人教版数学九年级下册28.2《解直角三角形及其应用》教案1
- 格式:doc
- 大小:66.87 KB
- 文档页数:3
人教版数学九年级下册28.2《解直角三角形及其应用》教学设计1一. 教材分析人教版数学九年级下册28.2《解直角三角形及其应用》是本节课的主要内容。
这部分内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行学习的。
本节课的主要内容有:了解解直角三角形的定义,掌握解直角三角形的方法,以及解直角三角形在实际生活中的应用。
二. 学情分析学生在学习本节课之前,已经掌握了锐角三角函数和直角三角形的性质,对于这部分内容的理解和掌握程度参差不齐。
因此,在教学过程中,需要关注学生的学习情况,对于理解程度较好的学生,可以适当提高教学难度,对于理解程度较差的学生,需要进行个别辅导,帮助其理解和掌握本节课的内容。
三. 教学目标1.了解解直角三角形的定义,掌握解直角三角形的方法。
2.能够运用解直角三角形的方法解决实际问题。
3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.解直角三角形的定义和方法的掌握。
2.解直角三角形在实际生活中的应用。
五. 教学方法采用问题驱动法,通过引导学生发现问题,解决问题,从而掌握解直角三角形的方法和应用。
同时,采用案例分析法,通过分析实际生活中的案例,让学生了解解直角三角形在实际生活中的应用。
六. 教学准备1.PPT课件2.实际案例资料七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾锐角三角函数和直角三角形的性质,为新课的学习做好铺垫。
2.呈现(15分钟)讲解解直角三角形的定义和 methods,结合PPT课件,让学生直观地了解解直角三角形的过程。
3.操练(15分钟)让学生通过实际案例,运用解直角三角形的方法进行计算,巩固所学知识。
教师在此过程中进行个别辅导,帮助学生解决问题。
4.巩固(10分钟)让学生完成练习题,检查学生对解直角三角形方法的掌握程度。
教师对学生的答案进行讲解,纠正错误,巩固所学知识。
5.拓展(10分钟)分析实际生活中的案例,让学生了解解直角三角形在实际生活中的应用。
师:尝试写出∠A 的三角函数。
生:∠A 的正弦值:sin A=∠A 所对的边斜边= ac∠A 的余弦值:cos A= ∠A 所邻的边斜边= bc∠A 的正切值:tan A=∠A 所对的边邻边= ab师:将 30°、45°、60°角的正弦值、余弦值和正切值填入下表:生:变式1-1 在Rt △ABC 中,∠C =90°,a = 30, b = 20,根据条件解直角三角形.变式1-2 在△ABC 中,∠C =90∘, AB =6, cosA =13,则AC 等于( )A .18B .2C .12D .118变式1-3在Rt △ABC 中,斜边AB 的长为m ,∠A =35°,则直角边BC 的长是( ) A .msin35° B .mcos35° C .m sin35°D .mcos35°变式1-4 如图,在Rt △ABC 中,∠C=90°,∠B=35° ,b=20,解这个直角三角形(结果保留小数点后一位). 变式1-5 如图,太阳光线与水平线成70°角,窗子高AB =2米, 要在窗子外面上方0.2米的点D 处安装水平遮阳板DC ,使光线不 能直接射入室内,则遮阳板DC 的长度至少是( ) A .2tan70°米 B .2sin70°米 C .2.2tan70°米 D .2.2cos70°米平线下方的叫做俯角。
指南或指北的方向线与目标方向线构成小于900的角,叫做方位角. 师:尝试说出A,B关于坐标原点O的位置?生:点A位于点O北偏东30°位置,点B位于点O南偏西45°位置[多媒体展示]热气球的探测器显示,从热气球看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1m)。
人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1一. 教材分析《解直角三角形》是九年义务教育课程标准人教版九年级数学下册第28章第2节的一部分。
本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行的。
本节主要让学生了解解直角三角形的意义和方法,学会使用锐角三角函数来解直角三角形,为以后学习三角函数和解其他三角形打下基础。
二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。
但是,对于如何运用锐角三角函数来解直角三角形,他们可能还比较陌生。
因此,在教学过程中,我需要引导学生理解和掌握锐角三角函数在解直角三角形中的应用。
三. 教学目标1.了解解直角三角形的意义和方法。
2.学会使用锐角三角函数来解直角三角形。
3.能够运用解直角三角形的方法解决实际问题。
四. 教学重难点1.重点:解直角三角形的方法和锐角三角函数在解直角三角形中的应用。
2.难点:如何引导学生理解和掌握锐角三角函数在解直角三角形中的应用。
五. 教学方法采用讲授法、引导法、实践法、讨论法等教学方法,引导学生通过自主学习、合作学习、探究学习,从而掌握解直角三角形的方法和锐角三角函数在解直角三角形中的应用。
六. 教学准备1.准备直角三角形的相关图片和实例。
2.准备多媒体教学设备,如投影仪、电脑等。
3.准备相关的练习题和测试题。
七. 教学过程1.导入(5分钟)通过展示一些与直角三角形相关的图片和实例,引导学生回顾直角三角形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)讲解解直角三角形的意义和方法,引导学生理解解直角三角形的重要性。
通过示例,讲解如何使用锐角三角函数来解直角三角形。
3.操练(10分钟)让学生分组进行实践,运用锐角三角函数来解直角三角形。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验他们是否掌握了解直角三角形的方法和锐角三角函数在解直角三角形中的应用。
课题教学目标教学重点教学难点授课类型教具教学步骤28.2.1 解直角三角形授课人知识技能使学生理解直角三角形中五个元素( 直角除外 ) 的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.数学思考通过实际问题的情境,让学生感受到在生活、学习中解直角三角形知识的实际意义.问题解决通过学习解直角三角形,归纳出解直角三角形的两种类型.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的情感态度策略.解直角三角形的意义以及一般方法.选择恰当的边角关系,解直角三角形.新授课课时多媒体教学活动师生活动设计意图如图 28- 2- 4, Rt△ABC 中的关系式 (∠ C=90° ):两锐角的关系:∠A+∠ B= 90°.三边之间的关系:a2+ b2= c2.a b a边角关系: sinA=c,cosA=c,tanA=b.回顾以前所学内容,回顾为本节课的教学内容做好准备 .图28- 2- 4【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为 B ,塔身中心线与垂直中活动 心线的夹角为∠ A ,过点 B 向垂直中心线 一: 引垂线, 垂足为 C ,如图 28- 2- 5.在 Rt 创设 △ ABC 中,∠ C = 90°, BC = 5.2 m ,AB情境 = 54.5 m ,求∠ A 的度数 .图 28- 2- 5导入 师生活动: 教师呈现问题并引导学生结合图形, 观察已知和新课所求角之间的关系, 分析得到通过求∠ A 的正弦来求∠ A 的度数 .1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解? 师生活动: 已知直角三角形的斜边和一条直角边, 求它的锐角的度数,利用锐角的正弦 (或余弦 )的概念直接求解 .问题:在活动一所述的 Rt △ ABC 中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中, 除直角外, 共有五个元素,即三条边和两个锐角. 由直角三角形中的已知元素, 求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法 问题:回想一下, 刚才解直角三角形的过程中,用到了哪些活动知识?你能梳理一下直角三角形各个元素之间的关系吗?二:28- 2- 6,引导学生结合师生活动:如图实践( 直角除外 )之间的关图形,梳理五个元素探究系,学生展示:交流a 2+b 2=c 2(勾股定理 ).(1)三边之间的关系:新知A +∠B = 90° .(2)两锐角之间的关系:∠(3)边角之间的关系:图 28-2- 6a, cosA = b, tanA =a,sinA = c c bsinB = b a b, cosB = , tanB = .c c a问题:从上述问题来看, 在直角三角形中, 知道斜边和一条直角边这两个元素, 可以求出其余的三个元素. 一般地, 已知五个元素 (直角除外 )中的任意两个元素, 可以求其余元素吗?教师给出结论: 在直角三角形中, 知道除直角外的五个元素中的两个元素 (至少有一个是边 ),就可以求出其余三个未知元素 .通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,通过求解,初步体会解直角三角形的内涵,引入课题 .1.有条理地梳理直角三角形五个元素之间的关系,明确各自的作用,便于应用 .2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力 .活动三:开放训练体现应用【应用举例】例1 教材 P73 例 1 如图 28- 2- 7,在 Rt△ABC 中,∠C= 90°, AC= 2,BC=6,解这个直角三角形 .师生活动:学生在教师的引导下,思考如图 28- 2- 7何求出所有未知元素.先让学生找出所有未知元素:∠A,∠ B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径 .【拓展提升】1.涉“斜”选“弦”的策略当已知和所求涉及直角三角形的斜边时,应选择与斜边相关的已知角的正弦、余弦.我们把它叫做涉“斜”(涉及斜边 ) 选“弦” (选正弦、余弦 )的策略 .例 2 滨州中考在 Rt△ABC 中,∠ C= 90°,AB= 10,sinA=3,5通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.进一步训练学生解一般直角三角形的4, tanA=3,则 BC 的长为 (A) 思路和方法,并学会cosA=5 4A.6 B. 7.5 C. 8 D. 12.5 从计算简便的角度2.无“斜”选“切”的策略活动四:课堂总结反思当已知和所求均未涉及到斜边时,应选择与斜边无关的边角关系式——正切,这种方法称之为无“斜”(斜边 )选“切” (正切 )的策略 .例3 在 Rt△ ABC 中,∠ C= 90°,若∠ A= 60°, AC= 20 m,则BC 大约是 (结果精确到 0.1 m)( B)A.34.64 m B. 34.6 m C. 28.3 m D . 17.3 m【达标测评】1.在 Rt△ ABC 中,∠ C= 90°,∠ B= 40°,BC= 3,则 AC= (C)A.3sin40 °B. 3sin50°C.3tan40°D. 3tan50°32.在 Rt△ABC 中,∠ C= 90°,若 AB = 5, sinA=,则 AC 的长为 (B)A.3 B.4 C. 5D. 63.在△ ABC 中,若∠ C= 90°, sinA=1,AB= 2,则△ ABC 的周2长为 __3+ 3__.4.在 Rt△ ABC 中,∠ C= 90°,有两边长分别为 3 和 4,则 sinA3 34 7的值为__5或4或5或4 __.5.如图28-2- 8,在△ ABC 中, BD⊥ AC,选用适当的关系式求解 .通过设置达标测评,进一步巩固所学新知,同时检测学习效果,做到“ 堂堂清”.第 3页(1)求 BD 和 AD 的长;图 28- 2- 8(2)求 tanC 的值 .引导学生从知识和方法两个1.课堂总结:请同学们回顾以下问题:方面总结自己的收获,理清(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?2.布置作业:教材第 77 页习题 28.2 第 1 题 .【知识网络】解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力 .活动提纲挈领,重点突出. 四:课堂总结反思【教学反思】① [授课流程反思]在创设情境中,由一个实际问题引入,自然过渡到直角三角形.在探究新知中,采用启发法、讨论法等教学方法,学生通过讨论、实践形成理论体系,对知识反思教学过程和教师表现,掌握较为牢固 .② [讲授效果反思]进一步提升操作流程和自身解直角三角形是重点,而选择恰当的边角关系则是难点,为了突破此难点,本节课选择了两个例题让学生素质 .探究、讨论、总结出选择边角关系的策略:涉“斜”选“弦”,无“斜”选“切” ,避“除”就“乘”,能“正”不“余”. 因为有这些例题的引导,所以学生对于解直角三角形的两个类型的掌握,应该没有问题,建议把补充练习也安排给成绩中等及以上的学生.③ [师生互动反思]_____________________________________________ _____________________________________________ ④ [习题反思 ]好题题号错题题号。
28.2 解直角三角形〔1〕〔一〕学习目标1、使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3、渗透数形结合的数学思想,培养学生良好的学习习惯. 〔二〕学习重点灵活运用知识点,准确解直角三角形 (三)课前预习1.在△ABC 中,∠C=90°,假设b=2,c=2,那么tanB=________2.在Rt △ABC 中,∠C=90°,sinA=54,AB=10,那么BC=______.3.在△ABC 中,∠C=90°,假设a:b=5:12那么sinA=__________________ . 4. 在直角三角形ABC 中,∠C=90°,∠A=30°,斜边上的高h=1,那么三边的长分别是__ ___________________________5.如图,在Rt △ABC 中,∠C=90°,tanA=, COSB=___________.6.如图,在Rt △ABC 中,∠C=90°,AB=6,AD=2,那么sinA=____;tanB=___________.7、如图在△ABC 中,∠C=900,∠A=300.D 为AC 上一点,AD=10,∠BDC=600,求AB 的长〔四〕疑惑**预习之后,你还有哪些没有弄清的问题,请记下来,课堂上我们共同探讨。
1.在三角形中共有几个元素? 2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢? (1)边角之间关系a b A b a A c b A c a A ====cot ;tan ;cos ;sinCD ABBCb a B a b Bc a B c b B ====cot ;tan ;cos ;sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成.的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)三边之间关系 (3)锐角之间关系∠A+∠B=90°. a 2 +b 2 =c 2(勾股定理)根据直角三角形的___ _____元素〔至少有一个边〕,求出________•其它所有元素的过程,即解直角三角形.以上三点正是解直角三角形的依据.典例分析例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且2 6例2在Rt △ABC 中, ∠B =35o,b=20,解这个三角形.小结“一边一角,如何解直角三角形?〞 随堂练习:第74页练习〔一〕课后作业1、Rt △ABC 中,假设sinA=45,AB=10,那么BC=_____,tanB=______. 2、在△ABC 中,∠C=90°,AC=6,BC=8,那么sinA=________. 3、在△ABC 中,∠C=90°,sinA=35,那么cosA 的值是〔〕A .35B .45C .916.2525D4、在△ABC中,∠C为直角,AC=6,BAC的平分线AD=43,解此直角三角形。
28.2 解直角三角形及其应用
28.2.1 解直角三角形
教学目标
知识与技能
1.使学生理解解直角三角形中五个元素的关系,什么是解直角三角形.
2.会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形. 过程与方法
通过综合运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
情感、态度与价值观
渗透数形结合的数学思想,培养学生综合运用知识的能力和良好的学习习惯.
重点难点
重点
直角三角形的解法.
难点
三角函数在解直角三角形中的灵活运用.
教学过程
一、创设情境,导入新课
在直角三角形中,共有三条边、三个角(六个元素),你能根据所学谈谈它们之间的关系吗?
教师提出问题,引导学生思考,然后小组内讨论、回答.
教师根据学生的回答归纳.
在直角三角形中:
1.三边之间关系:a 2+b 2=c 2(勾股定理)
2.锐角之间关系:∠A +∠B =90°.
3.边角之间关系
正弦函数:sin A =∠A 的对边斜边
余弦函数:cos A =∠A 的邻边斜边
正切函数:tan A =∠A 的对边∠A 的邻边
以上三点是解直角三角形的依据,熟知后运用.
教师提出问题,引导提示学生思考总结(引问:边与边、角与角、边与角之间的关系). 学生尝试总结回答,教师讲评汇总.
二、合作交流,探究新知
探究:在Rt △ABC 中,∠ACB =90°.
(1)若∠A =35°,AB =10,你能求出这个直角三角形中的其他元素吗?
(2)若AB =10,BC =5,你能求出这个直角三角形中的其他元素吗?
(3)若∠A =35°,∠B =55°,你能求出这个直角三角形中的其他元素吗?
(4)在直角三角形中知道几个元素就可以求出其他元素?
(只探讨方法,不解出结果)
归纳:1.在直角三角形的六个元素中,除直角外的五个元素只要知道两个元素(其中至少有一条边),就可以求出其余的三个元素.
2.定义:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.
3.解直角三角形,只有下面两种情况:
(1)已知两条边;(2)已知一条边和一个锐角.
【教学说明】1.教师提出问题引导学生思考分析,并作简要讲评.
2.学生思考回答,注意在解题过程中方法的多样性.
3.教师根据学生回答汇总归纳.
4.学生理解归纳,重点在于理解解直角三角形的方法.
三、运用新知,深化理解
例1 已知在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形.
(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长; (2)若a =6 2,b =6 6,求∠A ,∠B 的度数和边c 的长.
分析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.
解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c
,即c =a cos B =363
2
=24 3,∴b =sin B ·c =12×24 3=12 3; (2)在Rt △ABC 中,∵a =6 2,b =6 6,∴tan A =a b =33
,∴∠A =30°,∴∠B =60°,∴c =2a =12 2.
方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.
例2 一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =12 2,试求CD 的长.
分析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.
解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =12 2,∴BC =AC =12 2 .∵AB ∥CF ,∴BM =BC sin45°=12 2×22
=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM tan60°
=4 3,∴CD =CM
-MD =12-4
3.
方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
例3 如图,在△ABC 中,已知∠C =90°,sin A =37
,D 为边AC 上一点,∠BDC =45°,DC =6.求△ABC 的面积.
分析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解.
解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37
,设BC =3k ,则AB =7k (k >0),在Rt △BCD 中,∵∠BCD =90°,∠BDC =45°,∴∠CBD =∠BDC =45°,∴BC =CD =3k
=6,∴k =2,∴AB =14.在Rt △ABC 中,AC =AB 2-BC 2=142-62=410,∴S △ABC =12
AC ·BC =12
×410×6=1210.即△ABC 的面积是1210. 方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.
四、课堂练习,巩固提高
1.教材P74练习.
2.请同学们完成《探究在线·高效课堂》“随堂测评”内容.
五、反思小结,梳理新知
本节学了哪些内容?你有哪些认识和收获?
1.直角三角形中边与边、角与角、边与角之间的关系(基础).
2.解直角三角形定义.
3.解直角三角形方法(重点).
教师引导学生自我总结,梳理知识结构,结合实例归纳解法,明晰思路.
六、布置作业
1.请同学们完成《探究在线·高效课堂》“课时作业”内容.
2.教材P77习题28.2第1题.
7C 学科网,最大最全的中小学教育资源网站,教学资料详细分类下载!。