j 1
j 1
js
js
r 1, 2, , n
(4.2 15)
因而有
n (kij
j1
lr
mij
)
u jr usr
lr mis
kis
js
i 1, 2, , n; r 1, 2, , n
(4.2 16)
对于某个确定的r,方程(4.2-16)是一个以 ujr/usr(j=1,2,…,s-1,s+1,…,n)为变量的n个非 齐次方程,取其中的n-1个方程求解,就得 到ujr/usr(j=1,2,…,s-1,s+1,…,n)的值,是使第s 个比值为1得到的,这些值是确定的。从而 得到
对于线性系统,系统的动能可表示为
T
1 2
n i 1
n
mijqi q j
j 1
(4.1 6)
或
T 1 qT M q
2
(4.1 7)
式中mij是广义质量。质量矩阵[M]是实对 称矩阵,通常是正定矩阵,只有当系统中 存在着无惯性自由度时,才会出现半正定
的情况。q为广义速度向量。
n
- f (t) f (t)
kij u j
j1
n
mij ui
j1
i 1, 2,..., n
(4.2-4) (4.2-5)
方程表明,时间函数和空间函数是可以分离 的,方程左边与下标i无关,方程右边与时间 无关。因此,其比值一定是一个常数。
f(t)是时间的实函数,比值一定是一个实数,
把势能函数在系统平衡位置近旁展为Taylor级 数,有
n U 1 n n 2U
U