淀粉老化及老化机理57页PPT
- 格式:ppt
- 大小:3.93 MB
- 文档页数:29
木薯淀粉的老化机理一、引言木薯淀粉是一种重要的食品添加剂和工业原料,然而,随着时间的推移,木薯淀粉会发生老化现象,从而影响其品质和性能。
本文将探讨木薯淀粉老化的机理,以及其对淀粉的影响。
二、木薯淀粉老化的机理1. 淀粉分子的结构变化随着时间的推移,木薯淀粉中的淀粉分子会发生结构的改变。
这主要表现为淀粉链的断裂和分支的断裂,导致分子量的降低和分子结构的改变。
2. 氧化反应的影响氧化反应是木薯淀粉老化的重要机理之一。
淀粉中的羟基和羰基易受氧气的影响,从而引发氧化反应。
随着氧化反应的进行,木薯淀粉的物理性质和化学性质会发生变化,导致老化现象的发生。
3. 酶的作用在木薯淀粉中存在多种酶,如淀粉酶、氧化酶等。
这些酶会催化淀粉的降解,导致淀粉的老化。
不仅如此,酶还会引发淀粉的糊化和变性,进一步加剧了淀粉的老化现象。
三、木薯淀粉老化对性质的影响1. 水分吸附性能的改变木薯淀粉老化后,其水分吸附性能会发生变化。
老化的淀粉更容易吸附水分,导致淀粉的含水率增加。
这会影响淀粉的稳定性和贮存性能。
2. 凝胶化特性的变化木薯淀粉老化后,其凝胶化特性也会发生变化。
老化的淀粉凝胶化温度降低,凝胶形成能力减弱。
这会影响淀粉在食品加工中的应用,降低了产品的质量和口感。
3. 糊化特性的改变糊化是淀粉加工过程中的重要步骤,而木薯淀粉老化后,其糊化特性会发生改变。
老化的淀粉糊化温度升高,糊化过程变得困难。
这会影响淀粉的加工性能和产品质量。
四、延缓木薯淀粉老化的方法1. 适当的储存条件木薯淀粉应储存在阴凉、干燥、通风良好的环境中,避免阳光直射和潮湿。
同时,应避免与空气、水分、酶和其他有害物质接触。
2. 添加抗老化剂在木薯淀粉的生产过程中,可以添加一些抗老化剂,如亚硫酸盐、抗氧化剂等。
这些化合物可以减缓淀粉的老化过程,延长其使用寿命。
3. 进行适当的处理适当的处理方法,如高温处理、酶灭活等,可以减少木薯淀粉中的酶活性,从而延缓淀粉的老化过程。
淀粉的老化
淀粉是植物细胞壁中,以淀粉聚糖类植物多糖组成的聚合物。
是一种可以为植物提供结构和稳定的重要结构元素,同时也是植物生长发育的重要营养物质。
淀粉经过老化处理,能够增加淀粉的性能,同时也能提高它的矿化质含量。
淀粉的老化是指淀粉在给定的湿度和温度条件下,经过长期的反应,这些反应主要是碳水化合物被分解,然后转化为其它物质,而这些物质又可以与淀粉产生新的化学反应。
老化可以改变淀粉的结构和性质。
淀粉的老化可以增加淀粉的结构稳定性和物理属性。
其中,淀粉的老化能增加其稳定性,使淀粉抗拉破裂时所需的力量增加。
淀粉老化后,糊化力增强,水溶度和溶解度增大,而可溶性膳食纤维含量和添加剂的共混性也得到改善。
老化处理还能改变淀粉的质地和口感,让食物更易于消化和吸收。
淀粉的老化有利于提高淀粉的抗热性。
水分蒸发后,淀粉的抗湿性能也得到提高。
淀粉的老化能促进其吸湿性和抗氧化性,提高淀粉的保存时间。
此外,淀粉的老化还有助于增强淀粉的营养价值,其中包括提高其膳食纤维含量,改善其吸收特性,以及增加矿物质、维生素和其它有利元素的含量。
总而言之,淀粉的老化是一项需要进行的重要的科学研究,有利于更好地了解淀粉的性质和特性,以便更好地利用淀粉的化学和物理
特性,提高植物营养物质的利用价值。
淀粉的糊化与老化生淀粉分子靠分子间氢键结合而排列得很紧密,形成束状的胶束,彼此之间的间隙很小,即使水分子也难以渗透进去。
具有胶束结构的生淀粉称为β-淀粉。
β-淀粉在水中经加热后,一部分胶束被溶解而形成空隙,于是水分子进入内部,与余下部分淀粉分子进行结合,胶束逐渐被溶解,空隙逐渐扩大,淀粉粒因吸水,体积膨胀数十倍,生淀粉的胶束即行消失,这种现象称为膨润现象。
继续加热,胶束则全部崩溃,形成淀粉单分子,并为水包围,而成为溶液状态,这种现象称为糊化,处于这种状态的淀粉成为α-淀粉淀粉在高温下溶胀、分裂形成均匀糊状溶液的特性,称为淀粉的糊化(Gelatinization)。
淀粉要完成整个糊化过程,必须要经过三个阶段:即可逆吸水阶段、不可逆吸水阶段和颗粒解体阶段。
1.可逆吸水阶段淀粉处在室温条件下,即使浸泡在冷水中也不会发生任何性质的变化。
存在于冷水中的淀粉经搅拌后则成为悬浊液,若停止搅拌淀粉颗粒又会慢慢重新下沉。
在冷水浸泡的过程中,淀粉颗粒虽然由于吸收少量的水分使得体积略有膨胀,但却未影响到颗粒中的结晶部分,所以淀粉的基本性质并不改变。
处在这一阶段的淀粉颗粒,进入颗粒内的水分子可以随着淀粉的重新干燥而将吸入的水分子排出,干燥后仍完全恢复到原来的状态,故这一阶段称为淀粉的可逆吸水阶段。
2.不可逆吸水阶段淀粉与水处在受热加温的条件下,水分子开始逐渐进入淀粉颗粒内的结晶区域,这时便出现了不可逆吸水的现象。
这是因为外界的温度升高,淀粉分子内的一些化学键变得很不稳定,从而有利于这些键的断裂。
随着这些化学键的断裂,淀粉颗粒内结晶区域则由原来排列紧密的状态变为疏松状态,使得淀粉的吸水量迅速增加。
淀粉颗粒的体积也由此急剧膨胀,其体积可膨胀到原始体积的50~100倍。
处在这一阶段的淀粉如果把它重新进行干燥,其水分也不会完全排出而恢复到原来的结构,故称为不可逆吸水阶段。
3.颗粒解体阶段淀粉颗粒经过第二阶段的不可逆吸水后,很快进入第三阶段—颗粒解体阶段。
淀粉的老化作用
"老化"是"糊化"的逆过程,"老化"过程的实质是:在糊化过程中,已经溶解膨胀的淀粉分子重新排列组合,形成一种类似天然淀粉结构的物质。
值得注意的是:淀粉老化的过程是不可逆的,不可能通过糊化再恢复到老化前的状态。
老化后的淀粉,不仅口感变差,消化吸收率也随之降低。
淀粉的老化首先与淀粉的组成密切相关,含直链淀粉多的淀粉易老化,不易糊化;含支链淀粉多的淀粉易糊化不易老化。
玉米淀粉、小麦淀粉易老化,糯米淀粉老化速度缓慢。
引起老化的含水量数值
食物中淀粉含水量30%~60%时易老化;含水量小于10%时不易老化。
面包含水30%~40%,馒头含水44%,米饭含水60%~70%,它们的含水量都在淀粉易发生老化反应的范围内,冷却后容易发生返生现象。
食物的贮存温度也与淀粉老化的速度有关,一般淀粉变性老化最适宜的温度是2~10℃,贮存温度高于60℃或低于
-20℃时都不会发生淀粉的老化现象。
直链淀粉的老化速率比支链淀粉快得多,直链淀粉愈多,老化愈快。
支链淀粉几乎不发生老化。