第三章 图像信号的正交变换
- 格式:ppt
- 大小:258.00 KB
- 文档页数:30
图像的正交变换1、二维傅立叶变换一维时间信号,可以看作是由多个单一频率的正弦信号叠加而成的,表达组成信号的每个正弦信号的频率及其幅值的空间称为频率域。
信号在时间域与频率域之间通过傅立叶变换与逆变换进行转换。
求时间信号在频率轴上的幅值分布函数过程为傅立叶变换,而由信号的在频率轴上的幅值分布函数求解时间信号的过程为傅立叶逆变换。
一维傅立叶变换的定义:()()2j t X j x t e dt π+∞-Ω-∞Ω=⋅⎰一维傅立叶逆变换定义:()()2j t x t X j e d π+∞Ω-∞=Ω⋅Ω⎰Ω为频率变量,它的连续变化使()X j Ω包含了无限个正弦和余弦项的和。
根据尤拉公式exp[2]cos 2sin 2j t t j t πππ-Ω=Ω-Ω傅立叶变换系数可以写成如下式的复数和极坐标形式:()()()()()j X j R jI X j e ϕΩΩ=Ω+Ω=Ω其中1222[()()]()RI X j =Ω+ΩΩ定义为傅立叶谱(幅值函数)1()()tan []()I R ϕ-ΩΩ=Ω为相角 而222()()()()E X j R I Ω=Ω=Ω+Ω能量谱二维平面图像是一种幅值沿纵坐标和横坐标两个方向变化的信号,其变化规律的分析也在频率域进行。
二维信号的正交变换由一维信号的正交变换扩展而得到。
连续二维函数的傅立叶变换对定义二维函数的傅立叶正变换 ()()()⎰⎰∞∞-∞∞-+-=dxdy e y x f v u F vy ux j π2,, 二维函数的傅立叶逆变换 ()()()⎰⎰∞∞-∞∞-+=dudv e v u F y x f vy ux j π2,, 二维函数的傅立叶谱 21)],(),([),(22v u I v u R v u F +=二维函数的傅立叶变换的相角 ]),(),([tan ),(1v u R v u I v u -=φ 二维函数的傅立叶变换的能量谱),(),(),(),(222v u I v u R v u F v u E +==2二维离散傅立叶变换对于一维信号()x t 及其傅立叶变换()X j Ω均进行离散(数字化),则离散的傅立叶变换定义如下:一维离散傅立叶正变换()()()11exp 2N x X k x n j kn N N π-==-∑一维离散傅立叶逆变换()()()10exp 2N u x t X k j kn N π-==∑对于N M ⨯图象,其二维离散傅立叶变换定义为:()()∑∑-=-=⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛+-=10102exp ,1,M x N y N vy M ux j y x f MN v u F π ∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(M N N M u v vy ux j v u F y x f π对于N N ⨯图象()()∑∑-=-=⎪⎭⎫ ⎝⎛+-=10122exp ,1,N x N y N vy ux j y x f Nv u F π∑=∑=⎪⎭⎫⎝⎛+=--1100]2exp[),(),(N N N u v vy ux j v u F y x f π1.3二维离散傅立叶变换的性质 性质1:线性性质如果:11(,)(,)f x y F u v ⇔ 22(,)(,)f x y F u v ⇔ 则有:()()()()v u bF v u aF y x bf y x af ,2,1,2,1+⇔+性质2:尺度性质1(,), 1(,)(,)u v f ax by F a b F x y F u v ab a b ⎛⎫⇔==-→--⇔-- ⎪⎝⎭当时,性质3:可分离性()()()()∑∑∑∑∑-=-=-=-=-=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛+-=11102101022exp ,12exp ,2exp 12exp ,1,N x N x N y N x N y N ux j v x F NN vy j y x f N ux j N N vy ux j y x f Nv u F ππππ 二维傅立叶变换可分解成了两个方向的一维变换顺序执行。