2017-2018年中考数学专题复习题 图形的平移(含解析)
- 格式:doc
- 大小:1.38 MB
- 文档页数:12
全国中考数学真题专项强化练习专题:图形的平移1.将图1中的矩形ABCD沿对角线AC剪开,再把△ABC沿着AD方向平移,得到图2中的△A′BC′.(1)在图2中,除△ADC与△C′BA′全等外,请写出其他2组全等三角形;①△AA′E≌△C′CF;②△A′DF≌△CBE;(2)请选择(1)中的一组全等三角形加以证明.解:(1)由图可得,①△AA′E≌△C′CF;②△A′DF≌△CBE;故答案为:△AA′E≌△C′CF;△A′DF≌△CBE;(2)选△AA′E≌△C′CF,证明如下:由平移性质,得AA′=C′C,由矩形性质,得∠A=∠C′,∠AA′E=∠C′CF=90°,∴△AA′E≌△C′CF(ASA).2.已知A(α,0)、B(b,0),点C在y轴上,且由|a+4|+(b﹣2)2=0.=6,求C点的坐标;(1)若S△ABC(2)将C向右平移,使OC平分∠ACB,点P是x轴上B点右边的一动点,PQ⊥OC于Q点.当∠ABC﹣∠BAC=60°时,求∠APQ的度数;(3)在(2)的条件下,将线段AC平移,使经过P点得线段EF,作∠APE的角平分线交OC的延长线于点M.当P点在x轴上运动时,求∠M﹣∠ABC的值.解:(1)设C(0,m).∵|a+4|+(b﹣2)2=0,又∵|a+4|≥0,(b﹣2)2≥0,∴a+4=0,b﹣2=0,∴a=﹣4,b=2,∴A(﹣4,0),B(2,0),∵S=6,△ABC∴•6•|m|=6,∴m=±2∴C(0,2)或(0,﹣2).(2)∵∠COB=∠CAO+∠ACB,又∵∠COB=180°﹣∠ABC﹣∠ACB∴2∠COB=180°+∠BAC﹣∠ABC,∠ABC﹣∠BAC=60°∴∠COB=60°,∴∠APQ=30°.(3)在△OMP中,∠M+∠MOP+∠MPO=180°,∠M+∠MPO=120°∵EF∥AC,∴∠BAC=∠EPx,∴∠MPO=90°﹣∠BAC,∠BAC=∠ABC﹣60°∴∠MPO=120°﹣∠ABC∴∠M+120°﹣∠ABC=120°,∴∠M﹣∠ABC=03.操作与探究:对数轴上的任意一点P.①作出点N使得N和P表示的数互为相反数,再把N对应的点向右平移1个单位,得到点P的对应点P′.我们称P′是P的N变换点;②把P点向右平移1个单位,得到点M,作出点P′′使得P′′和M表示的数互为相反数,我们称P′′是P的M变换点.(1)如图,若点P表示的数是﹣4,则P的N变换点P′表示的数是5;(2)若P的M变换点P′′表示的数是2,则点P表示的数是﹣3;(3)若P′,P′′分别为P的N变换点和M变换点,且OP′=2OP′′,求点P表示的数.解:(1)如图,由题意点P′表示的数为5,故答案为5.(2)由题意点M表示的数是﹣2,点P表示的数为﹣3,故答案为﹣3.(3)设点P表示的数为x,则点P′表示的数为﹣x+1,点P″表示的数为﹣x﹣1,由题意得|﹣x+1|=2|﹣x﹣1|,解之得x=﹣或x=﹣3,∴点P表示的数为﹣或﹣3.4.(1)如图1,已知MN∥PQ,B在MN上,D在PQ上,点E在两平行线之间,求证:∠BED=∠PDE+∠MBE;(2)如图2,已知MN∥PQ,B在MN上,C在PQ上,A在B的左侧,D在C的右侧,DE平分∠ADC,BE平分∠ABC,直线DE、BE交于点E,∠CBN=100°.①若∠ADQ=130°,求∠BED的度数;②将线段AD沿DC方向平移,使得点D在点C的左侧,其他条件不变,如图3所示.若∠ADQ=n°,则∠BED的度数是220°﹣n°度(用关于n的代数式表示).解:(1)如图1中,作EH∥PQ.∵EH∥PQ,PQ∥MN,∴EH∥MN,∴∠PDE=∠DEH,∠MBE=∠BEH,∴∠DEB=∠DEH+∠BEH=∠PDE+∠MBE.(2)①如图2中,∵∠CBN=100°,∴∠MBC=80°,∵BE平分∠MBC,∴∠MBE=∠MBC=40°,∵∠ADQ=130°,∴∠PDA=50°,∵ED平分∠PDA,∴∠PDE=∠PDA=25°,∴∠BED=∠PDE+∠MBE=25°+40°=65°.②如图3中,∵∠ADQ=n°,ED平分∠ADC,∴∠CDE=∠ADQ=n°,∴∠PDE=180°﹣n°,∵∠ABE=40°,∴∠BED=∠PDE+∠ABE=180°﹣n°+40°=220°﹣n°.故答案为220°﹣n°.5.已知AB∥CD.(1)如图1,EOF是直线AB、CD间的一条折线,猜想∠1、∠2、∠3的数量关系,并说明理由;(2)如图2,若点C在点D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DF所在直线交于点E,若∠ADC=α,∠ABC=β,求∠BED的度数(用含有α、β的式子表示);(3)在(2)的前提下将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,若∠ADC=α,∠ABC=β,求∠BED的度数(用含有α、β的式子表示).解:(1)如图1,过O作OM∥AB,∵AB∥CD,∴AB∥CD∥0M,∴∠1=∠EOM,∠3=∠FOM,∵∠EOF=∠EOM+∠FOM,∴∠2=∠1+∠3,(2)如图2,过E作EN∥AB,则EN∥AB∥CD,∴∠BEN=∠ABE,∠DEN=∠CDE∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠EBC=∠ABC,∠ADE=∠CDE=∠ADC,∴∠BED=∠ABE+∠CDE=α+β,答:∠BED=α+β,(3)如图3,过E作EP∥AB,则EP∥AB∥CD,∴∠PED=∠EDC,∠PEB+∠ABE=180°,∵BE平分∠ABC,DE平分∠ADC,∴∠ABE=∠EBC=∠ABC,∠ADE=∠CDE=∠ADC,∴∠BED=∠PED+∠PEB=α+(180°﹣β)=α﹣β+180°,答:∠BED=α﹣β+180°.6.如图1,已知直线a∥b,点A、E在直线a上,点B、F在直线b上,∠ABC=100°,BD平分∠ABC交直线a于点D,线段EF在线段AB的左侧.若将线段EF沿射线AD的方向平移,在平移的过程中BD所在的直线与EF所在的直线交于点P.试探索∠1的度数与∠EPB的度数有怎样的关系?为了解决以上问题,我们不妨从EF的某些特殊位置研究,最后再进行一般化.【特殊化】(1)如图2,当∠1=40°,且点P在直线a、b之间时,求∠EPB的度数;(2)当∠1=70°时,求∠EPB的度数;【一般化】(3)当∠1=n°时,求∠EPB的度数.(直接用含n的代数式表示)解:(1)∵BD平分∠ABC,∴∠ABD=∠DBC=∠ABC=50°,∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;解:(1)如图2,作PG∥a,∴∠EPG=∠EFC=40°∵a∥b∴PG∥b∴∠GPB+∠CBD=180°,又∵BD是∠ABC平分线,且∠ABC=100°,∴∠GPB=180°﹣2(1)∠ABC=130°∴∠EPB=∠EPG+∠GPB=170°,(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当n>50°时,交点P在直线a上方,∠EPB=n﹣50°,交点P在直线a、b之间,∠EPB=230°﹣n交点P在直线b下方,∠EPB=n﹣50°,②当n<50°时,交点P在直线a上方,∠EPB=50°﹣n交点P在直线a、b之间,∠EPB=130°+n交点P在直线b下方,∠EPB=50°﹣n.7.如图,已知射线CB∥OA,∠C=∠OAB=100°,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.(1)求∠EOB的度数.(直接写出结果,无需解答过程)∠EOB=40°(2)若在OC右侧左右平行移动AB,那么∠OBC:∠OFC的值是否随之发生变化?若变化,请找出变化规律;若不变,请求出这个比值.(3)在OC右侧左右平行移动AB的过程中,是否存在使∠OEC=∠OBA的情况?若存在,请直接写出∠OEC度数;若不存在,请说明理由.解:(1)∵∠FOB=∠AOB,∴OB平分∠AOF,又∵OE平分∠COF,∴∠EOB=∠EOF+∠FOB=∠COA=×80°=40°;故答案为:40°;(2)不变因为∠FOB=∠AOB所以∠AOB=∠FOA,因为CB∥OA所以∠OBC=∠AOB,∠OFC=∠FOA所以∠OBC=∠OFC,即∠OBC:∠OFC=;(3)存在,∠OEC=60°8.图,在方格纸内将△ABC经过一次平移后得到△A'B'C′,图中标出了点B的对应点B′.利用网格点和直尺,完成下列各题:(1)补全△A′B'C’;(2)画出BC边长的高线AE;(3)连接AA′,BB′,则这两条线段之间的关系是平行且相等;(4)点Q为格点(点Q不与点B重合),且△ACQ的面积等于△ABC的面积,则图中满足要求的Q点共有7个.解:(1)如图所示,△A′B'C'即为所求;(2)如图所示,AE即为所求;(3)由平移可得,AA′,BB′这两条线段之间的关系是平行且相等;故答案为:平行且相等;(4)如图所示,满足要求的Q点共有7个,故答案为:7.9.综合与实践操作发现如图,在平面直角坐标系中,已知线段AB两端点的坐标分别为A(2,6),B(5,2),点M的坐标为(﹣3,6),将线段AB沿AM方向平移,平移的距离为AM的长度.(1)画出AB平移后的线段MN,直接写出点B对应点N的坐标;(2)连接MA,NB,AN,已知AN平分∠MAB,求证:∠MNA=∠BNA;拓展探索(3)若点P为线段AB上一动点(不含端点),连接PM,PN,试猜想∠AMP,∠MPN 和∠BNP之间的关系,并说明理由.解:(1)所作线段MN如图所示.点N的坐标为(0,2).(2)证明:根据平移的性质,可知,MA∥NB,MN∥AB,∴∠BNA=∠MAN,∠MNA=∠BAN,∵AN平分∠MAB,∴∠MAN=∠BAN,∴∠MNA=∠BNA.(3)结论:∠AMP+∠BNP=∠MPN.理由如下:如图,过点P作PH∥MA交MN于点H,又∵MA∥NB,∴MA∥HP∥NB,∴∠AMP=∠MPH,∠BNP=∠NPH,∴∠AMP+∠BNP=∠MPH+∠NPH=∠MPN.10.如图,已知点A(6,0),B(8,5),将线段OA平移至CB,点D(x,0)在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.(1)求对角线AC的长;(2)△ODC与△ABD的面积分别记为S1,S2,设S=S1﹣S2,求S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等,如果存在,请求出x的值(或取值范围);如果不存在,请说明理由.解:(1)由题意知,将线段OA平移至CB,∴四边形OABC为平行四边形,又∵A(6,0),B(8,5),∴点C(2,5).过点C作CE⊥OA于E,在Rt△CEA中,AC===;(2)∵点D的坐标为(x,0),若点D在线段OA上,即当0<x<6时,S1=S△ODC =,S2=S△AED=,∴S=S1﹣S2=5x﹣15,若点D在OA的延长线上,即当x>6时,S1=S△ODC =,S2=S△AED=,∴S=S1﹣S2=15,由上可得,S=,∵S△DBC==15,当0<x<6时,S△DBC=S时,x=6(与A重合,不合题意,舍去);当x>6时,S△DBC=S,点D在OA延长线上的任意一点处都可满足条件,∴点D所在位置为D(x,0)(x>6).11.如图,方格纸中的每个小正方形的边长都是1,三角形ABC三个顶点与方格纸中小正方形的顶点重合,请在方格纸中分别画出符合要求的图形,具体要求如下:(1)在图①中平移三角形ABC,点A移动到点P,画出平移后的三角形PMN;(2)在图②中将三角形ABC三个顶点的横、纵坐标都减去2,画出得到的三角形A1B1C1;(3)在图③中建立适当的平面直角坐标系,且A点的坐标为(0,2),C点的坐标为(1,5).解:(1)如图①所示;(2)如图②所示:(3)如图③所示:12.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,得到A,B的对应点C,D,连接AC,BD,CD.(1)直接写出点C,D的坐标,求出四边形ABDC的面积;(2)在x轴上是否存在一点F,使得三角形DFC的面积是三角形DFB面积的2倍,若存在,请求出点F的坐标;若不存在,请说明理由.解:(1)C(0,2),D(4,2)S四边形ABDC=AB•OC=4×2=8;(2)存在,当BF=CD时,三角形DFC的面积是三角形DFB面积的2倍.∵C(0,2),D(4,2),∴CD=4,BF=CD=2.∵B(3,0),∴F(1,0)或(5,0).13.如图,在平面直角坐标系中,已知△ABC,点A的坐标是(4,0),点B的坐标是(2,3),点C在x轴的负半轴上,且AC=6.(1)直接写出点C的坐标;(2)在y轴上是否存在点P,使得S△POB =S△ABC若存在,求出点P的坐标;若不存在,请说明理由;(3)把点C往上平移3个单位得到点H,作射线CH,连接BH,点M在射线CH上运动(不与点C、H重合).试探究∠HBM,∠BMA,∠MAC之间的数量关系,并证明你的结论.解:(1)∵A(4,0),∴OA=4,∵AC=6,∴OC=2,∴C(﹣2,0).(2)设P(0,m),由题意:•|m|•2=××6×3,解得m=±6,∴P(0,6)或(0,﹣6).(3)①当点M在点H的上方时,∠MAC=∠AMB+∠HBM.理由:设AM交BH于J.∵BH∥AC,∴∠CAM=∠HJM,∵∠HJM=∠AMB+∠HBM,∴∠MAC=∠AMB+∠HBM.②当点M在线段CH上(不与C,H重合)时,∠AMB=∠CAM+∠HBM.理由:作MK ∥HB .∵HB ∥AC ,∴MK ∥AC ,∴∠HBM =∠BMK ,∠CAM =∠KMA ,∴∠AMB =∠BMK +∠AMK =∠CAM +∠HBM .14.已知点A 在平面直角坐标系中第一象限内,将线段AO 平移至线段BC ,其中点A 与点B 对应.(1)如图1,若A (1,3),B (3,0),连接AB ,AC ,在坐标轴上存在一点D ,使得S △AOD =2S △ABC ,求点D 的坐标;(2)如图2,若∠AOB =60°,点P 为y 轴上一动点(点P 不与原点重合),请直接写出∠CPO 与∠BCP 之间的数量关系(不用证明).解:(1)由线段平移,A (1,3)平移到B (3,0),即向右平移2个单位,再向下平移3个单位,点O (0,0)平移后的坐标为(2,﹣3),可得出C (2,﹣3),所以S △ABC =,∴S=9,而△AOD的高是1,△AOD∴△AOD的底为18.∴D(6,0)或D(﹣6,0)或(0,﹣18)或(0,18);(2)延长BC交y轴于E点,利用OA∥BC及∠AOB=60°,∴∠AOY=∠BEY=30°,再用三角形的内角和为180°,分三种情况可求:①当P在y轴的正半轴上时:∠BCP=∠CPO+30°.②当P在y轴的负半轴上时:ⅰ:若P在E点上方(含与E点重合)时,∠BCP+∠CPO=210°.ⅱ:若P在E点下方时,∠BCP=∠CPO+150°.综合可得:∠CPO与∠BCP的数量关系是:∠BCP=∠CPO+30°或∠BCP+∠CPO=210°或∠BCP=∠CPO+150°.15.先阅读然后解决问题:【阅读】如图(1),在▱ABCD中,过点D作DE⊥AB于点E沿DE线将△DEA剪切下来,并平移△DEA,使其拼接在△CE′B处这样,原来ABCD就变成一个矩形EE′CD.【问题解决】如图(2),将△ABC通过剪切和拼接,得到一个矩形.要求:(1)剪切线用实线,拼接图用虚线;(2)说明剪下的图形是怎样运动拼接的;(3)加注必要的字母,拼接后的非重合字母在原字母的右上角标注“′”,如:E′解:如图,矩形EGG′E′即为所求.。
中考数学几何图形的变换历年真题解析几何图形的变换是中考数学中的重要内容,涉及平移、旋转、翻转等多种变换方式。
通过对历年真题的解析,我们可以更好地理解和掌握这些变换的方法和应用。
下面将对数学中考几何图形的变换部分进行详细解析。
一、平移变换平移变换是指将一个图形在平面上沿着一定方向移动一定的距离,保持图形形状和大小不变。
在中考中,常常要求计算平移后的图形坐标或者确定平移向量的特征等。
例题1:已知点A(3,4),将点A沿向量(2,-3)平移,记平移后的点为B。
求点B的坐标。
解析:根据平移的定义和向量的性质,我们知道平移后点的坐标等于原来点的坐标加上平移向量的坐标。
所以,点B的坐标为(3+2, 4-3),即B(5,1)。
例题2:如图,平行四边形ABCD经过平移变换得到新的平行四边形A'B'C'D',其中AB=3cm,CB=4cm,平移向量为v,求平移向量v的坐标。
解析:首先,我们可以利用平行四边形的性质推导出平移向量v的坐标与平行四边形的对应边的向量相等。
由于AB在变换前和变换后分别与A'B'、B'C'平行,所以v的坐标等于AB的坐标,即v=(3, 0)。
二、旋转变换旋转变换是指将一个图形绕着一定的旋转中心按一定的角度旋转。
在中考中,常常要求计算旋转后的图形坐标或者确定旋转角度的特征等。
例题3:如图,A、B、C三点在平面内,点A经过逆时针旋转90°得到点B,点B经过逆时针旋转90°得到点C,求点C的坐标。
解析:根据旋转的性质,我们可以得出旋转90°后,点的坐标分别等于原来点的y坐标、-x坐标。
所以,点C的坐标为(-2, 3)。
例题4:如图,正方形ABCD绕顶点A顺时针旋转90°得到新图形,求旋转后点C的坐标。
解析:根据旋转的性质,我们可以将旋转90°看作将原点逆时针旋转90°。
因此,旋转后点C的坐标为(-1, 1)。
考点三十三:图形的平移1、定义把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同,图形的这种移动叫做平移变换,简称平移。
2、性质(1)平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动(2)连接各组对应点的线段平行(或在同一直线上)且相等。
3.确定一个平移运动的条件是:平移的方向和距离4.平移的规则:图形上的每一个点都沿同一个方向移动相同的距离.5.画平移图形,必须找出平移方向和距离,其依据是平移的性质.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x ++=在同一坐标系内的图象大致为( )A .B .C .D .【答案】D【解析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线02b x a =->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.2.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A.2mn B.(m+n)2C.(m-n)2D.m2-n2【答案】C【解析】解:由题意可得,正方形的边长为(m+n),故正方形的面积为(m+n)1.又∵原矩形的面积为4mn,∴中间空的部分的面积=(m+n)1-4mn=(m-n)1.故选C.3.如图,一个斜边长为10cm的红色三角形纸片,一个斜边长为6cm的蓝色三角形纸片,一张黄色的正方形纸片,拼成一个直角三角形,则红、蓝两张纸片的面积之和是()A.60cm2B.50cm2C.40cm2D.30cm2【答案】D【解析】标注字母,根据两直线平行,同位角相等可得∠B=∠AED,然后求出△ADE和△EFB相似,根据相似三角形对应边成比例求出53DEBF=,即53EFBF=,设BF=3a,表示出EF=5a,再表示出BC、AC,利用勾股定理列出方程求出a的值,再根据红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积计算即可得解.【详解】解:如图,∵正方形的边DE∥CF,∴∠B=∠AED,∵∠ADE=∠EFB=90°,∴△ADE∽△EFB,∴10563 DE AEBF BE===,∴53 EFBF=,设BF=3a,则EF=5a,∴BC=3a+5a=8a,AC=8a×53=403a,在Rt△ABC中,AC1+BC1=AB1,即(403a)1+(8a)1=(10+6)1,解得a1=18 17,红、蓝两张纸片的面积之和=12×403a×8a-(5a)1,=1603a1-15a1,=853a1,=853×1817,=30cm1.故选D.【点睛】本题考查根据相似三角形的性质求出直角三角形的两直角边,利用红、蓝两张纸片的面积之和等于大三角形的面积减去正方形的面积求解是关键.4.不等式5+2x <1的解集在数轴上表示正确的是( ).A.B.C.D.【答案】C【解析】先解不等式得到x<-1,根据数轴表示数的方法得到解集在-1的左边.【详解】5+1x<1,移项得1x<-4,系数化为1得x<-1.故选C.【点睛】本题考查了在数轴上表示不等式的解集:先求出不等式组的解集,然后根据数轴表示数的方法把对应的未知数的取值范围通过画区间的方法表示出来,等号时用实心,不等时用空心.5.如图,A、B两点在双曲线y=4x上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.5 D.6【答案】D【解析】欲求S1+S1,只要求出过A、B两点向x轴、y轴作垂线段与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=4x的系数k,由此即可求出S1+S1.【详解】∵点A 、B 是双曲线y=4x上的点,分别经过A 、B 两点向x 轴、y 轴作垂线段, 则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S 1+S 1=4+4-1×1=2.故选D .6.关于x 的一元二次方程x 2+2x+k+1=0的两个实根x 1,x 2,满足x 1+x 2﹣x 1x 2<﹣1,则k 的取值范围在数轴上表示为( )A .B .C .D . 【答案】D【解析】试题分析:根据根的判别式和根与系数的关系列出不等式,求出解集.解:∵关于x 的一元二次方程x 2+2x+k+1=0有两个实根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x 1+x 2=﹣2,x 1•x 2=k+1,∴﹣2﹣(k+1)<﹣1,解得k >﹣2,不等式组的解集为﹣2<k≤0,在数轴上表示为:,故选D .点评:本题考查了根的判别式、根与系数的关系,在数轴上找到公共部分是解题的关键.7.如图,等腰直角三角形ABC 位于第一象限,2AB AC ==,直角顶点A 在直线y x =上,其中点A 的横坐标为1,且两条直角边AB ,AC 分别平行于x 轴、y 轴,若反比例函数k y x=的图象与ABC △有交点,则k 的取值范围是( ).A .12k <<B .13k ≤≤C .14k ≤<D .14k ≤≤【解析】设直线y=x 与BC 交于E 点,分别过A 、E 两点作x 轴的垂线,垂足为D 、F ,则A (1,1),而AB=AC=2,则B (3,1),△ABC 为等腰直角三角形,E 为BC 的中点,由中点坐标公式求E 点坐标,当双曲线与△ABC 有唯一交点时,这个交点分别为A 、E ,由此可求出k 的取值范围.解:∵2AC BC ==,90CAB ∠=︒.()1,1A .又∵y x =过点A ,交BC 于点E ,∴2EF ED ==, ∴()2,2E ,∴14k ≤≤.故选D.8.如图,A 、B 、C 是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC 的值为( )A .12B .1C .33D .3【答案】B【解析】连接BC ,由网格求出AB ,BC ,AC 的长,利用勾股定理的逆定理得到△ABC 为等腰直角三角形,即可求出所求.【详解】如图,连接BC ,由网格可得AB=BC=5,AC=10,即AB 2+BC 2=AC 2,∴△ABC 为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B .本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.9.甲、乙、丙三家超市为了促销同一种定价为m元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A.甲B.乙C.丙D.都一样【答案】B【解析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论.【详解】解:降价后三家超市的售价是:甲为(1-20%)2m=0.64m,乙为(1-40%)m=0.6m,丙为(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此时顾客要购买这种商品最划算应到的超市是乙.故选:B.【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小.10.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c【答案】C【解析】首先根据数轴可以得到a、b、c的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可.【详解】解:通过数轴得到a<0,c<0,b>0,|a|<|b|<|c|,∴a+b>0,c﹣b<0∴|a+b|﹣|c﹣b|=a+b﹣b+c=a+c,故答案为a+c.故选A.二、填空题(本题包括8个小题)11.如图所示是一组有规律的图案,第l个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中的基础图形个数为_______ (用含n的式子表示).【答案】3n+1【解析】试题分析:由图可知每个图案一次增加3个基本图形,第一个图案有4个基本图形,则第n个图案的基础图形有4+3(n-1)=3n+1个考点:规律型12.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.【答案】1 9【解析】首先根据题意画出树状图,由树状图求得所有等可能的结果与两次都摸到红球的情况,然后利用概率公式求解即可求得答案.注意此题属于放回实验.【详解】画树状图如下:由树状图可知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次都摸到红球的概率是19,故答案为19.【点睛】此题考查的是用列表法或树状图法求概率的知识.注意画树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.13.如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是_____________.【答案】5245 1【解析】如图所示:①当AP=AE=1时,∵∠BAD=90°,∴△AEP是等腰直角三角形,∴底边252②当PE=AE=1时,∵BE=AB﹣AE=8﹣1=322PE BE,∴底边AP=22AB PB +=2284+=45;③当PA=PE 时,底边AE=1;综上所述:等腰三角形AEP 的对边长为52或45或1;故答案为52或45或1.14.如图,在△ABC 中,∠B=40°,∠C=45°,AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,则∠DAE=______.【答案】10°【解析】根据线段的垂直平分线得出AD=BD ,AE=CE ,推出∠B=∠BA D ,∠C=∠CAE,求出∠BAD+∠CAE 的度数即可得到答案.【详解】∵点D 、E 分别是AB 、AC 边的垂直平分线与BC 的交点,∴AD=BD,AE=CE ,∴∠B=∠BAD,∠C=∠CAE,∵∠B=40°,∠C=45°,∴∠B+∠C=85°,∴∠BAD+∠CAE=85°,∴∠DAE=∠BAC -(∠BAD+∠CAE)=180°-85°-85°=10°,故答案为10°【点睛】本题主要考查对等腰三角形的性质,三角形的内角和定理,线段的垂直平分线的性质等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.15.不等式组5243x x +>⎧⎨-≥⎩的最小整数解是_____. 【答案】-1【解析】分析:先求出每个不等式的解集,再求出不等式组的解集,即可得出答案.详解:5243x x +⎧⎨-≥⎩>①② . ∵解不等式①得:x >-3,解不等式②得:x≤1,∴不等式组的解集为-3<x≤1,∴不等式组的最小整数解是-1,故答案为:-1.点睛:本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集得出不等式组的解集是解此题的关键.16.A 、B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h 的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离y(km)与时间t(h)的关系如图所示,则甲出发_____小时后和乙相遇.【答案】165【解析】由图象得出解析式后联立方程组解答即可.【详解】由图象可得:y 甲=4t (0≤t≤5);y 乙=()()2112916(24)t t t t <⎧-≤≤⎨-≤⎩; 由方程组4916y t y t ⎧⎨-⎩==,解得t=165. 故答案为165. 【点睛】此题考查一次函数的应用,关键是由图象得出解析式解答.17.若正六边形的内切圆半径为2,则其外接圆半径为__________. 43【解析】根据题意画出草图,可得OG=2,60OAB ∠=︒,因此利用三角函数便可计算的外接圆半径OA.【详解】解:如图,连接OA 、OB ,作OG AB ⊥于G ; 则2OG =,∵六边形ABCDEF 正六边形, ∴OAB 是等边三角形, ∴60OAB ∠=︒,∴43sin603OG OA ===︒ ∴正六边形的内切圆半径为2,则其外接圆半径为433. 故答案为43. 【点睛】本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.18.如图,正方形ABCD 和正方形OEFG 中, 点A 和点F 的坐标分别为 (3,2),(-1,-1),则两个正方形的位似中心的坐标是_________.【答案】(1,0);(﹣5,﹣2).【解析】本题主要考查位似变换中对应点的坐标的变化规律.因而本题应分两种情况讨论,一种是当E 和C 是对应顶点,G 和A 是对应顶点;另一种是A 和E 是对应顶点,C 和G 是对应顶点. 【详解】∵正方形ABCD 和正方形OEFG 中A 和点F 的坐标分别为(3,2),(-1,-1), ∴E(-1,0)、G (0,-1)、D (5,2)、B (3,0)、C (5,0),(1)当E 和C 是对应顶点,G 和A 是对应顶点时,位似中心就是EC 与AG 的交点, 设AG 所在直线的解析式为y=kx+b (k≠0),∴231k b b =+⎧⎨-=⎩,解得11b k =-⎧⎨=⎩.∴此函数的解析式为y=x-1,与EC 的交点坐标是(1,0);(2)当A 和E 是对应顶点,C 和G 是对应顶点时,位似中心就是AE 与CG 的交点, 设AE 所在直线的解析式为y=kx+b (k≠0),320k b k b +=⎧⎨-+=⎩,解得1212k b ⎧=⎪⎪⎨⎪=⎪⎩, 故此一次函数的解析式为1122y x =+…①, 同理,设CG 所在直线的解析式为y=kx+b (k≠0),501k b b +=⎧⎨=-⎩,解得151k b ⎧=⎪⎨⎪=-⎩, 故此直线的解析式为115y x =-…② 联立①②得1122115y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩解得52x y =-⎧⎨=-⎩,故AE 与CG 的交点坐标是(-5,-2).故答案为:(1,0)、(-5,-2). 三、解答题(本题包括8个小题)19.如图,在△ABC 中,∠B=∠C=40°,点D 、点E 分别从点B 、点C 同时出发,在线段BC 上作等速运动,到达C 点、B 点后运动停止.求证:△ABE≌△ACD;若AB =BE ,求∠DAE 的度数; 拓展:若△ABD 的外心在其内部时,求∠BDA 的取值范围.【答案】(1)证明见解析;(2)40︒;拓展:5090BDA ︒<∠<︒【解析】(1)由题意得BD=CE ,得出BE=CD ,证出AB=AC ,由SAS 证明△ABE≌△ACD 即可;(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD ,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE 的度数; 拓展:对△ABD 的外心位置进行推理,即可得出结论.【详解】(1)证明:∵点D 、点E 分别从点B 、点C 同时出发,在线段BC 上作等速运动, ∴BD=CE,∴BC -BD=BC-CE ,即BE=CD , ∵∠B=∠C=40°, ∴AB=AC,在△ABE 和△ACD 中,AB AC B C BE CD =⎧⎪∠∠⎨⎪=⎩=, ∴△ABE≌△ACD(SAS );(2)解:∵∠B=∠C=40°,AB=BE , ∴∠BEA=∠E AB=12(180°-40°)=70°, ∵BE=CD,AB=AC , ∴AC=CD, ∴∠ADC=∠DAC=12(180°-40°)=70°, ∴∠DAE=180°-∠ADC -∠BEA=180°-70°-70°=40°; 拓展:解:若△ABD 的外心在其内部时,则△ABD 是锐角三角形. ∴∠BAD=140°-∠BDA<90°. ∴∠BDA>50°, 又∵∠BDA<90°, ∴50°<∠BDA<90°. 【点睛】本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.20.如图,两座建筑物的水平距离BC 为60m .从C 点测得A 点的仰角α为53° ,从A 点测得D 点的俯角β为37° ,求两座建筑物的高度(参考数据:3433437,37 37, 534 53?35)55453sin cos tan sin cos tan ≈≈≈≈≈≈,,,【答案】建筑物AB 的高度为80m .建筑物CD 的高度为35m .【解析】分析:过点D 作DE⊥AB 于于E ,则DE=BC=60m .在Rt△ABC 中,求出AB .在Rt△ADE 中求出AE 即可解决问题.详解:过点D 作DE⊥AB 于于E ,则DE=BC=60m ,在Rt△ABC 中,tan53°=60AB AB BC ∴,=43,∴AB=80(m ). 在Rt△ADE 中,tan37°=34AE DE ∴,=60AE ,∴AE=45(m ), ∴BE=CD=AB﹣AE=35(m ).答:两座建筑物的高度分别为80m 和35m .点睛:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理; 看法 频数 频率 赞成 5 无所谓 0.1 反对400.8(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.【答案】(1)50;(2)见解析;(3)2400.【解析】(1)用反对的频数除以反对的频率得到调查的总人数;(2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;(3)根据题意列式计算即可.【详解】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;故答案为:50;(2)无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成 5 0.1无所谓 5 0.1反对40 0.8统计图为:(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.如图,抛物线2y ax 2ax c =-+(a≠0)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G .求抛物线的解析式;抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长;在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似?若存在,求出此时m 的值,并直接判断△PCM 的形状;若不存在,请说明理由.【答案】(1)抛物线的解析式为248y x x 433=-++;(2)PM=24m 4m 3-+(0<m <3);(3)存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为2316或1,△PCM 为直角三角形或等腰三角形. 【解析】(1)将A (3,0),C (0,4)代入2y ax 2ax c =-+,运用待定系数法即可求出抛物线的解析式.(2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,从而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长.(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.【详解】解:(1)∵抛物线2y ax 2ax c =-+(a≠0)经过点A (3,0),点C (0,4),∴,解得4a {3c 4=-=. ∴抛物线的解析式为248y x x 433=-++. (2)设直线AC 的解析式为y=kx+b , ∵A(3,0),点C (0,4),∴3k b 0{b 4+==,解得4k {3b 4=-=.∴直线AC 的解析式为4y x 43=-+. ∵点M 的横坐标为m ,点M 在AC 上, ∴M 点的坐标为(m ,4m 43-+). ∵点P 的横坐标为m ,点P 在抛物线248y x x 433=-++上, ∴点P 的坐标为(m ,248m m 433-++). ∴PM=PE-ME=(248m m 433-++)-(4m 43-+)=24m 4m 3-+.∴PM=24m 4m 3-+(0<m <3).(3)在(2)的条件下,连接PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下: 由题意,可得AE=3﹣m ,EM=4m 43-+,CF=m ,PF=248m m 4433-++-=248m m 33-+, 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况: ①若△PFC∽△AEM,则PF :AE=FC :EM ,即(248m m 33-+):(3-m )=m :(4m 43-+), ∵m≠0且m≠3,∴m=2316. ∵△PFC∽△AEM,∴∠PCF=∠AME. ∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF 中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°. ∴△PCM 为直角三角形.②若△CFP∽△AEM,则CF :AE=PF :EM ,即m :(3-m )=(248m m 33-+):(4m 43-+), ∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM. ∴△PCM 为等腰三角形.综上所述,存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为2316或1,△PCM 为直角三角形或等腰三角形.23.如图,已知AC 和BD 相交于点O ,且AB∥DC,OA=OB . 求证:OC=OD .【答案】证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO . 试题解析:证明:∵AB∥CD ∴∠A=∠D ∠B=∠C ∵OA=OB ∴∠A=∠B ∴∠C =∠D ∴OC=OD考点:等腰三角形的性质与判定,平行线的性质24.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B 两种型号的挖掘机,已知3台A 型和5台B 型挖掘机同时施工一小时挖土165立方米;4台A 型和7台B 型挖掘机同时施工一小时挖土225立方米.每台A 型挖掘机一小时的施工费用为300元,每台B 型挖掘机一小时的施工费用为180元.分别求每台A 型, B 型挖掘机一小时挖土多少立方米?若不同数量的A 型和B 型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【答案】(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米;(2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用. 详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得43004180W m =⨯+⨯ ()124808640m m -=+, 因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩,又因为12m m ≠-,解得6m ≠,所以79m ≤≤. 所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台; 方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台; 方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800>,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.25.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元? 【答案】(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.【解析】(1)设第一批饮料进货单价为x 元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;(2)设销售单价为m 元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.【详解】(1)设第一批饮料进货单价为x 元,则:1600600032x x ⨯=+ 解得:8x =经检验:8x =是分式方程的解 答:第一批饮料进货单价为8元. (2)设销售单价为m 元,则:()()8200106001200m m -⋅+-⋅≥,化简得:()()2861012m m -+-≥, 解得:11m ≥,答:销售单价至少为11元.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.26.为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45 b良好 a 0.3合格105 0.35不合格60 c(1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【答案】(1)300人(2)b=0.15,c=0.2;(3)1 6【解析】分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案;(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.详解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.点睛:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A.1 9B.14C.16D.13【答案】A【解析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是19,故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.2.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<4【答案】B【解析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,∴40120mm-⎧⎨-⎩>①,<②解不等式①得,m>1,解不等式②得,m>12所以,不等式组的解集是m>1,即m的取值范围是m>1.故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.如图,已知O的周长等于6cmπ,则它的内接正六边形ABCDEF的面积是()A.93B.273C.273D.273【答案】C【解析】过点O作OH⊥AB于点H,连接OA,OB,由⊙O的周长等于6πcm,可得⊙O的半径,又由圆的内接多边形的性质可得∠AOB=60°,即可证明△AOB是等边三角形,根据等边三角形的性质可求出OH的长,根据S正六边形ABCDEF=6S△OAB即可得出答案.【详解】过点O作OH⊥AB于点H,连接OA,OB,设⊙O的半径为r,∵⊙O的周长等于6πcm,∴2πr=6π,解得:r=3,∴⊙O的半径为3cm,即OA=3cm,∵六边形ABCDEF是正六边形,∴∠AOB=16×360°=60°,OA=OB,∴△OAB是等边三角形,∴AB=OA=3cm,∵OH⊥AB,∴AH=12 AB,∴AB=OA=3cm,∴AH=32cm,OH=22OA AH=33cm,∴S正六边形ABCDEF=6S△OAB=6×12×3×33=273(cm2).故选C. 【点睛】此题考查了正多边形与圆的性质.此题难度适中,注意掌握数形结合思想的应用.4.一、单选题如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .125【答案】B 【解析】根据角平分线的定义推出△ECF 为直角三角形,然后根据勾股定理即可求得CE 2+CF 2=EF 2,进而可求出CE 2+CF 2的值.【详解】解:∵CE 平分∠ACB,CF 平分∠ACD, ∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°, ∴△EFC 为直角三角形,又∵EF∥BC,CE 平分∠ACB,CF 平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠M CF ,∴CM=EM=MF=5,EF=10,由勾股定理可知CE 2+CF 2=EF 2=1.故选:B .【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF 为直角三角形.5.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A .正方体B .球C .圆锥D .圆柱体【答案】D 【解析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.6.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是()A.6(m﹣n)B.3(m+n)C.4n D.4m【答案】D【解析】解:设小长方形的宽为a,长为b,则有b=n-3a,阴影部分的周长:2(m-b)+2(m-3a)+2n=2m-2b+2m-6a+2n=4m-2(n-3a)-6a+2n=4m-2n+6a-6a+2n=4m.故选D.7.在同一平面直角坐标系中,一次函数y=kx﹣2k和二次函数y=﹣kx2+2x﹣4(k是常数且k≠0)的图象可能是()A.B.C.D.【答案】C【解析】根据一次函数与二次函数的图象的性质,求出k的取值范围,再逐项判断即可.【详解】解:A、由一次函数图象可知,k>0,∴﹣k<0,∴二次函数的图象开口应该向下,故A选项不合题意;。
中考数学几何图形的运动历年真题解析近年来,中考数学考题中关于几何图形的运动题目频繁出现,这类题目考察的是学生对几何图形平移、旋转和翻折等基本运动的理解和应用能力。
本文将针对历年中考数学真题中的几何图形运动题目,进行详细解析和讲解,帮助同学们更好地理解与掌握这一类型题目的解题思路和方法。
1. 平移运动题平移运动是指几何图形在平面上沿着指定的方向移动一段距离,保持图形的大小、形状和方向不变。
中考中的平移运动题通常要求根据给定的要求进行平移,并求出移动后的图形的坐标或面积等。
【例题解析】已知平面上三角形ABC的顶点坐标分别为A(1,2)、B(3,6)、C(5,4),将三角形ABC向左移动2个单位长度,求移动后的三角形的顶点坐标。
解析:将三角形ABC向左移动2个单位长度,即将每个顶点的x坐标减去2。
则移动后的三角形的顶点坐标为A'(1-2,2)=(0,2)、B'(3-2,6)=(1,6)、C'(5-2,4)=(3,4)。
因此,移动后的三角形的顶点坐标为A'(0,2)、B'(1,6)、C'(3,4)。
2. 旋转运动题旋转运动是指几何图形绕一个固定点或轴旋转一定角度,保持图形的大小和形状不变。
中考中的旋转运动题通常要求根据给定的条件进行旋转,并求出旋转后的图形的坐标或面积等。
【例题解析】已知平面上点A(2,-1)关于坐标原点O进行顺时针旋转90°,求旋转后点A'的坐标。
解析:点A绕坐标原点O进行顺时针旋转90°后,新点A'的坐标与原点A的y坐标和x坐标互换,并将新的x坐标取反。
即点A'的坐标为(-(-1), 2)=(1, 2)。
因此,旋转后点A'的坐标为(1, 2)。
3. 翻折运动题翻折运动是指几何图形绕一个固定的轴线进行对称变换,使得图形的每个点与轴线的连线都垂直分割成两部分,且两部分的长度相等。
中考中的翻折运动题通常要求根据给定的条件进行翻折,并求出翻折后的图形的坐标或面积等。
中考数学图形的运动与变换历年真题解析近年来,中考数学试卷中涉及图形的运动与变换的题目逐渐增多,并且在试卷中的分值也较为重要。
为了帮助同学们更好地理解和掌握这一知识点,本文将通过对历年中考数学试题进行解析,对图形的运动与变换进行详细讲解,希望能够为同学们的复习提供一些参考。
一、平面图形的平移变换平移变换是指将图形保持形状和大小不变,沿着平行于原来位置的直线方向移动。
在中考数学试题中,要求同学们根据给定的图形和平移向量进行平移变换,并且求出变换后的图形位置。
例如,2018年某市中考数学试卷上的一道题目:已知图形A的顶点坐标分别为A(1,3),B(4,3),C(4,1),D(1,1),若图形A向右平移5个单位,向下平移3个单位后得到图形A',则A'的坐标分别为()。
解析:根据题目中给出的图形A的顶点坐标和平移向量,我们可以计算出图形A向右平移5个单位,向下平移3个单位后的新坐标。
具体计算方法如下:A点向右平移5个单位,新坐标为(1+5,3)=(6,3);B点向右平移5个单位,新坐标为(4+5,3)=(9,3);C点向右平移5个单位,新坐标为(4+5,1)=(9,1);D点向右平移5个单位,新坐标为(1+5,1)=(6,1);将上述计算结果再向下平移3个单位,得到最终的结果。
因此,图形A'的顶点坐标分别为A'(6,3),B'(9,3),C'(9,1),D'(6,1)。
答案为A'的坐标分别为(6,3),(9,3),(9,1),(6,1)。
二、平面图形的旋转变换旋转变换是指将图形绕着一定的旋转中心按照一定的角度旋转。
在中考数学试题中,要求同学们根据给定的图形和旋转角度,求出变换后的图形。
例如,2017年某市中考数学试卷上的一道题目:已知正方形ABCD的边长为5cm,将正方形按顺时针方向绕点A旋转90度得到正方形A'B'C'D',则AD'的长为()。
专题38 图形的平移、翻折、旋转及点的运动图形的平移、翻折、旋转及点的运动是初中数学图形的几种基本运动形式,是初中数学的重要内容之一.这类问题常常要运用“动”的思路去观察、分析、推理、猜想、探究相关图形的位置变化情况或图形的有关性质,对提高数学思维能力与发展空间观念有重要作用,也是近年的中考试题的一个热点.图形的平移、翻折、旋转有一个重要性质:任何图形经过平移、翻折、旋转后,除图形的位置发生变化外,图形的形状、大小保持不变.这个性质在解决图形运动的有关问题中常用.【例1】(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB=ABAE=2.【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=12∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=12AD=12AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=12∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB=ABAE=2.故答案为:2.【例2】(2020•静安区一模)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为.【分析】如图,连接BD.设BC=2a.在Rt△BEF中,求出EF,BF即可解决问题.【解答】解:如图,连接BD.设BC=2a.∵四边形ABC都是菱形,∴AB=BC=CD=AD=2a,∠A=∠C=60°,∴△BDC是等边三角形,∵DE=EC=a,∴BE⊥CD,∴BE=√BC2−EC2=√3a,∵AB∥CD,BE⊥CD,∴BE⊥AB,∴∠EBF=90°,设AF=EF=x,在Rt△EFB中,则有x2=(2a﹣x)2+(√3a)2,∴x =7a 4, ∴AF =EF =7a 4,BF =AB ﹣AF =a 4, ∴cos ∠EFB =BF EF =a 47a 4=17, 故答案为17. 【例3】(2020•闵行区一模)如图,在等腰△ABC 中,AB =AC =4,BC =6,点D 在底边BC 上,且∠DAC =∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .【分析】只要证明△ABD ∽△MBE ,得AB BM =BD BE ,只要求出BM 、BD 即可解决问题. 【解答】解:∵AB =AC ,∴∠ABC =∠C ,∵∠DAC =∠ACD ,∴∠DAC =∠ABC ,∵∠C =∠C ,∴△CAD ∽△CBA ,∴CA CB=CD AC , ∴46=CD 4, ∴CD =83,BD =BC ﹣CD =103,∵∠DAM =∠DAC =∠DBA ,∠ADM =∠ADB ,∴△ADM ∽△BDA ,∴AD BD =DM DA ,即83103=DM 83,∴DM =3215,MB =BD ﹣DM =65,∵∠ABM =∠C =∠MED ,∴A 、B 、E 、D 四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴ABBM =BDBE,∴BE=BM⋅DBAB=1.故答案为:1.1.(2020•青浦区一模)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是cm.【分析】根据已知条件得到AE=DF=BE=CF,求得四边形AEFD是矩形,得到EF=AD,∠AEN=∠BEN=90°,根据折叠的性质得到BN=AB,根据直角三角形的性质得到∠BNE=30°,于是得到EN=√32BN=5√32,即可得到结论.【解答】解:如图,∵在矩形纸片ABCD中,点E、F分别是边AB、CD的中点,∴AE=DF=BE=CF,∴四边形AEFD是矩形,∴EF=AD,∠AEN=∠BEN=90°,∵折叠矩形纸片ABCD,折痕BM交AD边于点M,∴BN=AB,∵BE=12AB,∴BE=12BN,∴∠BNE=30°,∵AB=5cm,∴EN =√32BN =5√32, ∴EF ≥EN 时,点A 恰好落在线段EF 上,即AD ≥5√32, ∴边AD 的长至少是5√32, 故答案为:5√32.2.(2020•杨浦区一模)在Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边BC 翻折,点A 落在点A 1处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1EF 为直角三角形时,那么a = .【分析】当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,根据对称的性质和平行线可得:A 1C =A 1E =4,根据直角三角形斜边中线的性质得:BC =2A 1B =8,最后利用勾股定理可得AB 的长;②当∠A 1FE =90°时,如图2,证明△ABC 是等腰直角三角形,可得AB =AC =4.【解答】解:当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,∵△A 1BC 与△ABC 关于BC 所在直线对称,∴A 1C =AC =4,∠ACB =∠A 1CB ,∵点D ,E 分别为AC ,BC 的中点,∴D 、E 是△ABC 的中位线,∴DE ∥AB ,∴∠CDE =∠MAN =90°,∴∠CDE =∠A 1EF ,∴AC ∥A 1E ,∴∠ACB =∠A 1EC ,∴∠A 1CB =∠A 1EC ,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB=√82−42=4√3;②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4√3或4;故答案为:4√3或4;3.(2020•崇明区一模)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.【分析】分两种情形分别求解,作DF ⊥AB 于F ,连接AA ′.想办法求出AE ,利用等腰直角三角形的性质求出AA ′即可.【解答】解:如图,作DF ⊥AB 于F ,连接AA ′.在Rt △ACB 中,BC =√AB 2−AC 2=6,∵∠DAF =∠BAC ,∠AFD =∠C =90°,∴△AFD ∽△ACB ,∴DF BC =AD AB =AF AC , ∴DF 6=410=AF 8,∴DF =125,AF =165,∵A ′E ⊥AB ,∴∠AEA ′=90°,由翻折不变性可知:∠AED =45°,∴EF =DF =125, ∴AE =A ′E =125+165=285,∴AA ′=28√25, 如图,作DF ⊥AB 于F ,当 EA ′⊥AB 时,同法可得AE =165−125=45,AA ′=√2AE =4√25.故答案为28√25或4√25. 4.(2020•闵行区一模)已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tan ∠BAE = .【分析】由正方形ABCD 中四个内角为直角,四条边相等,求出BC 与DC 的长,利用勾股定理求出BD 的长,由旋转的性质可求BE 的长,即可求解.【解答】解;如图,∵正方形ABCD ,∴∠ABC =∠C =90°,在Rt △BCD 中,DC =BC =2,根据勾股定理得:BD =√AD 2+AB 2=√4+4=2√2,∵将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,∴BE =BD =2√2,∴tan ∠BAE =BE AB =2√22=√2, 故答案为:√2.5.(2020•徐汇区一模)如图,在矩形ABCD 中,AB =3,AD =4,将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',点A 的对应点A '在对角线AC 上,点C 、D 分别与点C '、D '对应,A ′D '与边BC 交于点E ,那么BE 的长是 .【分析】如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,由勾股定理可求AC =5,由面积法可求BF =125,由勾股定理可求AF =95,由旋转的性质可得AB =BA ',∠BAD =∠BA 'D '=90°,可求AA '=75,由等腰三角形的性质可求HC 的长,通过证明△EHC ∽△ABC ,可得BC AC =HC EC ,可求EC 的长,即可求解.【解答】解:如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,∵AB =3,AD =4,∠ABC =90°,∴AC =√AB2+BC 2=√9+16=5, ∵S △ABC =12AB ×BC =12AC ×BF ,∴3×4=5BF ,∴BF =125∴AF =√AB 2−BF 2=√9−14425=95, ∵将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',∴AB =BA ',∠BAD =∠BA 'D '=90°,且BF ⊥AC ,∴∠BAC =∠BA 'A ,AF =A 'F =95,∠BA 'A +∠EA 'C =90°,∴A 'C =AC ﹣AA '=75,∵∠BA 'A +∠EA 'C =90°,∠BAA '+∠ACB =90°,∴∠ACB =∠EA 'C ,∴A 'E =EC ,且EH ⊥AC ,∴A 'H =HC =12A 'C =710, ∵∠ACB =∠ECH ,∠ABC =∠EHC =90°,∴△EHC ∽△ABC ,∴BC AC=HC EC ∴45=710EC∴EC =78,∴BE =BC ﹣EC =4−78=258, 故答案为:258.6.(2020•普陀区一模)如图,在Rt △ABC 中,∠C =90°,AC =5,sin B =513,点P 为边BC 上一点,PC=3,将△ABC 绕点P 旋转得到△A 'B 'C '(点A 、B 、C 分别与点A '、B '、C '对应),使B 'C '∥AB ,边A 'C '与边AB 交于点G ,那么A 'G 的长等于 .【分析】如图,作PH ⊥AB 于H .利用相似三角形的性质求出PH ,再证明四边形PHGC ′是矩形即可解决问题.【解答】解:如图,作PH ⊥AB 于H .在Rt △ABC 中,∠C =90°,AC =5,sin B =513,∴AC AB =513,∴AB =13,BC =√AB 2−AC 2=√132−52=12,∵PC =3,∴PB =9,∵∠BPH ∽△BAC ,∴PH AC =PB AB , ∴PH 5=913,∴PH =4513, ∵AB ∥B ′C ′,∴∠HGC ′=∠C ′=∠PHG =90°,∴四边形PHGC ′是矩形,∴CG ′=PH =4513, ∴A ′G =5−4513=2013, 故答案为2013.7.(2020•奉贤区一模)如图,已知矩形ABCD (AB >BC ),将矩形ABCD 绕点B 顺时针旋转90°,点A 、D 分别落在点E 、F 处,连接DF ,如果点G 是DF 的中点,那么∠BEG 的正切值是 .【分析】连接BD ,BF ,EG .利用四点共圆证明∠BEG =∠BFD =45°即可.【解答】解:连接BD ,BF ,EG .由题意:BD =BF ,∠DBF =90°,∵DG =GF ,∴BG ⊥DF ,∴∠BGF =∠BEF =90°,∴∴B ,G ,E ,F 四点共圆,∠BEG=∠BFD=45°,∴∠BEG的正切值是1.故答案为1.8.(2020•嘉定区一模)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距离为.【分析】如图,过点C作CE⊥A'B',由锐角三角函数可求AC=6,由旋转的性质可得AC=A'C=6,∠A'=∠BAC,即可求A'E的长,由等腰三角形的性质可求AA'的长.【解答】解:如图,过点C作CE⊥A'B',∵在△ABC中,∠ACB=90°,AB=10,cos∠BAC=3 5,∴AC=6,∵把△ABC绕着点C按照顺时针的方向旋转,∴AC=A'C=6,∠A'=∠BAC,∵cos∠A'=cos∠BAC=A′EA′C=35,∴A'E=18 5,∵AC=A'C,CE⊥A'B',∴AA '=2A 'E =365, 故答案我:365.9.(2020•金山区一模)如图,在Rt △ABC 中,∠ABC =90°,AB =2,BC =4,点P 在边BC 上,联结AP ,将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,点B 的对应点是点B ′,则BB ′的长等于 .【分析】如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,由勾股定理可求AC 的长,由旋转的性质可求AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,通过证明△ABP ∽△CBA ,可得∠P AB =∠C ,可得CE =AE ,由勾股定理可求CE ,BE 的长,由相似三角形的性质可求B 'D ,BD 的长,即可求解.【解答】解:如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,∵∠ABC =90°,AB =2,BC =4,∴AC =√AB 2+BC 2=√16+4=2√5,∵点M 是AC 中点,∴AM =√5,∵将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,∴AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,∵AP 2=AB 2+PB 2,∴PB =1,∵BA PB =2=BC AB ,且∠ABP =∠ABC =90°, ∴△ABP ∽△CBA ,∴∠C =∠CAE ,∴CE =AE ,∵AE 2=AB 2+BE 2,∴CE 2=4+(4﹣CE )2,∴CE =AE =52,∴BE =32,∵B 'D ∥BC ,∴△AB 'D ∽△AEB ,∴AB′AE =AD AB =B′D BE, ∴252=AD 2=B′D32, ∴AD =85,B 'D =65, ∴BD =25,∴BB '=√B′D2+BD 2=√3625+425=2√105, 故答案为:2√105. 10.(2020•松江区一模)如图,矩形ABCD 中,AD =1,AB =k ,将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,联结AD ′,分别交边CD ,A ′B 于E 、F ,如果AE =√2D ′F ,那么k = .【分析】由矩形的性质和旋转的性质可求AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,通过证明△ADE ∽△F A 'D ',可得AD A′F =DE A′D′=AE D′F ,可求DE ,A 'F 的长,通过证明△A 'D 'F ∽△CEF ,由相似三角形的性质可求解.【解答】解:∵将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,∴AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,∴∠A 'D 'F =∠FEC =∠DEA ,且∠D =∠A '=90°,∴△ADE ∽△F A 'D ',∴AD A′F =DE A′D′=AE D′F ,且AE =√2D ′F ,∴DE =√2A 'D '=√2,A 'F =1√2AD =√22, ∵∠A '=∠DCF =90°,∠A 'FD '=∠EFC ,∴△A 'D 'F ∽△CEF ,∴EC A′D′=FCA′F , ∴k−√21=k−1−√22√22∴k =√2+1,故答案为:√2+1.11.(2019•浦东新区二模)如图,已知在△ABC 中,AB =3,AC =2,∠A =45o ,将这个三角形绕点B 旋转,使点A 落在射线AC 上的点A 1处,点C 落在点C 1处,那么AC 1= .【分析】连接AC 1,由旋转的性质先证△ABA 1为等腰直角三角形,再证△AA 1C 1为直角三角形,利用勾股定理可求AC 1的长度.【解答】解:如图,连接AC 1,由旋转知,△ABC ≌△A 1BC 1,∴AB =A 1B =3,AC =A 1C 1=2,∠CAB =∠C 1A 1B =45°,∴∠CAB =∠CA 1B =45°,∴△ABA 1为等腰直角三角形,∠AA 1C 1=∠CA 1B +∠C 1A 1B =90°,在等腰直角三角形ABA 1中,AA 1=√2AB =3√2,在Rt △AA 1C 1中,AC1=√AA12+A1C12=√(3√2)2+22=√22,故答案为:√22.12.(2019•松江区二模)如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上.直线AC交DE于点F,那么CF的长为.【分析】由题意,可得BD=AB=10,tan D=tan∠A=BCAC=34,所以CD=4,在Rt△FCD中,∠DCF=90°,tan D=CFCD=34,即CF4=34,可得CF=3.【解答】解:∵如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.∴AB=√62+82=10,tan∠A=BCAC=34,∵将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上,直线AC交DE于点F,∴BD=AB=10,∠D=∠A,∴CD=BD﹣BC=10﹣6=4,在Rt△FCD中,∠DCF=90°,∴tan D=CFCD=34,即CF4=34,∴CF=3.故答案为:3.13.(2019•长宁区二模)如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点C旋转,点A、B的对应点分别是点A'、B',若点B'恰好在线段AA'的延长线上,则AA'的长等于.【分析】由旋转的性质可得AC=A'C=5,AB=A'B'=5,BC=B'C=8,由等腰三角形的性质可得AF=A'F,由勾股定理列出方程组,可求AF的长,即可求AA'的长.【解答】解:如图,过点C作CF⊥AA'于点F,∵旋转∴AC=A'C=5,AB=A'B'=5,BC=B'C=8∵CF⊥AA',∴AF=A'F在Rt△AFC中,AC2=AF2+CF2,在Rt△CFB'中,B'C2=B'F2+CF2,∴B'C2﹣AC2=B'F2﹣AF2,∴64﹣25=(5+AF)2﹣AF2,∴AF =75∴AA '=145故答案为:14514.(2019•奉贤区二模)如图,矩形ABCD ,AD =a ,将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,顶点A 、D 、C 分别与点E 、F 、G 对应(点D 与点F 不重合).如果点D 、E 、F 在同一条直线上,那么线段DF 的长是 .(用含a 的代数式表示)【分析】连接BD ,证明Rt △EDB ≌Rt △CBD ,可得DE =BC =AD =a ,因为EF =AD =a ,根据DF =DE +EF 即可得出DF 的长.【解答】解:如图,连接BD ,∵将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,且D 、E 、F 在同一条直线上,∴∠DEB =∠C =90°,BE =AB =CD ,∵DB =BD ,∴Rt △EDB ≌Rt △CBD (HL ),∴DE =BC =AD =a ,∵EF =AD =a ,∴DF =DE +EF =a +a =2a .故答案为:2a .15.(2019•青浦区二模)如图,在矩形ABCD 中,AB =3,E 为AD 的中点,F 为CD 上一点,且DF =2CF ,沿BE 将△ABE 翻折,如果点A 恰好落在BF 上,则AD = .【分析】连接EF,则可证明△EA′F≌△EDF,从而根据BF=BA′+A′F,得出BF的长,在Rt△BCF 中,利用勾股定理可求出BC,即得AD的长度.【解答】解:连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,DF=2CF=2,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,{EA′=ED,EF=EF∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=2,∴BF=BA′+A′F=AB+DF=3+2=5,在Rt△BCF中,BC=√BF2−CF2=√52−12=2√6.∴AD=BC=2√6.故答案为2√616.(2019•虹口区二模)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【分析】由DG =3,CD =6可知△CDG 的三角函数关系,由△CDG 分别与△A 'EG ,△B 'FC 相似,可求得CG ,CB ',由勾股定理△CFB '可求得BF 长度.【解答】解:∵△CDG ∽△A 'EG ,A 'E =4∴A 'G =2∴B 'G =4由勾股定理可知CG '=3√5则CB '=3√5−4由△CDG ∽△CFB '设BF =xCB′B′F =GD CD∴3√5−4x =36解得x =6√5−8故答案为6√5−817.(2019•杨浦区二模)如图,点M 、N 分别在∠AOB 的边OA 、OB 上,将∠AOB 沿直线MN 翻折,设点O 落在点P 处,如果当OM =4,ON =3时,点O 、P 的距离为4,那么折痕MN 的长为 .【分析】由折叠的性质可得MN ⊥OP ,EO =EP =2,由勾股定理可求ME ,NE 的长,即可求MN 的长.【解答】解:设MN 与OP 交于点E ,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,ME=√OM2−OE2=2√3在Rt△ONE中,NE=√ON2−OE2=√5∴MN=ME﹣NE=2√3−√5故答案为:2√3−√5。
中考数学专题分类复习:平移变换涉及图形平移的问题一般在选择题或填空题中出现的比较多,相对比较容易,在解答题中会和轴对称,旋转相结合,是区分度较大的一类几何问题。
平移的性质:①平移不改变图形的形状和大小,只改变图形的位置;②对应线段平行(或在同一条直线上)且相等;③平移的距离即是对应点的连线段的长度.如图△ABC 平移到△DEF 时,点A ,B ,C 的对应点分别是点D ,E ,F ,根据平移的性质有:①△ABC ≌△DEF ;②AB ∥DE 且AB =DE ,BC ∥EF 且BC =EF ,CA ∥FD 且CA =FD ;③AD =BE =CF .1.抓住平移前后的对应点,对应线段,对应点之间的距离是平移的距离,对应线段平行且相等或在同一条直线上;2.如果图形上的一个点沿一定的方向移动一定的距离后,那么这个图形上所有点移动的方向和距离都相同;3.点P (a ,b )在坐标系内的移动,遵循“正方向+,负方向-”的规律;4.线段AB 的中点是C ,已知A (1x ,1y ),B (2x ,2y )C (x ,y )中任意两个点的坐标,即可利用中点坐标公式:122x x x +=,122y y y +=,求第三个点的坐标.例1.如图,将△ABC 沿BC 方向平移3cm 得到△DEF ,若△ABC 的周长为20cm ,则四边形ABFD 的周长为( )A . 20cmB . 22cmC . 24cmD .26cm【答案】D例2.在平面直角坐标系中,已知线段AB的两个端点分别是A(﹣4,﹣1),B(1,1),将线段AB平移后得到线段A′B′,若点A′的坐标为(﹣2,2),则点B′的坐标为()A. (4,3)B. (3,4)C. (﹣1,﹣2)D. (﹣2,﹣1)【答案】B【精细解读】直接利用平移中点的变化规律求解即可.解:由A点平移前后的纵坐标分别为﹣1、2,可得A点向上平移了3个单位,由A点平移前后的横坐标分别为﹣4、﹣2,可得A点向右平移了2个单位,由此得线段AB的平移的过程是:向上平移3个单位,再向右平移2个单位,所以点A、B均按此规律平移,由此可得点B′的坐标为(1+2,1+3),即为(3,4).故选:B.例3.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到△DEF的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.【答案】阴影部分的面积为48.1.如图,图形W,X,Y,Z是形状和大小相同,能完全重合的图形.根据图中数据可计算的图形W的面积是()A. 4-πB. 1-0.25πC. 4-0.25πD. 1-16【答案】C【解析】试题分析:根据题意可知,通过平移知四个小图形占四个小正方形,且中间缺少一个圆,正方形的边长为1,圆的半径为0.5,然后可求面积为2×2-π×0.5×0.5=4-0.25π.故选:C .2.在平面直角坐标系中,将点A 先向左平移3个单位,再向下平移2个单位,得到点B (﹣2,1),则点A 的坐标为( )A . (﹣5,3)B . (﹣5,﹣1)C . (1,3)D . (1,﹣3)【答案】C【解析】设点A 的坐标是(x ,y ),∵将点A 先向左平移3个单位,再向下平移2个单位得点B ,可得B 的坐标为(x ﹣3,y ﹣2),∵点B 的坐标是(﹣2,1),∴x ﹣3=﹣2,y ﹣2=1,∴x =1,y =3,∴A 的坐标是(1,3),故选C .3.某楼梯的侧面视图如图所示,其中4AB =米, 30BAC ∠=︒, 90C ∠=︒,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为________.【答案】(2+3)米;1.若将点A (1,3)向左平移2个单位,再向下平移4个单位得到B ,则点B 的坐标为( )A . (-2,-1)B . (-1,0)C . (-1,-1)D . (-2,0)【答案】C【解析】根据坐标点的平移,上加下减,左减右加,可得B 点的坐标为(1-2,3-4),即(-1,-1). 故选:C .2.如图,将两块全等的含30°角的三角尺如图(1)摆放在一起,它们的较短直角边长为3. 将△ECD 沿直线l 向左平移到图(2)的位置,使E 点落在AB 上,则CC ′=( )A 、1 B、23C 、13-D 、32- 【答案】C 3.如图,直角边长为3的等腰直角三角形ABC 沿直角边BC 所在直线向上平移1个单位,得到三角形A'B'C',则阴影部分的面积为____________。
2018全国中考真题汇编——图形的平移和旋转一.选择题(共4小题)1.(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.2.(2018•黄石)如图,将“笑脸”图标向右平移4个单位,再向下平移2个单位,点P 的对应点P'的坐标是()A.(﹣1,6)B.(﹣9,6)C.(﹣1,2)D.(﹣9,2)【解答】解:由题意P(﹣5,4),向右平移4个单位,再向下平移2个单位,点P的对应点P'的坐标是(﹣1,2),故选:C.3.(2018•宜宾)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A.2B.3C.D.【解答】解:如图,∵S△ABC=9、S△A′EF=4,且AD为BC边的中线,∴S△A′DE=S△A′EF=2,S△ABD=S△ABC=,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则()2=,即()2=,解得A′D=2或A′D=﹣(舍),故选:A.4.(2018•温州)如图,已知一个直角三角板的直角顶点与原点重合,另两个顶点A,B的坐标分别为(﹣1,0),(0,).现将该三角板向右平移使点A与点O重合,得到△OCB′,则点B的对应点B′的坐标是()A .(1,0)B.(,)C.(1,)D.(﹣1,)【解答】解:因为点A与点O对应,点A(﹣1,0),点O(0,0),所以图形向右平移1个单位长度,所以点B的对应点B'的坐标为(0+1,),即(1,),故选:C.二.填空题(共4小题)5.(2018•长沙)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).6.(2018•宿迁)在平面直角坐标系中,将点(3,﹣2)先向右平移2个单位长度,再向上平移3个单位长度,则所得点的坐标是.【解答】解:∵将点(3,﹣2)先向右平移2个单位长度,∴得到(5,﹣2),∵再向上平移3个单位长度,∴所得点的坐标是:(5,1).故答案为:(5,1).7.(2018•曲靖)如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依次规律,P0P2018=个单位长度.【解答】解:由图可得,P0P1=1,P0P2=1,P0P3=1;P0P4=2,P0P5=2,P0P6=2;P0P7=3,P0P8=3,P0P9=3;∵2018=3×672+2,∴点P2018在正南方向上,∴P0P2018=672+1=673,故答案为:673.8.(2018•株洲)如图,O为坐标原点,△OAB是等腰直角三角形,∠OAB=90°,点B 的坐标为(0,2),将该三角形沿x轴向右平移得到Rt△O′A′B′,此时点B′的坐标为(2,2),则线段OA在平移过程中扫过部分的图形面积为.【解答】解:∵点B的坐标为(0,2),将该三角形沿x轴向右平移得到Rt△O′A′B′,此时点B′的坐标为(2,2),∴AA′=BB′=2,∵△OAB是等腰直角三角形,∴A(,),∴AA′对应的高,∴线段OA在平移过程中扫过部分的图形面积为2×=4.故答案为:4.三.解答题(共14小题)9.(2018•枣庄)如图,在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中,画出一个与△ABC成中心对称的格点三角形;(2)在图2中,画出一个与△ABC成轴对称且与△ABC有公共边的格点三角形;(3)在图3中,画出△ABC绕着点C按顺时针方向旋转90°后的三角形.【解答】解:(1)如图所示,△DCE为所求作(2)如图所示,△ACD为所求作(3)如图所示△ECD为所求作10.(2018•吉林)如图是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A,B,C,D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D.(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)求所画图形的周长(结果保留π).【解答】解:(1)点D→D1→D2→D经过的路径如图所示:(2)观察图象可知图象是轴对称图形,故答案为轴对称.(3)周长=4×=8π.11.(2018•南充)如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.【解答】(1)证明:∵在Rt△ABC中,AC=2AB,∴∠ACB=∠AC′B′=30°,∠BAC=60°,由旋转可得:AB′=AB,∠B′AC=∠BAC=60°,∴∠EAC′=∠AC′B′=30°,∴AE=C′E;(2)解:由(1)得到△ABB′为等边三角形,∴∠AB′B=60°,∴∠FBB′=15°;(3)解:由AB=2,得到B′B=B′F=2,∠B′BF=15°,过B作BH⊥BF,在Rt△BB′H中,cos15°=,即BH=2×=,则BF=2BH=+.12.(2018•徐州)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(1,0)①画出△ABC关于x轴对称的△A1B1C1;②画出将△ABC绕原点O按逆时针旋转90°所得的△A2B2C2;③△A1B1C1与△A2B2C2成轴对称图形吗?若成轴对称图形,画出所有的对称轴;④△A1B1C1与△A2B2C2成中心对称图形吗?若成中心对称图形,写出所有的对称中心的坐标.【解答】解:如下图所示:(3)成轴对称图形,根据轴对称图形的性质画出对称轴即连接两对应点的线段,作它的垂直平分线,或连接A1C1,A2C2的中点的连线为对称轴.(4)成中心对称,对称中心为线段BB2的中点P,坐标是(,).13.(2018•温州)如图,P,Q是方格纸中的两格点,请按要求画出以PQ为对角线的格点四边形.(1)在图1中画出一个面积最小的▱PAQB.(2)在图2中画出一个四边形PCQD,使其是轴对称图形而不是中心对称图形,且另一条对角线CD由线段PQ以某一格点为旋转中心旋转得到.注:图1,图2在答题纸上.【解答】解:(1)如图①所示:(2)如图②所示:14.(2018•临沂)将矩形ABCD绕点A顺时针旋转α(0°<α<360°),得到矩形AEFG.(1)如图,当点E在BD上时.求证:FD=CD;(2)当α为何值时,GC=GB?画出图形,并说明理由.【解答】解:(1)由旋转可得,AE=AB,∠AEF=∠ABC=∠DAB=90°,EF=BC=AD,∴∠AEB=∠ABE,又∵∠ABE+∠EDA=90°=∠AEB+∠DEF,∴∠EDA=∠DEF,又∵DE=ED,∴△AED≌△FDE(SAS),∴DF=AE,又∵AE=AB=CD,∴CD=DF;(2)如图,当GB=GC时,点G在BC的垂直平分线上,分两种情况讨论:①当点G在AD右侧时,取BC的中点H,连接GH交AD于M,∵GC=GB,∴GH⊥BC,∴四边形ABHM是矩形,∴AM=BH=AD=AG,∴GM垂直平分AD,∴GD=GA=DA,∴△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=60°;②当点G在AD左侧时,同理可得△ADG是等边三角形,∴∠DAG=60°,∴旋转角α=360°﹣60°=300°.15.(2018•宁波)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D 与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.【解答】解:(1)由题意可知:CD=CE,∠DCE=90°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCB,∠BCE=∠DCE﹣∠DCB,∴∠ACD=∠BCE,在△ACD与△BCE中,∴△ACD≌△BCE(SAS)(2)∵∠ACB=90°,AC=BC,∴∠A=45°,由(1)可知:∠A=∠CBE=45°,∵AD=BF,∴BE=BF,∴∠BEF=67.5°16.(2018•黑龙江)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,求线段BC扫过的面积(结果保留π).【解答】解:(1)△ABC关于x轴对称的△A1B1C1如图所示;(2)△ABC绕点O逆时针旋转90°后的△A2B2C2如图所示;(3)BC扫过的面积=﹣=﹣=2π.17.(2018•广西)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A (1,1),B(4,1),C(3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)【解答】解:(1)如图所示,△A1B1C1即为所求:(2)如图所示,△A2B2C2即为所求:(3)三角形的形状为等腰直角三角形,OB=OA1=,A1B=,即,所以三角形的形状为等腰直角三角形.18.(2018•眉山)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题:(1)作出△ABC向左平移4个单位长度后得到的△A1B1C1,并写出点C1的坐标;(2)作出△ABC关于原点O对称的△A2B2C2,并写出点C2的坐标;(3)已知△ABC关于直线l对称的△A3B3C3的顶点A3的坐标为(﹣4,﹣2),请直接写出直线l的函数解析式.【解答】解:(1)如图,△A1B1C1为所作,C1(﹣1,2);(2)如图,△A2B2C2为所作,C2(﹣3,﹣2);(3)因为A的坐标为(2,4),A3的坐标为(﹣4,﹣2),所以直线l的函数解析式为y=﹣x,19.(2018•自贡)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【解答】解:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE﹣∠OCD=60°,在Rt△OCD中,OD=OC•cos30°=OC,同理:OE=OC,∴OD+OE=OC;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OE=OC;(3)(1)中结论不成立,结论为:OE﹣OD=OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣OD=OC.20.(2018•岳阳)已知在Rt△ABC中,∠BAC=90°,CD为∠ACB的平分线,将∠ACB 沿CD所在的直线对折,使点B落在点B′处,连结AB',BB',延长CD交BB'于点E,设∠ABC=2α(0°<α<45°).(1)如图1,若AB=AC,求证:CD=2BE;(2)如图2,若AB≠AC,试求CD与BE的数量关系(用含α的式子表示);(3)如图3,将(2)中的线段BC绕点C逆时针旋转角(α+45°),得到线段FC,连结EF交BC于点O,设△COE的面积为S1,△COF的面积为S2,求(用含α的式子表示).【解答】解:(1)如图1中,∵B、B′关于EC对称,∴BB′⊥EC,BE=EB′,∴∠DEB=∠DAC=90°,∵∠EDB=∠ADC,∴∠DBE=∠ACD,∵AB=AC,∠BAB′=∠DAC=90°,∴△BAB′≌CAD,∴CD=BB′=2BE.(2)如图2中,结论:CD=2•BE•tan2α.理由:由(1)可知:∠ABB′=∠ACD,∠BAB′=∠CAD=90°,∴△BAB′∽△CAD,∴==,∴=,∴CD=2•BE•tan2α.(3)如图3中,在Rt△ABC中,∠ACB=90°﹣2α,∵EC平分∠ACB,∴∠ECB=(90°﹣2α)=45°﹣α,∵∠BCF=45°+α,∴∠ECF=45°﹣α+45°+α=90°,∴∠BEC+∠ECF=180°,∴BB′∥CF,∴===sin(45°﹣α),∵=,∴=sin(45°﹣α).21.(2018•广东)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,∴S △AOC=•OA•AB=×2×2=2,∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,∴S△OMN=•OM•NE=×1.5x×x,∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.。
中考必练试题平移要点感知1把一个图形整体沿着某素来线方向搬动,会获取一个新的图形,这种搬动就叫做__________.预习练习1-1以下现象中属于平移的是()①温度计中,液柱的上升或下降;②打气筒打气时,活塞的运动;③钟摆的摇动;④传达带上瓶装饮料的搬动 .A. ①②B.①③C.②③D. ②④1-2 (20** ·旭日 ) 以下列图形中,由如图经过一次平移获取的图形是( )要点感知2平移的过程中,新图形中的每一点,都是由原图形中的某一点搬动后获取的,这两点是 __________, 连接各组对应点的线段 __________. 画平移后的图形 , 是由平移的__________和平移的 __________决定的 .预习练习2-1将长度为 5 cm 的线段向上平移A.10 cm B.5 cm 10 cm 所得线段长度是C.0 cm( )D. 无法确定知识点 1 认识平移现象1.以下现象不属于平移的是(A. 飞机腾跃前在跑道上加速滑行C. 游乐场的过山车在翻筋斗)B.汽车在笔直的公路上行驶D. 起重机将重物由地面竖直吊起到必然高度2.以下所示的图案分别是奔驰、奥迪、大众、三菱汽车的车标,其中,能够看作由“基本图案”经过平移获取的是()3.以下运动中:①急刹车的小汽车在地面上的运动;②自行车轮子的运动;③时钟的分针的运动;④高层建筑内的电梯的运动;⑤小球从高空中自由下落,属于平移的是__________.4.(20** ·莆田 ) 如图 ,△ A ′ B ′C′是由△ ABC 沿射线 AC 方向平移 2 cm 获取 ,若 AC =3 cm, 则A ′C= __________.5.如图 ,△ DEF 是△ ABC 平移所得 ,观察图形:(1) 点 A 的对应点是 __________,点 B 的对应点是 __________,点 C 的对应点是 __________ ;(2) 线段 AD , BE , CF 叫做对应点间的连线,这三条线段之间有什么关系呢?知识点 2 画平移图形6.如图,将△ ABC 沿 AB 方向平移至△ DEF,且 AB=5 ,DB=2 ,则 CF 的长度为 ( )7.请在以下列图的方格中,将“箭头”向右平移 3 个单位长度 .8.如图 ,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为 1,则小鱼的面积为 __________ ;(2)画出小鱼向左平移 3 格后的图形 (不要求写作图步骤和过程 ).9.在 6× 6 方格中,将图 1 中的图形N 平移后地址如图 2 所示,则图形N 的平移方法中,正确的是 ()A. 向下搬动 1 格B.向上搬动1 格C. 向上搬动 2 格D.向下搬动2 格10.如图,在 10× 6 的网格中,每个小方格的边长都是 1 个单位,将△ ABC 平移到△ DEF 的地址,下面正确的平移步骤是 ( )A. 先把△ ABC 向左平移 5 个单位,再向下平移 2 个单位B. 先把△ ABC 向右平移 5 个单位,再向下平移 2 个单位C. 先把△ ABC 向左平移 5 个单位,再向上平移 2 个单位D. 先把△ ABC 向右平移 5 个单位,再向上平移 2 个单位11.(20** ·邵阳 )某数学兴趣小组睁开着手操作活动,设计了以下列图的三种图形,现计划用铁丝依照图形制作相应的造型,则所用铁丝的长度关系是()A. 甲种方案所用铁丝最长B.乙种方案所用铁丝最长C. 丙种方案所用铁丝最长D.三种方案所用铁丝相同长12. 如图,△ ABC经过平移变换得到了△ DEF,若∠ BAC=40° ,AD=2cm ,则∠EDF=__________ ,点 C 到点 F 之间的距离为__________cm.13.如图,△ ABC 经过一次平移到△DFE 的地址,请回答以下问题:(1)点 C 的对应点是点 __________ ,∠ D=__________ , BC=__________ ;(2)连接 CE,那么平移的方向就是 __________的方向,平移的距离就是线段 __________ 的长度,可量出约为 __________cm;(3)连接 AD , BF , BE,与线段 CE 相等的线段有 __________.14.图中的 4 个小三角形都是等边三角形,边长为 1.3 cm,你能经过平移三角形ABC 获取其他三角形吗?若能,请说出平移的方向和距离.15.如图,凯瑞酒店准备进行装修,把楼梯铺上地毯,已知楼梯的宽度是 2 米,楼梯的总长度为 8 米,总高度为 6 米,已知这种地毯每平方米的售价是60 元 .请你帮助酒店老板算下,购买地毯最少需要多少元?挑战自我16.(1) 已知图 1 将线段 AB 向右平移 1 个单位长度 ,图 2 是将线段 AB 折一下再向右平移 1 个单位长度 ,请在图 3 中画出一条有两个折点的折线向右平移 1 个单位长度的图形;(2)若长方形的长为 a,宽为 b,请分别写出三个图形中除去阴影部分后剩下部分的面积;(3) 如图 4,在宽为 10 m, 长为 40 m 的长方形菜地上有一条波折的小路 ,小路宽度为 1 m, 求这块菜地的面积 .参照答案课前预习要点感知 1 平移预习练习 1-1 D1-2 C要点感知 2 对应点平行且相等方向距离预习练习 2-1 B当堂训练3.①④⑤4.1 cm5.(1)D E F(2)AD ∥ BE∥ CF,AD=BE=CF.7.图略 .8.( 1) 16( 2)图略 .课后作业° 213.(1)E ∠ A FE(2) 点 C 到点 E CE 2(3)AD , BF14.将△ ABC 沿着射线 AF 的方向平移 1.3 cm 得△ FAE ;将△ ABC 沿着射线 BD 的方向平移1.3 cm 得△ ECD ;将△ ABC 平移不能够获取△AEC.15.图略,将竖直的线段都平移到BC 上 ,将水平的线段都平移到AB 上 ,由此可知折线 AC 的长等于 AB 与 BC 的和 .故地毯的总长最少为 8+6=14( 米 ).所以购买地毯最少需要 14× 2×60=1 680(元 ).16.(1) 图略 .(2) 三个图形中除去阴影部分后剩下部分的面积均为ab-b.(3)10 ×40-10 × 1=390( m2) .。
中考数学备考专题复习图形的平移(含解析)234A、72°B、108°C、144°D、216°10、在平面上一个菱形绕它的中心旋转,使它和原来的菱形重合,那么旋转的角度至少是()A、180°B、90°C、270°D、360°11、边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为()A 、cmB 、cmC、8cmD、4cm12、如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是()A 、B 、C 、D 、二、填空题(共5题;共5分)13、边长为4cm的正方形ABCD绕它的顶点A旋转180°,顶点B所经过的路线长为________cm.14、如图,平行四边形ABCD绕点A逆时针旋转30°,得到平行四边形AB′C′D′(点B′与点B 是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=________15、如图,是一块从一个边长为20cm的正方形BCDM 材料中剪出的垫片,经测得FG=9cm,则这个剪出的5图形的周长是________cm.16、如图所示,一座楼房的楼梯,高1米,水平距离是2.8米,如果要在台阶上铺一种地毯,那么至少要买这种地毯________米.17、(2016•曲靖)等腰三角形ABC在平面直角坐标系中的位置如图所示,已知点A(﹣6,0),点B 在原点,CA=CB=5,把等腰三角形ABC沿x轴正半轴作无滑动顺时针翻转,第一次翻转到位置①,第二次翻转到位置②…依此规律,第15次翻转后点C的横坐标是________.三、解答题(共1题;共5分)18、如图,在一块长为20m,宽为14m的草地上有一条宽为2m的曲折小路,你能运用你学的知识求出这块草地的绿地面积吗?四、综合题(共5题;共65分)19、(2015•赤峰)如图,在平面直角坐标系中,△ABC 的三个顶点坐标为A(﹣3,4),B(﹣4,2),C (﹣2,1),且△A1B1C1与△ABC关于原点O成中心对称.(1)画出△A1B1C1,并写出A1的坐标;6(2)P(a,b)是△ABC的AC边上一点,△ABC经平移后点P的对称点P′(a+3,b+1),请画出平移后的△A2B2C2.20、(2016•龙东)如图,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),再将△A1B1C1绕原点O顺时针旋转90°得到△A2B2C2,点A1的对应点为点A2.(1)画出△A1B1C1;(2)画出△A2B2C2;(3)求出在这两次变换过程中,点A经过点A1到达A2的路径总长.21、(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C (0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.22、(2016•天津)在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为7A′,O′,记旋转角为α.(1)如图①,若α=90°,求AA′的长;(2)如图②,若α=120°,求点O′的坐标;(3)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)23、(2016•义乌)对于坐标平面内的点,现将该点向右平移1个单位,再向上平移2的单位,这种点的运动称为点A的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5),已知点A的坐标为(1,0).(1)分别写出点A经1次,2次斜平移后得到的点的坐标.(2)如图,点M是直线l上的一点,点A关于点M的对称点的点B,点B关于直线l的对称轴为点C.①若A、B、C三点不在同一条直线上,判断△ABC 是否是直角三角形?请说明理由.②若点B由点A经n次斜平移后得到,且点C的坐标为(7,6),求出点B的坐标及n的值.8答案解析部分一、单选题【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确;故选D.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【答案】C【考点】图形的旋转,作图-旋转变换,利用旋转设计图案【解析】【解答】每一个图案都可以被通过中心的射线平分成6个全等的部分,则旋转的角度是60度.故选C.【分析】观察每一个图案都可以由一个“基本图案”通过连续旋转得到,就是看这个图形可以被通过中心的射线平分成几个全等的部分,即可确定旋转的角度.【答案】B【考点】关于x轴、y轴对称的点的坐标,坐标与图形变化-平移【解析】【解答】根据对称的性质,得三个顶点坐标的横坐标都乘以-1,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于y轴对称.故选B.【分析】熟悉:平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y).【答案】B【考点】图形的旋转,图形的平移【解析】9【解答】A、经过平移可得到上图,故A选项错误;B、经过平移、旋转或轴对称变换后,都不能得到上图,故B选项正确;C、经过轴对称变换可得到上图,故C选项错误;D、经过旋转可得到上图,故D选项错误.故选:B.【分析】本题考查了几何变换的类型,平移是沿直线移动一定距离得到新图形,旋转是绕某个点旋转一定角度得到新图形,轴对称是沿某条直线翻折得到新图形.观察时要紧扣图形变换特点,进行分析判断.根据平移、旋转和轴对称的性质即可得出正确结果.【答案】B【考点】利用旋转设计图案【解析】【解答】设每次旋转角度x°,则6x=360,解得x=60,∴每次旋转角度是60°,故选B.【分析】图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动.其中对应点到旋转中心的距离相等,旋转前后图形的大小和形状没有改变.根据所给出的图,6个角正好构成一个周角,且6个角都相等,即可得到结果.2、【答案】C【考点】平行四边形的判定,命题与定理,中心对称及中心对称图形【解析】【解答】首先写出各个命题的逆命题,再进一步判断真假即可。
2017-2018年中考数学专题复习题:图形的平移
一、选择题
1.如图,平移到的位置,则下列说法:
,;
;
平移的方向是点C到点E的方向;
平移距离为线段BE的长.
其中说法正确的有
A. B. C. D.
2.如图,面积为的纸片沿BC方向平移至的
位置,平移的距离是BC长的2倍,则纸片扫过的面积
为
A. B. C. D.
3.下列图形中,可以由其中一个图形通过平移得到的是
A. B. C. D.
4.如图,两只蚂蚁以相同的速度沿两条不同的路径,
同时从A出发爬到B,则
A. 乙比甲先到
B. 甲比乙先到
C. 甲和乙同时到
D. 无法确定
5.如图的图形中只能用其中一部分平移可以得到的是
A. B.
C. D.
6.如图,现将四边形ABCD沿AE进行平移,得到四边
形EFGH,则图中与CG平行的线段有
A. 0条
B. 1条
C. 2条
D. 3条
7.如图,在的网格中,每个小正方形的边长都是1个单位,将三角形ABC平移
到三角形DEF的位置,下面正确的平移步骤是
A.先向左平移5个单位,再向下平移2个单位
B. 先向右平移5个单位,再向下平移2个单位
C. 先向左平移5个单位,再向上平移2个单位
D. 先向右平移5个单位,再向上平移2个单位
8.如图,线段AB是线段CD经过平移得到的,那么线段AC与BD
的关系是
A. 平行且相等
B. 平行
C. 相交
D. 相等
9.如图,长方形ABCD中,,第一次平移长方形ABCD沿AB的方向向右平移5
个单位,得到长方形,第2次平移将长方形沿的方向向右平移5个单位,得到长方形,第n次平移将长方形沿
的方向平移5个单位,得到长方形,若的长度为2016,
则n的值为
A. 400
B. 401
C. 402
D. 403
10.如图,直线,与和分别相切于点A和点
直线MN与相交于M;与相交于N,的半径为1,
,直线MN从如图位置向右平移,下列结论
和的距离为2 当直线MN与相切时,
当时,直线MN与相切正确的个数是
A. 1
B. 2
C. 3
D. 4
二、填空题
11.如图,在平面内,线段,P为线段AB上的动点,
三角形纸片CDE的边CD所在的直线与线段AB垂直相
交于点P,且满足若点P沿AB方向从点A运
动到点B,则点E运动的路径长为______.
12.如图,将直角沿BC方向平移得到直角
,其中,,,则阴影
部分的面积是______ .
13.如图,根据长方形中的数据,计算阴影部分的面积为
______ .
14.在下列图案中可以用平移得到的是______填代号.
15.如图所示,第1个图案是由黑白两种颜色的六边形地面砖组成的,第2个,第3个
图案可以看成是第1个图案经过平移而得,那么第2017个图案中有白色六边形地面砖______ 块
16.已知四边形ABCD,,,含角的直角三
角板如图在图中平移,直角边,顶点M、N分别在边AD、BC上,延长NM到点Q,使若,,则当点M从点A平移到点D的过程中,点Q的运动路径长为______ .
17.如图,中,,将
沿CB方向移动到的位置,
若平移距离为3,则与的重叠的
面积是______ ;
若平移距离为,则与的重叠的面积是______ .
18.如图所示,在正方形网格中,图经过______变换可以得到图
;图是由图经过旋转变换得到的,其旋转中心是点
______填“A”或“B”或“C”.
19.如图,边长为4cm的正方形ABCD先向右平移1cm,再向上平
移2cm,得到正方形,则阴影部分的面积为
______ .
20.如图,中,,,点D在AC上,
将线段DC沿着CB的方向平移7cm得到线段EF,
点E,F分别落在边AB,BC上,则的周长为______cm.
三、计算题
21.如图,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路,宽均为
1米,其它部分均种植花草试求出种植花草的面积是多少?
22.一楼梯道宽2m,其侧面如图所示,,,现要在楼梯的表面铺地毯,
求至少要购买地毯多少平方米?
23.如图点A、B、C、D在同一直线上,,作,,且.
证明:EF平分线段BC;
若沿AD方向平移得到图时,其他条件不变,中的结论是否仍成立?
请说明理由.
24.如图,AE切于点E,AT交于点M,N,线段OE交AT于点C,于点
B,已知,,.
求的度数;
求的半径R;
点F在上是劣弧,且,把经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在上的三角形吗?请在图中画出这个三角形,并求出这个三角形与的周长之比.
【答案】
1. B
2. D
3. B
4. C
5. B
6. D
7. A
8. A9. C10. D
11.
12. 60
13. 104
14.
15. 8070
16.
17. ;
18. 平移;A
19. 6
20. 13
21. 解:根据题意,小路的面积相当于横向与纵向的两条小路,
种植花草的面积.
故答案为:.
22. 解:如图,利用平移线段,把楼梯的横竖向上向右平移,构成一个矩形,长、宽分别为6米,3米,
地毯的长度为米,地毯的面积为:平方米,
答:至少要购买地毯18平方米.
23. 证明:,,
,
,
,即,在和中,
,
≌,
,
在和中,
,
≌,
,即EF平分线段BC;
中结论成立,理由为:
证明:,,
,
,
,即,在和中,
,
≌,
,
在和中,
,
≌,
,即EF平分线段BC.
24. 解:切于点E,
,又,
,
又,
∽,又,
;
,,
在中,,即,
,为MN 的中点,又,
,
连接OM ,在中,,,
,
在中,,
,
,
,
又,
,
整理得:,即,
解得:舍去或,
则;
以EF为斜边,有两种情况,以EF为直角边,有四种情况,所以六种,
11
画直径FG,连接EG,延长EO与圆交于点D,连接DF,如图所示:
,直径,可得出,
,
则,
由可得,
:::1.
,直径,可得出,
,
则,
:::1.
12。