程与方法:通过实例讲解和练习,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的探究精神和合作意识。
四. 教学重难点1.重点:解直角三角形的概念、方法及其应用。
2.难点:如何运用解直角三角形的知识解决实际问题。
五. 教学方法采用讲解法、示例法、练习法、讨论法等教学方法。
通过实例讲解和练习,引导学生掌握解直角三角形的方法,并通过讨论和探究,提高学生解决实际问题的能力。
六. 教学准备1.教具准备:黑板、粉笔、课件等。
2.学具准备:练习本、直尺、三角板等。
七. 教学过程1.导入(5分钟)通过复习锐角三角函数的知识,引导学生回顾已学的三角函数概念,为新课的学习做好铺垫。
2.呈现(10分钟)(1)讲解解直角三角形的概念,介绍解直角三角形的定义及其性质。
(2)讲解解直角三角形的方法,包括勾股定理、三角函数的定义等。
(3)通过示例,演示解直角三角形的具体步骤和应用。
3.操练(10分钟)学生独立完成练习题,巩固所学知识。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)学生分组讨论,总结解直角三角形的方法和技巧。
28.2解直三角形
教学目标
(一)知识与能力:
1、使学生了解方位角的命名特点,能准确把握所指的方位角是指哪一个角
(二)能力目标:
逐步培养学生分析问题、解决问题的能力.
(三)情感目标:
渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.
教学重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.
教学难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决.
教学方法:
学生学法:
教学过程:
1.导入新课
上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决.
2.例题分析
例1.如图,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,
求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米).
分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?
例2.如图,一艘海轮位于灯塔P的北偏东650方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南东340方向上的B处。
这时,海轮所在的B处距离灯塔P有多远(精确到0.01海里)?
引导学生根据示意图,说明本题已知什么,求什么,利用哪个三角形来求解,用正弦、余弦、正切、余切中的哪一
种解较为简便?
解:如图, 在中,
00
=-
PC PA
cos(9065)
80cos25
=⨯
≈
72.8
在中, .
,
因此.当海轮到达位于灯塔P的南偏东340方向时,它距离灯塔P大约130.23海里.
3、巩固练习
(1)上午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).
(2)如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?
(三)总结与扩展
请学生总结:
通过学习两个例题,初步学会把一些实际问题转化为数学问题,通过解直角三角形来解
决,具体说,本节课通过让学生把实际问题转化为数学问题,利用正切或余切解直角三角形,从而把问题解决.
本课涉及到一种重要教学思想:转化思想.
4、布置作业。