化工反应器设计及类型介绍PPT(66张)
- 格式:ppt
- 大小:685.00 KB
- 文档页数:38
27种反应器的结构及原理(图文并茂),你想了解的都在这里了化学反应器是化工生产的核心设备,其技术的先进程度对化工生产有着重要的影响,直接影响装置的投资规模和生产成本。
也是化工生产过程的心脏,从原料经过反应器到我们想要的产品。
反应器的类型反应器的类型很多,如果按反应器的工作原理来分,可以概括为以下几种类型:一、管式反应器在化工生产中,连续操作的长径比较大的管式反应器可以近似看成是理想置换流动反应器(平推流反应器,Plug flow reactor,简称PFR)。
它既适用于液相反应,又适用于气相反应。
由于PFR能承受较高的压力,用于加压反应尤为合适。
具有容积小、比表面大、返混少、反应参数连续变化、易于控制的优点,但对于慢速反应,则有需要管子长,压降大的不足。
管式反应器类型1水平管式反应器由无缝钢管与U形管连接而成。
这种结构易于加工制造和检修。
高压反应管道的连接采用标准槽对焊钢法兰,可承受1600-10000kPa 压力。
如用透镜面钢法兰,承受压力可达10000-20000kPa。
2立管式反应器立管式反应器被应用于液相氨化反应、液相加氢反应、液相氧化反应等工艺中。
3盘管式反应器将管式反应器做成盘管的形式,设备紧凑,节省空间。
但检修和清刷管道比较困难。
4U形管式反应器U形管式反应器的管内设有多孔挡板或搅拌装置,以强化传热与传质过程。
U形管的直径大,物料停留时间增长,可应用于反应速率较慢的反应。
5多管并联管式反应器多管并联结构的管式反应器一般用于气固相反应,例如气相氯化氢和乙炔在多管并联装有固相催化剂的反应器中反应制氯乙烯,气相氮和氢混合物在多管并联装有固相铁催化剂的反应器中合成氨。
6活塞流反应器性能特点:① 反应器的长径比较大。
②假设不同时刻进入反应器的物料之间不发生逆向混合(返混)。
③反应物沿管长方向流动,反应时间是管长的函数,其浓度随流动方向从一个截面到另一个截面而变化。
二、釜式反应器釜式反应器也称槽式、锅式反应器,它是各类反应器中结构较为简单且应用较广的一种反应器。
化学工程的反应器设计资料一、引言反应器是化学工程中最关键的设备之一,它是化学反应过程中进行反应物转化和生成产物的地方。
反应器设计的合理性直接影响到化学工程的效率和产品质量。
本文将介绍化学工程中反应器设计的基本原理、设计要点以及相关的设计资料。
二、反应器设计原理1. 反应器类型常见的反应器类型包括批次反应器、连续流动反应器和半批次反应器。
批次反应器适用于小规模生产和实验室研究,连续流动反应器适用于大规模连续生产,而半批次反应器则结合了两者的优点。
2. 反应动力学反应动力学是反应器设计的基础,通过研究反应速率方程、反应物浓度变化以及温度、压力等因素对反应速率的影响,确定反应器的尺寸和工艺参数。
3. 反应器尺寸反应器尺寸的确定需要考虑反应物的摩尔质量、摩尔流量以及理想反应转化率。
同时,反应器的尺寸还受到传热和传质的限制。
三、反应器设计要点1. 反应器材料选择反应器材料的选择要考虑到反应物的性质、温度、压力以及反应物对材料的腐蚀性。
一般常用的反应器材料包括不锈钢、玻璃钢和塑料等。
2. 反应器搅拌搅拌是为了保持反应物的均匀分布和提高反应效率。
根据反应物不同的物理性质,可以选择机械搅拌、涡轮搅拌或气泡搅拌等不同搅拌方式。
3. 反应器传热反应过程中的热量传递对反应速率和产物分离都有很大影响。
常见的传热方式包括对流传热、导热和辐射传热等。
4. 反应器安全反应器设计中的安全性是一个重要考虑因素。
需要考虑反应过程中可能产生的高温、高压、有毒物质等危险因素,确保设备和操作人员的安全。
四、反应器设计资料的收集与整理1. 反应物性质的调查和记录,包括摩尔质量、密度、粘度等。
2. 反应动力学研究资料,包括反应速率方程、反应物浓度变化等实验数据。
3. 反应器材料的选择和性能参数资料,包括不同材料的耐腐蚀性、耐压性等指标。
4. 反应器传热和传质的资料,包括传热系数、传质系数等。
5. 相关的安全设计资料和规范,确保反应器设计过程中符合相关法规和标准要求。
反应器的温度低于正常温度:反应不完全, 其未反应的生煤将进入后续单元, 给后续单元造成更大的操作负荷和难度;反应器的温度过高:则容易使液化油气化, 导致操作不稳定, 油收率降低, 也容易导致反应器结焦, 减少了反应器的有效体积和物料在反应器内的停留时间, 甚至导致反应中断。
反应器的类型:自从1913年德国的Berg ius发明煤直接液化技术以来, 德国、美国、日本、前苏联等国家已经相继开发了几十种煤液化工艺, 所采用的反应器的结构也各不一样。
总的来说, 迄今为止, 经过中试和小规模工业化的反应器主要有3种类型:鼓泡式反应器鼓泡床反应器结构简单, 其外形为细长的圆筒, 其长径比一般为18~ 30, 里面除必要的管道进出口外, 无其他多余的构件。
为达到足够的停留时间,同时有利于物料的混合和反应器的制造, 通常用几个反应器串联。
氢气和煤浆从反应器底部进入, 反应后的物料从上部排出。
由于反应器内物料的流动形式为平推流(即活塞流) , 理论上完全排除了返混现象, 实际应用中大直径的鼓泡床反应器液相有轻微的返混, 因此也有称该种反应器为活塞流反应器。
日本液化工艺和德国液化工艺鼓泡床反应器是典型的液化鼓泡床反应器, 其结构如图1和图2所示。
德国在二战前的工艺( IG ) 和新工艺( IGOR )、日本的NEDOL工艺、美国的SRC和EDS以及俄罗斯的低压加氢工艺等都采用了这种反应器。
相对而言它是3种反应器中最为成熟的一种。
日本新能源开发机构组织了10家公司合作开发了NEDOL液化工艺, 在日本鹿岛建成了150t /d中试厂[ 8 ] 。
该厂于1996 年7 月投入运行, 至1998年完成了1个印尼煤种和1个日本煤种的连续运行试验。
NEDOL 工艺反应器底部为半球形,由于长期运转后, 反应器底部有大颗粒的沉积现象, 因此反应器底部有定期排渣口, 定期排除沉积物。
德国IG 公司二战前通过工业试验发现, 用某些褐煤做液化试验时, 第一反应器运行几个星期后, 反应器就会因为堵塞而停下来, 里面积聚了大量的2~ 4 mm 的固体。