人教版九年级上册数学第一次月考试题
- 格式:doc
- 大小:286.50 KB
- 文档页数:6
人教版九年级上册数学第一次月考试题一、单选题1.关于x 的方程ax 2﹣3x +2=0是一元二次方程,则a 满足的条件是( )A .a >0B .a ≠0C .a =1D .a ≥02.方程()20x x +=的根是( )A .2x =B .0x =C .120,2x x ==D .120,2x x ==- 3.用配方法解方程2610x x +-=时,原方程可变形为( )A .2(3)10x -=B .2(3)10x +=C .2(3)8x +=D .2(3)8x -= 4.抛物线y =x 2−2x +5的对称轴是( )A .直线x =2B .直线x =−1C .直线x =−2D .直线x =1 5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( )A .22(2)1y x =-+-B .22(2)1y x =--+C .22(2)1y x =++D .22(2)1y x =-- 6.已知点A (﹣2,a ),B (12,b ),C (52,c )都在二次函数y=﹣x 2+2x+3的图象上,那么a 、b 、c 的大小是( )A .a <b <cB .b <c <aC .a <c <bD .c <b <a 7.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+与反比例函数c y x=在同一平面直角坐标系中的大致图象为( )A .B .C .D . 8.关于x 的一元二次方程(a ﹣5)x 2﹣4x ﹣1=0有实数根,则a 满足( )A .a ≥1B .a >1且a ≠5C .a ≥1且a ≠5D .a ≠59.用配方法解方程x 2﹣6x ﹣7=0,下列配方正确的是( )A .(x ﹣3)2=16B .(x +3)2=16C .(x ﹣3)2=7D .(x ﹣3)2=2 10.若二次函数2()1y x m =--.当x ≤ 3时,y 随x 的增大而减小,则m 的取值范围是( ) A .m = 3B .m >3C .m ≥ 3D .m ≤ 3二、填空题11.若抛物线2(2)32y a x x =-+-有最大值,则a 的取值范围是______________. 12.抛物线22(1)8y x =-+的顶点坐标是 ______________.13.二次函数228y x mx =++的图象顶点在x 轴上,则m 的值是_______________. 14.河北省赵县的赵州桥的拱桥是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为2125y x =-,当水面离桥拱顶的高度DO 为4m 时,这时水面宽度AB 为______________.15.若二次函数2y ax bx c(a 0)=++<的图像经过(2,0),且其对称轴为直线x=-1,则当函数值y>0成立时,x 的取值范围是________.16.如图,菱形ABCD 的三个顶点在二次函数232(0)2y ax ax a =-+<的图象上,点A 、B 分别是该抛物线的顶点和抛物线与y 轴的交点,则点D 的坐标为____________.三、解答题17.解方程:2--=.x x231018.某地2016年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2018年投入资金2880万元,则从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?19.如图,已知二次函数的顶点为(2,1-),且图象经过A(0,3),图象与x轴交于B、C两点.(1)求该函数的解析式;(2)连结AB、AC,求△ABC面积.20.某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水.连喷头在内,柱高为1m.水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示.根据设计图纸已知:在图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m )之间的函数关系式是221y x x =-++.(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水流都落在水池内? 21. 兰州银滩黄河大桥北起安宁营门滩,南至七里河马滩,是黄河上游的第一座大型现代化斜拉式大桥如图,小明站在桥上测得拉索AB 与水平桥面的夹角是31°,拉索AB 的长为152米,主塔处桥面距地面7.9米(CD 的长),试求出主塔BD 的高.(结果精确到0.1米,参考数据:sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)22.甲、乙两名学生在同一小区居住,一天早晨,甲、乙两人同时从家出发去同一所学校上学.甲骑自行车匀速行驶.乙步行到公交站恰好乘上一辆公交车,公交车沿公路匀速行驶,公交车的速度分别是甲骑自行车速度和乙步行速度的2倍和5倍,下车后跑步赶到学校,两人同时到达学校(上、下车时间忽略不计).两人各自距家的路程y (m )与所用的时间x (min )之间的函数图象如图所示.(1)a= ,b= .(2)当乙学生乘公交车时,求y 与x 之间的函数关系式(不要求写出自变量x 的取值范围). (3)如果乙学生到学校与甲学生相差1分钟,直接写出他跑步的速度.23.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y (件)与销售价x (元/件)之间的函数关系如图所示. (1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?24.如图,在等腰三角形ABC中,∠ACB=90°,AC=BC=2cm,点M(不与A、B重合),从点A出发沿AB的速度向终点B运动.在运动过程中,过点M作MN⊥AB,交射线BC于点N,以线段MN为直角边作等腰直角三角形MNQ,且∠MNQ=90°(点B、Q 位于MN两侧).设△MNQ与△ABC重叠部分图形面积为S(cm2),点M的运动时间为t (s).(1)用含t的代数式表示线段MN的长,MN= .(2)当点N与点C重合时,t= .(3)求S与t之间的函数关系式.25.如图,已知抛物线y=ax2+32x+4的对称轴是直线x=3,且与轴相交于A、B两点(B点在A点的右侧),与轴交于C点.(1)A点的坐标是;B点坐标是;(2)直线BC的解析式是:;(3)点P是直线BC上方的抛物线上的一动点(不与B、C重合),是否存在点P,使△PBC 的面积最大.若存在,请求出△PBC的最大面积,若不存在,试说明理由;(4)若点M在x轴上,点N在抛物线上,以A、C、M、N为顶点的四边形是平行四边形时,请直接写出点M点坐标.参考答案1.B2.D3.B4.D5.D6.C7.B8.C9.A10.C11.2a >12.(1, 8)13.8±14.2015.42x -<<16.(2, 32). 17.1x =2x = . 18.该地投入异地安置资金的年平均增长率为50%.19.(1)2(2)1y x =--;(2)3ABC S =△.20.(1)最大高度是2米;(21时,才能使喷出的水流都落在水池内.21.主塔BD 的高约为86.9米.22.(1)400,2400;(2)4001600y x =-;(3)乙跑步的速度为100 m/min 或150 m/min .23.(1)y =−x +40(10≤x ≤16);(2)每件销售价为16元时,每天的销售利润最大,最大利润是144元.24.(1);(2)1;(3)2221(01)27384(11)24344(2)4t t S x t t t x ⎧<<⎪⎪⎪=-+-≤<⎨⎪⎪-+≤<⎪⎩. 25.(1)A (2-,0) B (8,0);(2)142y x =-+ ; (3)存在点P ,使△PBC 的面积最大,最大面积是16 ;(4)(8-,0),(4, 0),(5+0),(5,0).。
人教版九年级上册数学第一次月考试题一、单选题1.方程x 2-4x-3=0的一次项系数和常数项分别为()A .4和3B .4和﹣3C .﹣4和﹣3D .﹣4和32.抛物线24y x =-与y 轴的交点坐标为()A .()0,4B .()4,0C .()0,4-D .()4,0-3.把方程x 2﹣4x ﹣1=0转化成(x+m )2=n 的形式,则m ,n 的值是()A .2,3B .2,5C .﹣2,3D .﹣2,54.若关于x 的一元二次方程230x x a -+=的一个根为1,则a 的值为()A .2B .3C .-2D .-15.一元二次方程2x 2-3x +1=0根的情况是()A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根6.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A .6B .7C .8D .97.已知抛物线y =x 2+x-1经过点P(m ,5),则代数式m 2+m+100的值为()A .104B .105C .106D .1078.把二次函数y =-x 2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象,则新图象,则新图象所表示的二次函数的解析式是()A .y =-(x -2)2+5B .y =-(x +2)2+5C .y =-(x -2)2-5D .y =-(x +2)2-59.设1(2,)A y -,2(1,)B y -,3(1,)C y ,是抛物线2(1)y x m =+-上的三点,则y 1,y 2,y 3的大小关系为()A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 3>y 2>y 1D .y 3>y 1>y 210.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,有下列4个结论:①abc >0;②b 2<4ac ;③9a+3b+c <0;④2c <3b .其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题11.方程x2﹣4x=0的解为______.12.方程(m-1)21m x++3x+5=0为一元二次方程,则m的值为___.x x+=______.13.已知方程2+-=的两根分别为1x和2x,则12x x243014.抛物线y=2(x-3)2+1的顶点坐标为_______.15.有一人感染了传染性很强的病毒,经过两轮传染后共有625人患病,每轮传染中平均一人传染______人.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,请直接写出不等式ax2+bx+c>0的解集_____.x2平移得到抛物线m,抛物线m经过点A(﹣6,0)和原点O(0,17.如图,把抛物线y=12x2交于点Q,则图中阴影部分的面积为.0),它的顶点为P,它的对称轴与抛物线y=12三、解答题18.解方程:2670-+=x x19.已知二次函数y=﹣2x2+5x﹣2.(1)写出该函数的对称轴,顶点坐标;(2)求该函数与坐标轴的交点坐标.20.一条抛物线经过点A(-2,0)且抛物线的顶点是(1,-3),求满足此条件的函数解析式.21.已知关于x的方程x2﹣2(m+1)x+m2﹣3=0的两实根为x1,x2.(1)求m的取值范围;(2)如果x12+x22=x1x2+33,求m的值.22.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地花圃ABCD,AB边上留有2米宽的小门EF(用其他材料做,不用篱笆围).(1)设花圃的一边AD长为x米,请你用含x的代数式表示另一边CD的长为米;(2)当矩形场地面积为160平方米时,求AD的长.23.某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围;求x为何值时y的值为1920;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少.24.阅读下列材料,并用相关的思想方法解决问题.材料:为解方程x4﹣x2﹣6=0可将方程变形为(x2)2﹣x2﹣6=0然后设x2=y,则(x2)2=y2,原方程化为y2﹣y﹣6=0…①解得y1=﹣2,y2=3,当y1=﹣2时,x2=﹣2无意义,舍去;当y2=3时,x2=﹣3,解得x=所以原方程的解为x1x2问题:(1)在原方程得到方程①的过程中,利用法达到了降次的目的,体现了的数学思想;(2)利用以上学习到的方法解下列方程(x2+5x+1)(x2+5x+7)=7.-,与y 25.如图,抛物线2y x bx c=++与x轴交于A,B两点,其中点A的坐标为(3,0)D--在抛物线上.轴交于点C,点(2,3)(1)求抛物线的解析式;(2)抛物线的对称轴上有一动点P,求出PA PD的最小值;△的面积为6,求点Q的坐标.(3)若抛物线上有一动点Q,使ABQ参考答案1.C【分析】根据ax2+bx+c=0(a,b,c是常数且a≠0)a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.【详解】解:x2-4x-3=0的一次项系数和常数项分别为-4,-3.故选:C.【点睛】本题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0)特别要注意a≠0的条件.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.2.C【解析】【分析】求图象与y轴的交点坐标,令x=0,求y即可.【详解】当x=0时,y=-4,所以y轴的交点坐标是(0,-4).故选:C.【点睛】主要考查了二次函数图象与y轴的交点坐标特点,解题的关键是熟知函数图像的特点.3.D【解析】【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:∵x2﹣4x﹣1=0,∴x2﹣4x=1,则x2﹣4x+4=1+4,即(x﹣2)2=5,∴m=﹣2,n=5,故选:D.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的集中常用方法:直接开方法、因式分解法、公式法、配方法,结合方程特点选择合适、简便的方法是解题关键.4.A【解析】【分析】根据方程的解的定义,把x=1代入方程,即可得到关于a的方程,再求解即可.【详解】解:根据题意得:1-3+a=0解得:a=2.故选A.【点睛】本题主要考查了一元二次方程的解的定义,特别需要注意的条件是二次项系数不等于0.5.B 【解析】【分析】根据一元二次方程根的判别式24b ac -与0的大小关系,即可得出方程根的情况.【详解】解:2x 2-3x +1=0,2,3,1a b c ==-=,∴224(3)42110b ac -=--⨯⨯=>,∴方程有两个不相等的实数根,故选:B .【点睛】本题主要考查了一元二次方程根的判别式,解题的关键在于掌握根的判别式的应用,即240b ac ->,方程有两个不相等的实数根;240b ac -=,方程有两个相等的实数根;240b ac -<,方程无实数根.6.D 【解析】【分析】根据球赛问题模型列出方程即可求解.【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x ﹣1)=36,化简,得x 2﹣x ﹣72=0,解得x 1=9,x 2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D .【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.C【解析】【分析】把P(m,5)代入y=x2+x﹣1得m2+m=6,然后利用整体代入的方法计算代数式的值.【详解】解:把P(m,5)代入y=x2+x﹣1得m2+m﹣1=5,所以m2+m=6,所以m2+m+100=6+100=106.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式,也考查了整体思想的应用.8.A【解析】【分析】根据函数图象“左加右减,上加下减”可得答案.【详解】解:把二次函数y=-x2的图象先向右平移2个单位,再向上平移5个单位后得到一个新图象是y=-(x-2)2+5,故选:A.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.9.D【解析】【分析】根据二次函数的对称性,可利用对称性,找出点C的对称点C ,再利用二次函数的增减性可判断y值的大小.【详解】解: 函数的解析式是2(1)y x m =+-,∴对称轴是直线1x =-,∴点C 关于对称轴的点C '是1(3,)y -,那么点A 、B 、C '都在对称轴的左边,而对称轴左边y 随x 的增大而减小,于是312y y y >>.故选:D .【点睛】本题考查了二次函数图象上点的坐标的特征,解题的关键是利用二次函数的对称性得出C 关于对称轴的点C '.10.B 【解析】【分析】①函数对称轴在y 轴右侧,则ab <0,c >0,即可求解;②根据抛物线与x 轴有两个交点,由判别式即可得解;③当x=3时,y <0,即可求解;④函数的对称轴为:x=1,故b=-2a ,结合③的结论,代入9a+3b+c <0,即可得解;【详解】解:①函数对称轴在y 轴右侧,则ab <0,c >0,故①错误,不符合题意;②抛物线与x 轴有两个交点,则b 2﹣4ac >0,所以b 2>4ac ,故②错误,不符合题意;③x =3时,y =9a+3b+c <0,故正确,符合题意;④函数的对称轴为:x =1,故b =﹣2a ,∴2b a =-,由③知9a+3b+c <0,代入得302bc -+<,故2c <3b 正确,符合题意;故选:B .【点睛】本题考查的是二次函数图象与系数的关系,要求学生熟悉函数的基本性质,能熟练求解函数与坐标轴的交点及顶点的坐标等.11.x 1=0,x 2=4【解析】【分析】24x x -提取公因式x ,再根据“两式的乘积为0,则至少有一个式子的值为0”求解.【详解】解:240x x -=,(4)0x x -=,0x =或40x -=,10x =,24x =,故答案是:10x =,24x =.【点睛】本题考查一元二次方程的解法,解题的关键是掌握在解一元二次方程时应当注意要根据实际情况选择最合适快捷的解法,该题运用了因式分解法.12.-1【解析】【分析】把含有一个未知数且未知数的最高次数为二次的整式方程是一元二次方程,根据一元二次方程的概念即可完成.【详解】由题意得:212m +=且m-1≠0解得:m=-1即当m=-1时,方程(m-1)21m x ++3x+5=0是一元二次方程.【点睛】本题考查了一元二次方程的概念,其一般形式为20ax bx c ++=,其中a≠0,且a ,b ,c 是常数,理解概念是关键.13.2-【解析】【分析】方程()200++=≠ax bx c a 的两根分别为1x 和2x ,则1212,,b c x x x x a a+=-=根据根与系数的关系直接计算即可.【详解】解: 方程22430x x +-=的两根分别为1x 和2x ,1242.2b x x a ∴+=-=-=-故答案为: 2.-【点睛】本题考查的是一元二次方程的根与系数的关系,掌握“一元二次方程的根与系数的关系”是解题的关键.14.(3,1)【解析】【分析】由抛物线解析式可求得答案.【详解】根据二次函数的性质,由顶点式直接得出顶点坐标为(3,1).故答案是(3,1).【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为直线x=h ,顶点坐标为(h ,k ).15.24【解析】【分析】根据题意列一元二次方程,解方程即可【详解】设每轮传染中平均一人传染x 人,则第一轮有(1)x +人感染,第二轮有2(1)x +人感染,根据题意可得:2(1)=625x +解得:1224,26x x ==-(不符题意,舍去)故答案为24【点睛】本题考查了一元二次方程的应用,解一元二次方程,根据题意列出方程是解题的关键.16.1<x <3【解析】【分析】直接写出抛物线在x 轴上方所对应的自变量的范围即可.【详解】解:不等式ax 2+bx+c >0的解集为1<x <3.故答案为1<x <3.【点睛】本题考查了二次函数与不等式(组):对于二次函数y=ax 2+bx+c (a 、b 、c 是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.17.272【解析】【分析】根据点O 与点A 的坐标求出平移后的抛物线的对称轴,然后求出点P 的坐标,过点P 作PM ⊥y 轴于点M ,根据抛物线的对称性可知阴影部分的面积等于四边形NPMO 的面积,然后求解即可.【详解】过点P 作PM ⊥y 轴于点M ,设PQ 交x 轴于点N ,∵抛物线平移后经过原点O 和点A (﹣6,0),∴平移后的抛物线对称轴为x=﹣3.∴平移后的二次函数解析式为:y=12(x+3)2+h ,将(﹣6,0)代入得出:0=12(﹣6+3)2+h ,解得:h=﹣92.∴点P 的坐标是(3,﹣92).根据抛物线的对称性可知,阴影部分的面积等于矩形NPMO 的面积,∴S=9273=22⨯-18.13x =+23x =【解析】【分析】根据方程特点,先将方程变形为267-=-x x ,则利用配方法求解即可.【详解】解:∵2670x x -+=,∴267-=-x x ,则26979x x -+=-+,即2(3)2x -=,∴3x -=∴13x =+23x =【点睛】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法及步骤是解题的关键.19.(1)抛物线的对称轴x=52,顶点坐标为(52,212);(2)抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).【解析】【分析】(1)把二次函数y=-2x 2+5x-2化为顶点式的形式,根据二次函数的性质写出答案即可;(2)令x=0可求图象与y 轴的交点坐标,令y=0可求图象与x 轴的交点坐标;【详解】(1)∵y=﹣2(x 2﹣52x+2516﹣2516)﹣2=﹣2(x ﹣54)2+98,∴抛物线的对称轴x=54,顶点坐标为(54,98).(2)对于抛物线y=﹣2x 2+5x ﹣2,令x=0,得到y=﹣2,令y=0,得到﹣2x 2+5x ﹣2=0,解得:x=2或12,∴抛物线交y 轴于(0,﹣2),交x 轴于(2,0)或(12,0).20.()211 3.3y x =--【解析】【分析】设抛物线为:()2,y a x h k =-+根据抛物线的顶点坐标求解,h k ,再把()2,0A -代入解析式可得答案.【详解】解:设抛物线为:()2,y a x h k =-+ 抛物线的顶点是(1,-3),1,3,h k ∴==-∴抛物线为:()213,y a x =--把()2,0A -代入抛物线得:()22130,a ---= 93a ∴=,1,3a ∴=∴抛物线为:()211 3.3y x =--【点睛】本题考查的是利用待定系数法求解抛物线的解析式,根据题意设出合适的抛物线的解析式是解题的关键.21.(1)m≥-2;(2)m=2.【解析】【分析】(1)根据判别式在大于等于0时,方程有两个实数根,确定m 的值;(2)根据根与系数的关系可以求出m 的值.【详解】解:(1)∵△≥0时,一元二次方程有两个实数根,Δ=[2(m+1)]2-4×1×(m 2-3)=8m+16≥0,m≥-2,∴m≥-2时,方程有两个实数根.(2)∵x 12+x 22=x 1x 2+33,∴21212()3x x x x +-=33,∵1222b x x m a+=-=+,2123c x x m a ⋅==-,∴22(22)3(3)m m +--=33,解得m=2或-10(舍去),故m 的值是m=2.【点睛】本题考查了根的判别式和根与系数的关系,要记住12b x x a +=-,12c x x a⋅=-.22.(1)(36﹣2x );(2)AD =10米【解析】【分析】(1)设AD =x 米,则BC =AD =x 米,利用CD 的长=篱笆的长+门的宽﹣2AD ,即可用含x 的代数式表示出CD 的长;(2)利用矩形的面积计算公式,即可得出关于x 的一元二次方程,解之即可得出x 的值,再结合墙的长度为18米,即可确定AD 的长.【详解】(1)设AD =x 米,则BC =AD =x 米,∴CD =34+2﹣2AD =34+2﹣2x =(36﹣2x )米.故答案为:(36﹣2x ).(2)依题意得:x (36﹣2x )=160,化简得:x2﹣18x+80=0,解得:x1=8,x2=10.当x=8时,36﹣2x=36﹣2×8﹣20>18,不合题意,舍去;当x=10时,36﹣2x=36﹣2×10=16<18,符合题意.故AD的长为10米.【点睛】本题考查了列代数式,一元二次方程的应用,注意:求得的两个解要检验是否符合题意.23.(1)x=2;(2)每件商品的售价为34元时,商品的利润最大,为1960元.【解析】【分析】(1)销售利润=每件商品的利润×(180-10×上涨的钱数),根据每件售价不能高于35元,可得自变量的取值;(2)利用公式法结合(1)得到的函数解析式可得二次函数的最值,结合实际意义,求得整数解即可.【详解】解:(1)y=(30﹣20+x)(180﹣10x)=﹣10x2+80x+1800(0≤x≤5,且x为整数);令y=1920得:1920=﹣10x2+80x+1800x2﹣8x+12=0,(x﹣2)(x﹣6)=0,解得x=2或x=6,∵0≤x≤5,∴x=2,(2)由(1)知,y=﹣10x2+80x+1800(0≤x≤5,且x为整数).∵﹣10<0,∴当x=802(10)-⨯-=4时,y最大=1960元;∴每件商品的售价为34元答:每件商品的售价为34元时,商品的利润最大,为1960元.【点睛】本题考查考查二次函数的应用;得到月销售量是解决本题的突破点;注意结合自变量的取值求得相应的售价.24.(1)换元,化归;(2)x 1=0,x 2=﹣5【解析】【分析】(1)利用换元法达到了降次的目的,体现了化归的数学思想,据此可得答案;(2)令y =x 2+5x ,得到关于y 的一元二次方程,解之求出y 的值,从而得到两个关于x 的一元二次方程,分别求解可得.【详解】解:(1)在原方程得到方程①的过程中,利用换元法达到了降次的目的,体现了化归的数学思想;故答案为换元,化归.(2)令y =x 2+5x ,则原方程化为(y+1)(y+7)=7,整理,得:y 2+8y =0,解得y 1=0,y 2=﹣8,当y =0时,x 2+5x =0,解得:x 1=0,x 2=﹣5;当y =﹣8时,x 2+5x =﹣8,即x 2+5x+8=0,∵△=52﹣4×1×8=﹣7<0,∴此方程无解.综上,方程(x 2+5x+1)(x 2+5x+7)=7的解为x 1=0,x 2=﹣5.【点睛】本题考查利用换元法解方程,熟练掌握该方法是解题关键.25.(1)223y x x =+-;(2)(3)点Q 的坐标为(0,3)-或(2,3)--或(1-+或(1-【解析】【分析】(1)将A 、D 点代入抛物线方程2y x bx c =++,即可解出b 、c 的值,抛物线的解析式可得;(2)点C 、D 关于抛物线的对称轴对称,连接AC ,点P 即为AC 与对称轴的交点,PA+PD的最小值即为AC 的长度,用勾股定理即可求得AC 的长度;(3)求得B 点坐标,设点()2,23Q m m m +-,利用三角形面积公式,即可求出m 的值,点Q 的坐标即可求得.【详解】解:(1)∵抛物线2y x bx c =++经过点(3,0),(2,3)A D ---,∴930,423,b c b c -+=⎧⎨-+=-⎩解得2,3,b c =⎧⎨=-⎩∴抛物线的解析式为223y x x =+-.(2)由(1)得抛物线223y x x =+-的对称轴为直线1,(0,3)x C =--.∵(2,3)D --,∴C ,D 关于抛物线的对称轴对称,连接AC ,可知,当点P 为直线AC 与对称轴的交点时,PA PD +取得最小值,∴最小值为AC ==(3)设点()2,23Q m m m +-,令2230y x x =+-=,得3x =-或1,∴点B 的坐标为(1,0),∴4AB =.∵6QAB S = ,∴2142362m m ⨯⨯+-=,∴2260m m +-=或220m m +=,解得:1m =-1-0或2-,∴点Q 的坐标为(0,3)-或(2,3)--或(1-或(1-.【点睛】本题考察了待定系数法求解析式、两点之间线段最短、勾股定理、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答。
人教版数学九年级上册第一次月考试题一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠02.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.14.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y25.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x26.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2 8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为,与x轴的交点的坐标为,.13.请写出符合以下三个条件的一个函数的解析式,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)三、解答题16.(12分)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.17.(8分)用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.18.(8分)已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.19.(8分)二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.20.(8分)已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.21.(9分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?22.(8分)已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?23.(14分)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.参考答案与试题解析一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠0【考点】抛物线与x轴的交点.【分析】根据二次函数y=mx2+x﹣1的图象与x轴有两个交点,可得△=12﹣4m×(﹣1)>0且m≠0.【解答】解:∵原函数是二次函数,∴m≠0.∵二次函数y=mx2+x﹣1的图象与x轴有两个交点,则△=b2﹣4ac>0,△=12﹣4m×(﹣1)>0,∴m>﹣.综上所述,m的取值范围是:m>﹣且m≠0,故选C.【点评】本题考查了抛物线与x轴的交点,关键是熟记当△=b2﹣4ac>0时图象与x轴有两个交点;当△=b2﹣4ac=0时图象与x轴有一个交点;当△=b2﹣4ac<0时图象与x轴没有交点.2.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴【考点】抛物线与x轴的交点.【分析】根据抛物线的对称性得到点A和点B是抛物线上的对称点,所以点A和点B的对称轴即为抛物线的对称轴.【解答】解:∵抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),∴该二次函数的对称轴为直线x=2.故选C.【点评】本题考查了抛物线与x轴的交点:从二次函数的交点式y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0)中可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).解决本题的关键是掌握抛物线的对称性.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1【考点】二次函数的性质.【分析】观察图象即可判断.①开口向上,应有最小值;②根据抛物线与x轴的交点坐标来确定抛物线的对称轴方程;③x=﹣2时,对应的图象上的点在x轴下方,所以函数值小于0;④图象与x轴交于﹣3和1,所以当x=﹣3或x=1时,函数y的值都等于0.【解答】解:由图象知:①函数有最小值;错误.②该函数的图象关于直线x=﹣1对称;正确.③当x=﹣2时,函数y的值小于0;错误.④当x=﹣3或x=1时,函数y的值都等于0.正确.故正确的有两个,选C.【点评】此题考查了根据函数图象解答问题,体现了数形结合的数学思想方法.4.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的性质结合二次函数的解析式即可得出y1>y3>y2,此题得解.【解答】解:二次函数y=x2﹣6x+c的对称轴为x=3,∵a=1>0,∴当x=3时,y值最小,即y2最小.∵|﹣1﹣3|=4,|3+﹣3|=,4>,∴点y1>y3.∴y1>y3>y2.故选B.【点评】本题考查了二次函数的性质,根据二次函数的性质确定A、B、C三点纵坐标的大小是解题的关键.5.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.6.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)【考点】二次函数的性质.【分析】根据二次函数的顶点式一般形式的特点,可直接写出顶点坐标.【解答】解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选B.【点评】主要考查了求抛物线的顶点坐标的方法.7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2【考点】二次函数图象与几何变换.【分析】直接利用平移规律(左加右减,上加下减)求新抛物线的解析式.【解答】解:抛物线y=2x2向上、向左平移2个单位后的解析式为:y=2(x+2)2+2.故选:A.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1【考点】二次函数图象与几何变换.【分析】画出图形后可根据开口方向决定二次项系数的符号,开口度是二次项系数的绝对值;与y轴的交点为抛物线的常数项进行解答.【解答】解:关于x轴对称的两个函数解析式的开口方向改变,开口度不变,二次项的系数互为相反数;对与y轴的交点互为相反数,那么常数项互为相反数,故选D.【点评】根据画图可得到抛物线关于x轴对称的特点:二次项系数,一次项系数,常数项均互为相反数.二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.【考点】二次函数的三种形式.【分析】利用配方法操作整理,然后根据对应系数相等求出m、k,再相加即可.【解答】解:y=x2﹣2x﹣3,=(x2﹣2x+1)﹣1﹣3,=(x﹣1)2﹣4,所以,m=1,k=﹣4,所以,m+k=1+(﹣4)=﹣3.故答案为:﹣3.【点评】本题考查了二次函数的三种形式,熟练掌握配方法的操作是解题的关键.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是x1=﹣1,x2=5.【考点】抛物线与x轴的交点.【分析】由二次函数y=﹣x2+4x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+4x+m=0的解.【解答】解:根据图示知,二次函数y=﹣x2+4x+m的对称轴为x=2,与x轴的一个交点为(5,0),根据抛物线的对称性知,抛物线与x轴的另一个交点横坐标与点(5,0)关于对称轴对称,即x=﹣1,则另一交点坐标为(﹣1,0)则当x=﹣1或x=5时,函数值y=0,即﹣x2+4x+m=0,故关于x的一元二次方程﹣x2+4x+m=0的解为x1=﹣1,x2=5.故答案是:x1=﹣1,x2=5.【点评】本题考查了抛物线与x轴的交点.解答此题需要具有一定的读图的能力.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.【考点】抛物线与x轴的交点;二次函数的性质;二次函数的最值.【分析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=3﹣=,再根据抛物线的性质即可进行判断.【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故答案为:①③④.【点评】本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为(0,1),与x轴的交点的坐标为(,0),(1,0).【考点】抛物线与x轴的交点.【分析】函数y=2x2﹣3x+1与y轴的交点坐标,即为x=0时,y的值.当x=0,y=1.故与y 轴的交点坐标为(0,1);x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根为x1=,x2=1,与x轴的交点的坐标为(,0),(1,0).【解答】解:把x=0代入函数可得y=1,故y轴的交点坐标为(0,1),把y=0代入函数可得x=或1,故与x轴的交点的坐标为(,0),(1,0).【点评】解答此题要明白函数y=2x2﹣3x+1与y轴的交点坐标即为x=0时y的值;x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根.13.请写出符合以下三个条件的一个函数的解析式y=﹣x+2,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.【考点】二次函数的性质;一次函数的性质.【分析】由题意设出函数的一般解析式,再根据①②③的条件确定函数的解析式.【解答】解:设函数的解析式为:y=kx+b,∵函数过点(3,1),∴3k+b=1…①∵当x>0时,y随x的增大而减小,∴k<0…②,又∵当自变量的值为2时,函数值小于2,当x=2时,函数y=2k+b<2…③由①②③知可以令b=2,可得k=﹣,此时2k+b=﹣+2<2,∴函数的解析式为:y=﹣x+2.答案为y=﹣x+2.【点评】此题是一道开放性题,主要考查一次函数的基本性质,函数的增减性及用待定系数法来确定函数的解析式.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3.【考点】待定系数法求二次函数解析式.【分析】此图象告诉:函数的对称轴为x=1,且过点(3,0);用待定系数法求b,c的值即可.【解答】解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,考查了数形结合思想.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是①③.(只要求填写正确命题的序号)【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【分析】由图象可知过(1,0),代入得到a+b+c=0;根据﹣=﹣1,推出b=2a;根据图象关于对称轴对称,得出与X轴的交点是(﹣3,0),(1,0);由a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,根据结论判断即可.【解答】解:由图象可知:过(1,0),代入得:a+b+c=0,∴①正确;﹣=﹣1,∴b=2a,∴②错误;根据图象关于对称轴x=﹣1对称,与X轴的交点是(﹣3,0),(1,0),∴③正确;∵b=2a>0,∴﹣b<0,∵a+b+c=0,∴c=﹣a﹣b,∴a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,∴④错误.故答案为:①③.【点评】本题主要考查对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三、解答题16.(12分)(2016秋•南昌校级月考)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】①因式分解法求解可得;②整理成一般式后,因式分解法求解可得;③因式分解法求解可得;④公式法求解可得.【解答】解:①(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得:x=1或x=2;②原方程整理可得:x2﹣2x+1=0,∴(x﹣1)2=0,解得:x=1;③x(5﹣2x)=0,∴x=0或5﹣2x=0,解得x=0或x=;④∵a=1,b=6,c=﹣1,∴△=36+4=40>0,∴x==﹣3.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.【考点】二次函数的三种形式.【分析】①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.【解答】解:①y=2x2+6x﹣12=2(x+)2﹣,则该抛物线的顶点坐标是(﹣,﹣),对称轴是x=﹣;②y=﹣0.5x2﹣3x+3=﹣(x+3)2+,则该抛物线的顶点坐标是(﹣3,),对称轴是x=﹣3.【点评】此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式和对称轴公式.18.已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.【考点】二次函数的三种形式;二次函数的图象;二次函数的性质.【分析】(1)直接利用配方法得出函数顶点式即可;(2)利用顶点式得出顶点坐标,进而得出函数与坐标轴交点进而画出函数图象;(3)利用函数顶点式得出对称轴进而得出答案;(4)利用函数图象得出答案即可;(5)利用x=1以及x=4是求出函数值进而得出答案;(6)利用函数图象得出三角形面积即可.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8;(2)当y=0,则0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,故图象与x轴交点坐标为:(﹣1,0),(3,0),当x=0,y=﹣6,故图象与y轴交点坐标为:(0,﹣6),如图所示:;(3)当x<1时,y随x的增大而减少;(4)当x=1或﹣3时,y=0,当x<﹣1或x>3时,y>0,当﹣1<x<3时;y<0;(5)当0<x<4时,x=1时,y=﹣8,x=4时,y=10,故y的取值范围是:﹣8≤y<10;(6)如图所示:函数图象与两坐标轴交点所围成的三角形的面积为:×4×6=12.【点评】此题主要考查了配方法求函数顶点坐标以及利用图象判断函数值以及三角形面积求法,正确画出函数图象是解题关键.19.二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.【考点】二次函数综合题;解三元一次方程组;待定系数法求二次函数解析式.【分析】(1)根据开口方向可确定a的符号,由对称轴的符号,a的符号,结合起来可确定b的符号,看抛物线与y轴的交点可确定c的符号;(2)已知OA=3,解直角△OAB、△OAC可得B、C的坐标,设抛物线解析式的交点式,把A、B、C代入即可求解析式.【解答】解:(1)∵抛物线开口向上∴a>0又∵对称轴在y轴的左侧∴<0,∴b>0又∵抛物线交y轴的负半轴∴c<0(2)连接AB,AC∵在Rt△AOB中,∠ABO=45°∴∠OAB=45°,∴OB=OA∴B(﹣3,0)又∵在Rt△ACO中,∠ACO=60°∴OC=OAcot=60°=∴C(,0)设二次函数的解析式为y=ax2+bx+c(a≠0)由题意:∴所求二次函数的解析式为y=x2+(﹣1)x﹣3.【点评】本题考查了点的坐标求法,正确设抛物线解析式,求二次函数解析式的方法,需要学生熟练掌握.20.已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.【考点】抛物线与x轴的交点.【分析】(1)根据顶点A到y轴的距离为3,说明顶点A的横坐标为3或﹣3,根据公式﹣代入列式,求出m的值,分别代入解析式中,求出对应的顶点坐标A;也可以直接配方求得;(2)先计算抛物线与x轴的交点坐标,发现当m=﹣5时不符合题意,因此根据m=1时,对应的抛物线计算CD的长,求出点B的坐标.【解答】解:(1)由题意得:﹣=3或﹣3,∴m+2=3或m+2=﹣3,∴m=1或﹣5,当m=1时,抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18,∴顶点A的坐标为(3,﹣18);当m=﹣5时,抛物线C1:y=x2+6x+15=(x+3)2+6,∴顶点A的坐标为(﹣3,6);(2)设B(a,b),当抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18时,当y=0时,(x﹣3)2﹣18=0,x1=3+3,x2=3﹣3,∴CD=3+3+3﹣3=6,=6,∵S△BCD∴CD•|b|=6,∴×6•|b|=6,∴b=±2,当b=2时,x2﹣6x﹣9=2,解得:x=3±2,当b=﹣2时,x2﹣6x﹣9=﹣2,解得:x=7或﹣1,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2),当抛物线C1:y=x2+6x+15=(x+3)2+6时,当y=0时,(x+3)2+6=0,此方程无实数解,所以此时抛物线与x轴无交点,不符合题意,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2).【点评】本题是二次函数性质的应用,考查了抛物线与x轴的交点及顶点坐标,对于利用三角形面积求点的坐标问题,解题思路为:设出该点的坐标,根据面积列方程,求出未知数的值,再代入解析式中求另一坐标即可;同时要注意数形结合的思想的应用.21.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,元,∴当x=60时,P最大值=8000即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,﹣20×58+1600=440,∴当x=58时,y最小值=即超市每天至少销售粽子440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.22.已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?【考点】二次函数的应用.【分析】(1)根据二次函数性质可知该抛物线的对称轴x=﹣≤20,得出关于a的不等式,解之即可;(2)根据对称轴求出a,即可得二次函数解析式,将其配方成顶点式,根据函数取得最大值时即飞机滑行停止滑行,据此解答即可.【解答】解:(1)∵函数y=ax2+60x,在x>20时,y随x增大而减小,∴a<0且﹣≤20,解得:a≤﹣;(2)根据题意得:﹣=20,解得a=﹣,∴y=﹣x2+60x=﹣(x﹣20)2+600,则自变量x的范围为0≤x≤20,且飞机着陆后需滑行600米才能停下来.【点评】本题主要考查二次函数的应用,熟练掌握二次函数的性质及顶点在具体问题中的实际意义是解题的关键.23.(14分)(2016秋•南昌校级月考)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,列出a和b 的二元一次方程组,求出a和b的值,进而求出点B的坐标,即可求出直线BC的解析式;(2)过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);=PQ•OB列出S关于x的二次函数,利用函数的性质求出面积求出PQ的长,利用S△PCB的最大值,进而求出点P的坐标;(3)首先求出EF的长,设N(x,﹣x2+3x+4),则M(x,﹣x+4),利用平行四边形对边平行且相等列出x的一元二次方程,解方程求出x的值即可.【解答】解:(1)由题意得,解得.∴抛物线的解析式:y=﹣x2+3x+4.(2)由B(4,0)、C(0,4)可知,直线BC:y=﹣x+4;如图1,过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);∴PQ=(﹣x2+3x+4)﹣(﹣x+4)=﹣x2+4x;S△PCB=PQ•OB=×(﹣x2+4x)×4=﹣2(x﹣2)2+8;∴当P(2,6)时,△PCB的面积最大;(3)存在.抛物线y=﹣x2+3x+4的顶点坐标E(,),直线BC:y=﹣x+4;当x=时,F(,),∴EF=.如图2,过点M作MN∥EF,交直线BC于M,设N(x,﹣x2+3x+4),则M(x,﹣x+4);∴MN=|(﹣x2+3x+4)﹣(﹣x+4)|=|﹣x2+4x|;当EF与NM平行且相等时,四边形EFMN是平行四边形,∴|﹣x2+4x|=;由﹣x2+4x=时,解得x1=,x2=(不合题意,舍去).当x=时,y=﹣()2+3×+4=,∴N1(,).当﹣x2+4x=﹣时,解得x=,当x=时,y=,∴N2(,),当x=时,y=,∴N3(,),综上所述,点N坐标为(,)或(,)或(,).【点评】本题主要考查了二次函数综合题,此题涉及到待定系数法求函数解析式,二次函数的性质、三角形面积的计算、平行四边形的判定等知识,解答(2)问关键是用x表示出PQ 的长,解答(3)问关键是求出EF的长,利用平行四边形对边平行且相等进行解答,此题有一定的难度.。
人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。
人教版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.如果x=4是一元二次方程x²-3x=a²的一个根,则常数a 的值是()A .2B .﹣2C .±2D .±42.用配方法解方程241x x =+,配方后得到的方程是()A .2(2)5x -=B .2(2)4x -=C .2(2)3x -=D .2(2)14x -=3.关于x 的一元二次方程(a ﹣1)x 2+2x ﹣1=0有两个实数根,则a 的取值范围为()A .a≥0B .a <2C .a≥0且a≠1D .a≤2且a≠14.下列抛物线中,顶点坐标为()2,1的是()A .()221y x =++B .()221y x =-+C .()221y x =+-D .()221y x =--5.抛物线231y x =--是由抛物线23(1)1y x =-++怎样平移得到的()A .左移1个单位上移2个单位B .右移1个单位上移2个单位C .左移1个单位下移2个单位D .右移1个单位下移2个单位6.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )间的关系为21(4)312y x =--+,由此可知铅球推出的距离是()A .2mB .8mC .10mD .127.已知抛物线2231y ax ax a =-++()0a ≠图象上有两点()11,A x y 、()22,B x y ,当121x x <<-时,有12y y <;当112x -≤≤时,1y 最小值是6.则a 的值为()A .1-B .5-C .1或5-D .1-或5-8.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场每天要获得3750元利润,则每件玩具应涨多少元?这道应用题如果设每件玩具应涨x 元,则下列说法错误..的是()A .涨价后每件玩具的售价是(30)x +元;B .涨价后每天少售出玩具的数量是10x 件C .涨价后每天销售玩具的数量是(30010)x -件D .可列方程为:(30)(30010)3750x x +-=9.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为()A .10%B .15%C .20%D .25%10.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是()A .1B .2C .3D .4二、填空题11.当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,则m =_____.12.将二次函数()21132y x =++的图像沿x 轴对折后得到的图像解析式______.13.一元二次方程2280x x +-=的两根为12,x x ,则2112122x xx x x x ++=____________14.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是________.15.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过________人.16.学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面土有一瓶洗手液(如图①),于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A 下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且a=118-.洗手液瓶子的截面图下部分是矩形CGHD .小王同学测得:洗手液瓶子的底面直径GH=12cm ,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH 的水平距离为3cm ,若小王不去接,则洗手液落在台面的位置距DH 的水平距离是________cm .三、解答题17.解方程:(1)2230x x --=(2)23210x x +-=18.如图,二次函数y=(x+2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上的点A (﹣1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b 的x 的取值范围.19.如图,利用一面墙(墙EF 最长可利用28米),围成一个矩形花园ABCD .与墙平行的一边BC 上要预留2米宽的入口(如图中MN 所示,不用砌墙)用60米长的墙的材料,当矩形的长BC 为多少米时,矩形花园的面积为300平方米;能否围成430平方米的矩形花园?20.已知关于x 的一元二次方程2(1)0x a x a +++=.(1)求证:此方程总有两个实数根;a的值,并求此时方程的根.(2)如果此方程有两个不相等...的实数根,写出一个满足条件的21.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.22.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E 为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.23.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?24.已知,在平面直角坐标系中,抛物线22221y x mx m m =-++-的顶点为A ,点B 的坐标为(3,5)(1)求抛物线过点B 时顶点A 的坐标(2)点A 的坐标记为(,)x y ,求y 与x 的函数表达式;(3)已知C 点的坐标为(0,2),当m 取何值时,抛物线22221y x mx m m =-++-与线段BC 只有一个交点25.已知点()1,0A 是抛物线2y ax bx m =++(,,a b m 为常数,0,0a m ≠<)与x 轴的一个交点.(1)当1,3a m ==-时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为(),0M m ,与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =①当点E 落在抛物线上(不与点C 重合),且AE EF =时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是2?参考答案1.C 【分析】把x =4代入原方程得关于a 的一元一次方程,从而得解.【详解】把x =4代入方程223x x a -=可得16-12=2a ,解得a=±2,故选C .考点:一元二次方程的根.2.A 【分析】将方程的一次项移到左边,两边加上4变形后,即可得到结果.【详解】解:方程移项得:x 2−4x=1,配方得:x 2−4x+4=5,即(x−2)2=5.故选A .【点睛】本题考查了用配方法解一元二次方程,解题的关键是熟记完全平方公式.3.C 【分析】根据一元二次方程的定义及根与判别式的关系解答即可.【详解】∵一元二次方程()21210a x x -+-=有两个实数根,∴Δ=4+4(a-1)≥0且a-1≠0,解得:a≥0且a≠0,故选C.【点睛】本题考查一元二次方程的定义及根与判别式的关系:一元二次方程的二次项系数不能为0;方程有两个实数根,Δ≥0,没有实数根,Δ<0,熟练掌握相关知识是解题关键.4.B 【分析】根据各个选项中的函数解析式可以直接写出它们的顶点坐标,从而可以解答本题.【详解】解:()2y x 21=++的顶点坐标是()2,1-,故选项A 不符合题意,()2y x 21=-+的顶点坐标是()2,1,故选项B 符合题意,()2y x 21=+-的顶点坐标是()2,1--,故选项C 不符合题意,()2y x 21=--的顶点坐标是()2,1-,故选项D 不符合题意,故选:B .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.顶点式:y=a(x-h)²+k 抛物线的顶点P (h ,k ).5.D 【分析】根据二次函数()2y a x h k =-+的性质即可判断.【详解】抛物线()2311y x =-++经过右移1个单位下移2个单位,即()231112y x =-+-+-=231x --,故选D.【点睛】此题主要考查抛物线顶点式()2y a x h k =-+的特点,熟知顶点式的性质特点是解题的关键.6.C 【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】由题意可得y=0时,()214312x --+=0,解得:()24x -=36,即x 1=10,x 2=-2(舍去),所以铅球推出的距离是10m .故选C .7.B 【分析】先确定该抛物线的对称轴,再根据12121,<<-<x x y y 得到a <0,然后再根据112x -≤≤时,1y 最小值是6列出关于a 的一元二次方程并求解即可.【详解】解:∵2231y ax ax a =-++∴2239124y a x a a ⎛⎫=--++ ⎪⎝⎭,即该抛物线的对称轴为x=32∵121x x <<-时,12y y <∴a <0∵x=32在112x -≤≤范围内,∴当x=32时有最大值,x=-1时有最小值∴()()221311=6---++ a a a 整理得2450a a +-=,解得a=1(舍去)或a=-5故答案为B .【点睛】本题考查了二次函数图像的性质,掌握根据二次函数图像的性质求最值是解答本题的关键.8.D 【解析】A.涨价后每件玩具的售价是()30x +元,正确;B.涨价后每天少售出玩具的数量是10x 件,正确;C.涨价后每天销售玩具的数量是()30010x -件,正确;D.可列方程为:()()30300103750x x +-=,错误,应为(30+x-20)(300-10x)=3750,故选D.9.C 【分析】设平均每月的增长率为x ,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【详解】设平均每月的增长率为x ,根据题意得:200(1+x )2=288,(1+x )2=1.44,x 1=0.2=20%,x 2=-2.2(舍去),所以,平均每月的增长率为20%.故选C .【点睛】本题是一元二次方程的应用,属于增长率问题;增长率问题:增长率=增长数量原数量×100%.如:若原数是a ,每次增长的百分率为x ,则第一次增长后为a (1+x );第二次增长后为a (1+x )2,即原数×(1+增长百分率)2=后来数.10.C 【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确;③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确.故选C .11.10【分析】根据题目中的函数解析式和二次函数的性质,可以求得m 的值,本题得以解决.【详解】∵二次函数y =x 2﹣4x+5=(x ﹣2)2+1,∴该函数开口向上,对称轴为x =2,∵当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,∴当x =﹣1时,该函数取得最大值,此时m =(﹣1﹣2)2+1=10,故答案为:10.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.12.()21y x 312=-+-【分析】根据关于x 轴对称的点的坐标特点进行解答即可.【详解】解:∵关于x 轴对称的点横坐标不变,纵坐标互为相反数,∴函数()21132y x =++的图象沿x 轴对折,得到的图象的解析式为-()21132y x =++,即()21312y x =-+-;故答案为:()21312y x =-+-.【点睛】此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴对称的点的坐标特点,即关于x 轴对称的点横坐标不变,纵坐标互为相反数.13.372-【分析】根据根与系数的关系表示出12x x +和12x x 即可;【详解】∵2280x x +-=,∴1a =,2b =,8c =-,∴12=-2b x x a +=-,12==-8c x x a,∴2221211212121222+++=+x x x x x x x x x x x x ,=()21212121222+-+x x x x x x x x ,=()()()2228372882--⨯-+⨯-=--.故答案为372-.【点睛】本题主要考查了一元二次方程根与系数的关系,准确利用知识点化简是解题的关键.14.12和13【分析】设这个输入的数为x ,根据题意可得6x 2-4x+1=x ,整理成一般式后利用因式分解法求解可得.【详解】解:设这个输入的数为x ,根据题意可得6x 2﹣4x+1=x ,即6x 2﹣5x+1=0,∴(2x ﹣1)(3x ﹣1)=0,则2x ﹣1=0或3x ﹣1=0,解得:x=12或x=13,故答案为:12和13.【点睛】本题考查了因式分解法解一元二次方程,根据题意列出关于x 的方程和熟练掌握解一元二次方程的基本方法是解题的关键.15.11【分析】设每轮传染中平均一人传染x 人,那么经过第一轮传染后有x 人被感染,那么经过两轮传染后有x (x+1)+x+1人感染,又知经过两轮传染共有288人被感染由此列出方程求解即可.【详解】设每轮传染中平均一个人传染不超过x 人,由题意得,2+2x+(2+2x )x=288,解得:x 1=11,x 2=-13,答:每轮传染中平均一个人传染了11个人.故答案为11.【点睛】本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.16.【分析】根据题意得出各点坐标,进而利用待定系数法求抛物线解析式进而分析求解.【详解】解:如图,以GH 所在的直线为x 轴,GH 的垂直平分线所在的直线为y 轴建立平面直角坐标系,喷口B 为抛物线的顶点,B ,D ,H 所在的直线是抛物线的对称轴,∵GH=12,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH 的水平距离为3cm ,∴点G (-6,0),点H (6,0),BH=16,∴点B (6,16),点Q (9,15.5)∵a=118-设函数解析式为()22112y x 616x x 1418183=--+=-++当y=0时,()21x 616018--+=解之:12x 6x 6=+=-(舍去)∴洗手液落在台面的位置距DH 的水平距离为66+-=.故答案为:.【点睛】本题考查二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.17.(1)1213x x =-=,;(2)11x =-,213x =【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【详解】解:(1)2230x x --=()()130x x +-=∴x+1=0或x-3=0∴121,3x x =-=(2)23210x x +-=()()1310x x +-=∴x+1=0或3x-1=0∴11x =-,213x =.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)抛物线解析式为y=x 2+4x+3,一次函数解析式为y=﹣x ﹣1;(2)由图象可知,满足(x+2)2+m≥kx+b 的x 的取值范围为x ≤﹣4或x≥﹣1.【分析】(1)先利用待定系数法求出m ,再根据对称性求出点B 坐标,然后利用待定系数法求出一次函数解析式;(2)根据二次函数的图象在一次函数图象的上面即可写出自变量x的取值范围.【详解】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标为(0,3),∵抛物线的对称轴是直线x=﹣2,且B、C关于对称轴对称,∴点B坐标为(﹣4,3),∵y=kx+b经过点A、B,∴43k bk b-+=⎧⎨-+=⎩,解得11kb=-⎧⎨=-⎩,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.【点睛】本题考查二次函数与不等式、待定系数法求函数的解析式等知识,解答的关键是灵活运用待定系数法确定函数的解析式,能充分利用函数的图象根据条件确定自变量的取值范围. 19.12米,能围成430平方米的矩形花园【分析】根据可以砌60m长的墙的材料,即总长度是60m,BC=xm,则AB=12(60-x+2)m,再根据矩形的面积公式列方程,解一元二次方程即可.【详解】解:设矩形花园BC的长为x米,则其宽为12(60-x+2)米,依题意列方程得:12(60-x+2)x=300,x 2-62x+600=0,解这个方程得:x 1=12,x 2=50,∵28<50,∴x 2=50(不合题意,舍去),∴x=12.12(60-x+2)x=430,x 2-62x+860=0,解这个方程得:x 1x 2,当>28,不符合题意,舍去;当<28,符合题意,∴能围成430平方米的矩形花园。
人教版九年级上册第一次月考数学试卷一、选择题1.下列关系式中,属于二次函数的是(x 为自变量)( )A .y=x 2B .y=C .y=D .y=a 2x 22.二次函数y=2(x ﹣1)2+3的图象的顶点坐标是( )A .(1,3)B .(﹣1,3)C .(1,﹣3)D .(﹣1,﹣3)3.抛物线y=x 2+x ﹣4的对称轴是( ) A .x=﹣2 B .x=2 C .x=﹣4 D .x=44.抛物线y=﹣x 2+2kx+2与x 轴交点的个数为( )A .0个B .1个C .2个D .以上都不对5.如图,抛物线y=ax 2+bx+c (a >0)的对称轴是直线x=1,且经过点P (3,0),则a ﹣b+c 的值为( )A .0B .﹣1C .1D .26.已知二次函数y=2x 2+4x ﹣5,设自变量的值分别为x 1、x 2、x 3,且﹣1<x 1<x 2<x 3,则对应的函数值y 1、y 2、y 3的大小关系为( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2<y 3<y 1D .y 2>y 3>y 17.二次函数y=ax 2+bx+c 对于x 的任何值都恒为负值的条件是( )A .a >0,△>0B .a >0,△<0C .a <0,△>0D .a <0,△<08.把抛物线y=﹣2x 2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是( )A .y=﹣2(x ﹣1)2+6B .y=﹣2(x ﹣1)2﹣6C .y=﹣2(x+1)2+6D .y=﹣2(x+1)2﹣69.二次函数y=ax 2+bx+c 的图象如图所示,则abc ,b 2﹣4ac ,2a+b ,a+b+c 这四个式子中,值为正数的有( )A.4个B.3个C.2个D.1个10.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.二、填空题11.当m= 时,函数y=(m﹣4)x+3x是关于x的二次函数.12.初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x …﹣2 ﹣1 0 1 2 …y …﹣4 ﹣2 …根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y= .13.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.14.二次函数y=ax2+bx+c的图象如图,则直线y=ax+bc的图象不经过第象限.15.抛物线y=x2﹣2x﹣3关于x轴对称的抛物线的解析式为.16.已知抛物线y=x 2﹣(k+2)x+9的顶点在坐标轴上,则k 的值为 .三.解答题(共计72分)17.通过配方,写出下列函数的开口方向,对称轴和顶点坐标.(1)y=﹣3x 2+8x ﹣2(2)y=﹣x 2+x ﹣4.18.根据条件求二次函数的解析式:(1)抛物线的顶点坐标为(﹣1,﹣1),且与y 轴交点的纵坐标为﹣3(2)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,﹣2).19.校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y (m )与水平距离x (m )之间的函数关系式为y=﹣x 2+x+,求:(1)铅球的出手时的高度;(2)小明这次试掷的成绩.20.如图,直线y=2x+2与x 轴、y 轴分别相交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)求经过A ,A 1,B 1三点的抛物线的解析式.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;.(2)求△MCB的面积S△MCB22.二次函数y=ax2+bx+c的图象过A(﹣3,0),B(1,0),C(0,3),点D在函数图象上,点C,D是二次函数图象上的一对对称点,一次函数图象过点B,D,求:(1)一次函数和二次函数的解析式;(2)写出使一次函数值大于二次函数值的x的取值范围.23.一座隧道的截面由抛物线和长方形构成,长方形的长为8m,宽为2m,隧道最高点P位于AB的中央且距地面6m,建立如图所示的坐标系:(1)求抛物线的解析式;(2)一辆货车高4m,宽2m,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?24.某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:每件销售价(元)50 60 70 75 80 85 …每天售出件数300 240 180 150 120 90 …假设当天定的售价是不变的,且每天销售情况均服从这种规律.(1)观察这些统计数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式.(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)参考答案与试题解析一、选择题1.下列关系式中,属于二次函数的是(x为自变量)()A.y=x2B.y=C.y=D.y=a2x2【考点】二次函数的定义.【分析】根据二次函数的定义判定即可.【解答】解:A、y=x2,是二次函数,正确;B、y=,被开方数含自变量,不是二次函数,错误;C、y=,分母中含自变量,不是二次函数,错误;D、a=0时,a2=0,不是二次函数,错误.故选A.【点评】本题考查二次函数的定义.2.二次函数y=2(x﹣1)2+3的图象的顶点坐标是()A.(1,3) B.(﹣1,3)C.(1,﹣3)D.(﹣1,﹣3)【考点】二次函数的性质.【分析】根据二次函数的顶点式的特点,可直接写出顶点坐标.【解答】解:二次函数y=2(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选A.【点评】本题考查了二次函数的性质,把二次函数解析式整理成顶点式形式是解题的关键.3.抛物线y=x2+x﹣4的对称轴是()A.x=﹣2 B.x=2 C.x=﹣4 D.x=4【考点】二次函数的性质.【分析】可以用配方法将抛物线的一般式写成顶点式,或者用对称轴公式x=.【解答】解:∵抛物线y=x2+x﹣4=(x﹣2)2﹣3,∴顶点横坐标为x=2,对称轴就是直线x=2.故选B.【点评】数形结合,二次函数y=ax2+bx+c的图象为抛物线,其对称轴为x=.4.抛物线y=﹣x2+2kx+2与x轴交点的个数为()A.0个B.1个C.2个D.以上都不对【考点】抛物线与x轴的交点.【分析】让函数值为0,得到一元二次方程,根据根的判别式判断有几个解就有与x轴有几个交点.【解答】解:当与x轴相交时,函数值为0.0=﹣x2+2kx+2,△=b2﹣4ac=4k2+8>0,∴方程有2个不相等的实数根,∴抛物线y=﹣x2+2kx+2与x轴交点的个数为2个,故选C.【点评】用到的知识点为:x轴上的点的纵坐标为0;抛物线与x轴的交点个数与函数值为0的一元二次方程的解的个数相同.5.如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为()A.0 B.﹣1 C.1 D.2【考点】二次函数的图象.【专题】压轴题.【分析】由“对称轴是直线x=1,且经过点P (3,0)”可知抛物线与x 轴的另一个交点是(﹣1,0),代入抛物线方程即可解得.【解答】解:因为对称轴x=1且经过点P (3,0)所以抛物线与x 轴的另一个交点是(﹣1,0)代入抛物线解析式y=ax 2+bx+c 中,得a ﹣b+c=0.故选A .【点评】巧妙利用了抛物线的对称性.6.已知二次函数y=2x 2+4x ﹣5,设自变量的值分别为x 1、x 2、x 3,且﹣1<x 1<x 2<x 3,则对应的函数值y 1、y 2、y 3的大小关系为( )A .y 1>y 2>y 3B .y 1<y 2<y 3C .y 2<y 3<y 1D .y 2>y 3>y 1【考点】二次函数图象上点的坐标特征.【分析】在利用二次函数的增减性解题时,对称轴是非常重要的.根据x 1、x 2、x 3,与对称轴的大小关系,判断y 1、y 2、y 3的大小关系.【解答】解:∵y=2x 2+4x ﹣5=2(x+1)2﹣7,∴抛物线对称轴为直线x=﹣1,∵﹣1<x 1<x 2<x 3,∴在对称轴右侧,y 随x 的增大而增大,即y 1<y 2<y 3.故选B .【点评】主要考查了函数的对称轴求法和函数的单调性.7.二次函数y=ax 2+bx+c 对于x 的任何值都恒为负值的条件是( )A .a >0,△>0B .a >0,△<0C .a <0,△>0D .a <0,△<0【考点】抛物线与x 轴的交点.【分析】函数值恒为负值要具备两个条件:①开口向下:a <0,②与x 轴无交点,即△<0.【解答】解:如图所示,二次函数y=ax 2+bx+c 对于x 的任何值都恒为负值的条件是:a <0,△<0;故选D .【点评】本题考查了抛物线的性质,二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象与x轴交点的个数由△=b2﹣4ac决定;①△=b2﹣4ac>0时,抛物线与x轴有2个交点;②△=b2﹣4ac=0时,抛物线与x轴有1个交点;③△=b2﹣4ac<0时,抛物线与x轴没有交点.抛物线的开口方向由a决定,当a>0时,开口向上,当a<0时,开口向下.8.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6 C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣6【考点】二次函数图象与几何变换.【专题】压轴题.【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.【点评】解决本题的关键是得到新抛物线的顶点坐标.9.二次函数y=ax2+bx+c的图象如图所示,则abc,b2﹣4ac,2a+b,a+b+c这四个式子中,值为正数的有()A.4个B.3个C.2个D.1个【考点】二次函数图象与系数的关系.【专题】数形结合.【分析】由抛物线的开口方向可确定a的符号,由抛物线的对称轴相对于y轴的位置可得a与b之间的符号关系,由抛物线与y轴的交点位置可确定c的符号;由抛物线与x轴交点个数可确定b2﹣4ac的符号;根据抛物线的对称轴与x=1的大小关系可推出2a+b的符号;由于x=1时y=a+b+c,因而结合图象,可根据x=1时y的符号来确定a+b+c的符号.【解答】解:由抛物线的开口向上可得a>0,由抛物线的对称轴在y轴的右边可得x=﹣>0,则a与b异号,因而b<0,由抛物线与y轴的交点在y轴的负半轴上可得c<0,∴abc>0;由抛物线与x轴有两个交点可得b2﹣4ac>0;由抛物线的对称轴x=﹣<1(a>0),可得﹣b<2a,即2a+b>0;由x=1时y<0可得a+b+c<0.综上所述:abc,b2﹣4ac,2a+b这三个式子的值为正数.故选B.【点评】本题主要考查二次函数图象与系数的关系,其中a决定于抛物线的开口方向,b决定于抛物线的开口方向及抛物线的对称轴相对于y轴的位置,c决定于抛物线与y轴的交点位置,b2﹣4ac 的符号决定于抛物线与x轴交点个数,2a+b的符号决定于a的符号及﹣与1的大小关系,运用数形结合的思想准确获取相关信息是解决本题的关键.10.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据a、b的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除.【解答】解:当a>0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限,故A、D不正确;由B、C中二次函数的图象可知,对称轴x=﹣>0,且a>0,则b<0,但B中,一次函数a>0,b>0,排除B.故选:C.【点评】应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题11.当m= 1 时,函数y=(m﹣4)x+3x是关于x的二次函数.【考点】二次函数的定义.【分析】根据二次函数的定义即可得.【解答】解:∵函数y=(m﹣4)x+3x是关于x的二次函数,∴m2﹣5m+6=2且m﹣4≠0,解得:m=1,故答案为:1.【点评】本题主要考查二次函数的定义,掌握形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数是关键.12.初三数学课本上,用“描点法”画二次函数y=ax2+bx+c的图象时,列了如下表格:x …﹣2 ﹣1 0 1 2 …y …﹣4 ﹣2 …根据表格上的信息回答问题:该二次函数y=ax2+bx+c在x=3时,y= ﹣4 .【考点】二次函数的图象.【专题】压轴题;图表型.【分析】由表格可知,(0,﹣2),(2,﹣2)是抛物线上两对称点,可求对称轴x=1,再利用对称性求出横坐标为3的对称点(﹣1,﹣4)即可.【解答】解:观察表格可知,当x=0或2时,y=﹣2,根据二次函数图象的对称性,(0,﹣2),(2,﹣2)是抛物线上两对称点,对称轴为x==1,顶点(1,﹣2),根据对称性,x=3与x=﹣1时,函数值相等,都是﹣4.故答案为:﹣4.【点评】观察二次函数的对应值的表格,关键是寻找对称点,对称轴,利用二次函数的对称性解答.13.已知抛物线y=ax2+bx+c的部分图象如图所示,若y>0,则x的取值范围是x<﹣1或x>5 .【考点】抛物线与x轴的交点.【分析】使得y>0的x的取值范围就是函数的图象在x轴上方部分对应的自变量的取值范围.【解答】解:使得y>0的x的取值范围是x<﹣1或x>5.故答案为:x<﹣1或x>5.【点评】本题考查了二次函数与不等式的解集的关系,理解求y>0的x的取值范围就是函数的图象在x轴上方部分对应的自变量的取值是关键.14.二次函数y=ax2+bx+c的图象如图,则直线y=ax+bc的图象不经过第三象限.【考点】二次函数的性质;一次函数图象与系数的关系.【分析】先由二次函数的图象确定a、b、c字母系数的正负,再求出一次函数的图象所过的象限即可.【解答】解:由图象可知抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴对称轴x=﹣>0,∴b>0;∵抛物线与y轴的交点为在y轴的正半轴上,∴c>0;∵b>0,c>0∴一次函数y=ax+bc的图象不经过第三象限.故答案为三.【点评】本题考查了二次函数的图象与系数的关系,根据二次函数的图象确定二次函数的字母系数的取值范围是解题的关键.15.抛物线y=x2﹣2x﹣3关于x轴对称的抛物线的解析式为y=﹣x2+2x+3 .【考点】二次函数图象与几何变换.【分析】利用原抛物线上的关于x轴对称的点的特点:横坐标相同,纵坐标互为相反数就可以解答.【解答】解:∵抛物线y=x2﹣2x﹣3关于x轴对称的抛物线为﹣y=x2﹣2x﹣3,∴所求解析式为:y=﹣x2+2x+3.【点评】解决本题的关键是抓住关于x轴对称的坐标特点.16.已知抛物线y=x2﹣(k+2)x+9的顶点在坐标轴上,则k的值为4,﹣8,﹣2 .【考点】二次函数的性质.【分析】由于抛物线的顶点在坐标轴上,故应分在x轴上与y轴上两种情况进行讨论.【解答】解:当抛物线y=x2﹣(k+2)x+9的顶点在x轴上时,△=0,即△=(k+2)2﹣4×9=0,解得k=4或k=﹣8;当抛物线y=x2﹣(k+2)x+9的顶点在y轴上时,x=﹣==0,解得k=﹣2.故答案为:4,﹣8,﹣2.【点评】本题考查的是二次函数的性质,解答此题时要注意进行分类讨论,不要漏解.三.解答题(共计72分)17.通过配方,写出下列函数的开口方向,对称轴和顶点坐标.(1)y=﹣3x2+8x﹣2(2)y=﹣x 2+x ﹣4.【考点】二次函数的三种形式.【分析】(1)、(2)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:(1)y=﹣3x 2+8x ﹣2=﹣3(x ﹣)2+.该抛物线的开口方向向下,对称轴为x=,顶点坐标(,);(2)y=﹣x 2+x ﹣4=﹣(x ﹣2)2﹣3.该抛物线的开口方向向下,对称轴为x=2,顶点坐标(2,﹣3).【点评】本题考查了二次函数的三种形式.(1)一般式:y=ax 2+bx+c (a ≠0,a 、b 、c 为常数);(2)顶点式:y=a (x ﹣h )2+k ;(3)交点式(与x 轴):y=a (x ﹣x 1)(x ﹣x 2).18.(2016秋•蚌埠校级月考)根据条件求二次函数的解析式:(1)抛物线的顶点坐标为(﹣1,﹣1),且与y 轴交点的纵坐标为﹣3(2)抛物线在x 轴上截得的线段长为4,且顶点坐标是(3,﹣2).【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】应用待定系数法,求出每个二次函数的解析式各是多少即可.【解答】解:(1)∵抛物线的顶点坐标为(﹣1,﹣1),∴设抛物线的解析式为:y=a (x+1)2﹣1,∵抛物线与y 轴交点的纵坐标为﹣3,∴﹣3=a (0+1)2﹣1,解得a=﹣2.∴抛物线的解析式是y=﹣2(x+1)2﹣1,即y=﹣2x 2﹣4x ﹣3.(2)∵抛物线的顶点坐标是(3,﹣2),∴抛物线的对称轴为直线x=3,∵抛物线在x轴上截得的线段长为4,∴抛物线与x轴的两交点坐标为(1,0),(5,0),设抛物线的解析式为y=k(x﹣1)(x﹣5),则﹣2=k(3﹣1)(3﹣5)解得k=,∴抛物线解析式为y=(x﹣1)(x﹣5),即y=x2﹣3x+.【点评】此题主要考查了待定系数法求二次函数的解析式,要熟练掌握,利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.19.校运会上,小明参加铅球比赛,若某次试掷,铅球飞行的高度y(m)与水平距离x(m)之间的函数关系式为y=﹣x2+x+,求:(1)铅球的出手时的高度;(2)小明这次试掷的成绩.【考点】二次函数的应用.【分析】(1)当x=0时,求出y的值就可以求出铅球出手时的高度;(2)铅球落地才能计算成绩,此时y=0,即y=﹣0.2x2+1.6x+1.8=0,解方程即可.在实际问题中,注意负值舍去.【解答】解:(1)当x=0时,y=,∴铅球的出手时的高度为m.(2)由题意可知,把y=0代入解析式得:﹣x 2+x+=0,解得x 1=10,x 2=﹣2(舍去),即该运动员的成绩是10米.【点评】本题考查二次函数的实际应用,解决本题的关键是搞清楚铅球落地时,即y=0,测量运动员成绩,也就是求x 的值,此题为数学建模题,借助二次函数解决实际问题.20.如图,直线y=2x+2与x 轴、y 轴分别相交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)求经过A ,A 1,B 1三点的抛物线的解析式.【考点】待定系数法求二次函数解析式;作图-旋转变换.【专题】作图题;数形结合.【分析】本题是在直角坐标系中,对直线进行旋转的问题,实质上就是把A ,B 两点绕O 点顺时针旋转90°可以根据坐标轴的垂直关系画图.再根据已知三点A ,A 1,B 1的坐标,确定抛物线解析式.【解答】解:(1)如右图.(2)设该抛物线的解析式为:y=ax 2+bx+c .由题意知A 、A 1、B 1三点的坐标分别是(﹣1,0)、(0,1)、(2,0).∴,解这个方程组得.∴抛物线的解析式是:y=﹣x2+x+1.【点评】本题要充分运用形数结合的方法,在坐标系中对图形旋转,根据一次函数解析式求点的坐标,又根据点的坐标求二次函数解析式.21.已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.(1)求抛物线的解析式;(2)求△MCB的面积S.△MCB【考点】二次函数综合题.【专题】综合题;压轴题.【分析】(1)将已知的三点坐标代入抛物线中,即可求得抛物线的解析式.(2)可根据抛物线的解析式先求出M 和B 的坐标,由于三角形MCB 的面积无法直接求出,可将其化为其他图形面积的和差来解.过M 作ME ⊥y 轴,三角形MCB 的面积可通过梯形MEOB 的面积减去三角形MCE 的面积减去三角形OBC 的面积求得.【解答】解:(1)依题意:,解得∴抛物线的解析式为y=﹣x 2+4x+5(2)令y=0,得(x ﹣5)(x+1)=0,x 1=5,x 2=﹣1,∴B (5,0).由y=﹣x 2+4x+5=﹣(x ﹣2)2+9,得M (2,9)作ME ⊥y 轴于点E ,可得S △MCB =S 梯形MEOB ﹣S △MCE ﹣S △OBC =(2+5)×9﹣×4×2﹣×5×5=15.【点评】本题考查了二次函数解析式的确定以及图形面积的求法.不规则图形的面积通常转化为规则图形的面积的和差.22.二次函数y=ax 2+bx+c 的图象过A (﹣3,0),B (1,0),C (0,3),点D 在函数图象上,点C ,D 是二次函数图象上的一对对称点,一次函数图象过点B ,D ,求:(1)一次函数和二次函数的解析式;(2)写出使一次函数值大于二次函数值的x 的取值范围.【考点】二次函数与不等式(组).【分析】(1)将A 、B 、C 的坐标代入抛物线的解析式中即可求得二次函数的解析式,进而可根据抛物线的对称轴求出D 点的坐标,再用待定系数法求出一次函数解析式;(2)根据(1)画出函数图象,即可写出一次函数值大于二次函数值的x 的取值范围.【解答】解:(1)二次函数y 1=ax 2+bx+c 的图象经过点A (﹣3,0),B (1,0),C (0,3), 则,解得.故二次函数图象的解析式为y 1=﹣x 2﹣2x+3,∵对称轴x=﹣1,∴点D 的坐标为(﹣2,3),设y 2=kx+b ,∵y 2=kx+b 过B 、D 两点,∴, 解得.∴y 2=﹣x+1;(2)函数的图象如图所示,∴当y 2>y 1时,x 的取值范围是x <﹣2或x >1.【点评】此题主要考查了一次函数和二次函数解析式的确定以及根据函数图象比较函数值大小,画出函数图象熟练运用数形结合是解决第2问的关键.23.一座隧道的截面由抛物线和长方形构成,长方形的长为8m ,宽为2m ,隧道最高点P 位于AB 的中央且距地面6m ,建立如图所示的坐标系:(1)求抛物线的解析式;(2)一辆货车高4m ,宽2m ,能否从该隧道内通过,为什么?(3)如果隧道内设双行道,那么这辆货车是否可以顺利通过,为什么?【考点】二次函数的应用.【专题】代数几何综合题.【分析】(1)设出抛物线的解析式,根据抛物线顶点坐标,代入解析式;(2)令y=4,解出x 与2作比较;(3)隧道内设双行道后,求出横坐标与2作比较.【解答】解:(1)由题意可知抛物线的顶点坐标(4,6),设抛物线的方程为y=a (x ﹣4)2+6,又因为点A (0,2)在抛物线上,所以有2=a (0﹣4)2+6.所以a=﹣.因此有:y=﹣+6.(2)令y=4,则有4=﹣+6,解得x 1=4+2,x 2=4﹣2,|x 1﹣x 2|=4>2,∴货车可以通过;(3)由(2)可知|x 1﹣x 2|=2>2,∴货车可以通过.【点评】此题考抛物线的性质及其应用,求出横坐标与货车作比较,从而来解决实际问题.24.某工厂设门市部专卖某产品,该产品每件成本40元,从开业一段时间的每天销售统计中,随机抽取一部分情况如下表所示:每件销售价(元)50 60 70 75 80 85 …每天售出件数300 240 180 150 120 90 …假设当天定的售价是不变的,且每天销售情况均服从这种规律.(1)观察这些统计数据,找出每天售出件数y与每件售价x(元)之间的函数关系,并写出该函数关系式.(2)门市部原设有两名营业员,但当销售量较大时,在每天售出量超过168件时,则必须增派一名营业员才能保证营业有序进行,设营业员每人每天工资为40元.求每件产品应定价多少元,才能使每天门市部纯利润最大(纯利润指的是收入总价款扣除成本及营业员工资后的余额,其它开支不计)【考点】二次函数的应用.【分析】(1)经过图表数据分析,每天售出件数y与每件售价x(元)之间的函数关系为一次函数,设y=kx+b,解出k、b即可求出;(2)由利润=(售价﹣成本)×售出件数﹣工资,列出函数关系式,求出最大值.【解答】解:(1)经过图表数据分析,每天售出件数y与每件售价x(元)之间的函数关系为一次函数,设y=kx+b,经过(50,300)、(60,240),,解得k=﹣6,b=600,故y=﹣6x+600;(2)①设每件产品应定价x元,由题意列出函数关系式W=(x﹣40)×(﹣6x+600)﹣3×40=﹣6x2+840x﹣24000﹣120=﹣6(x2﹣140x+4020)=﹣6(x﹣70)2+5280.②当y=168时x=72,这时只需要两名员工,W=(72﹣40)×168﹣80=5296>5280.故当每件产品应定价72元,才能使每天门市部纯利润最大.【点评】此题主要考查了二次函数的应用,由利润=(售价﹣成本)×售出件数﹣工资,列出函数关系式,求出最大值,运用二次函数解决实际问题,比较简单.。
人教版九年级上册数学第一次月考试题一、单选题1.已知一元二次方程230x px ++=的一个根为3-,则p 的值为( )A .1B .2C .3D .42.如图5,已知抛物线的对称轴为,点A ,B 均在抛物线上,且AB 与x 轴平行,其中点A 的坐标为(0,3),则点B 的坐标为A .(2,3)B .(3,2)C .(3,3)D .(4,3)3.方程21(2)04m x -+=有两个实数根,则m 的取值范围( ) A .52m > B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠ 4.二次函数()20y ax bx c a =++≠的图象如图,给出下列四个结论:①240b ac ->;②420a b c -+<;③20a b -=;④()21am bm a b m +<-≠-,其中正确结论的个数是( )A .4个B .3个C .2个D .1个5.下列方程是一元二次方程的一般形式的是( )A .2(1)16x -=B .23(2)27x -=C .2530x x -=D 228x +=6.若抛物线y=ax 2+bx+c 如图所示,下列四个结论:①abc <0;②b ﹣2a <0;③a ﹣b+c <0;④b 2﹣4ac >0.其中正确结论的个数是( )A .1B .2C .3D .47.已知2510x x ++=,则1x x +的值为( ) A .5 B .1 C .-5 D .-18.已知:a b c >>,且0a b c ++=,则二次函数2y ax bx c =++的图象可能是下列图象中的( )A .B .C .D . 9.对于任意实数x ,多项式223x x -+的值是一个( )A .正数B .负数C .非负数D .不能确定 10.长为20cm ,宽为10cm 的矩形,四个角上剪去边长为xcm 的小正方形,然后把四边折起来,作成底面为2ycm 的无盖的长方体盒子,则y 与(05)x x <<的关系式为( ) A .()()1020y x x =--B .210204y x =⨯-C .()()102202y x x =--D .22004y x =+11.一人乘雪橇沿坡度为1S (米)与时间t (秒)之间的关系为S=10t+2t 2,若滑动时间为4秒,则他下降的垂直高度为( )A .72米B .36米 C.米 D. 12.一边靠墙(墙长7m ),另三边用14m 的木栏围成一个长方形,面积为220m ,这个长方形场地的长为( )A .10m 或5mB .5mC .4mD .2m13.用配方法解方程223x x -=时,原方程应变形为( )A .2(1)2x += B .2(1)2x -= C .2(1)4x += D .2(1)4x -=14.已知抛物线2(0)y kx k =>与直线()0y ax b a =+≠有两个公共点,它们的横坐标分别为1x 、2x ,又有直线y ax b =+与x 轴的交点坐标为()3,0x ,则1x 、2x 、3x 满足的关系式是( )A .123x x x +=B .123111x x x += C .12312x x x x x += D .122313x x x x x x +=二、填空题15.若24AB AB +=,则AB =________.16.把抛物线24y x x =+改写成2()y a x h k =++的形式为________.17.若代数式2(4)x -与代数式()94x -的值相等,则x =________.18.如图,抛物线y =ax 2+bx +c 与x 轴相交于点A ,B(m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是________.19.试写出一个二次函数关系式,使它对应的一元二次方程的一个根为0,另一个根在1到2之间:________.20.关于x的一元二次方程2620x x k-+=有两个不相等的实数根,则实数k的取值范围是________.21.观察下列各图中小球的摆放规律,若第n个图中小球的个数为y,则y与n的函数关系式为________22.如图,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1m,球路的最高点B(8,9),则这个二次函数的表达式为______,小孩将球抛出了约______米(精确到0.1m).三、解答题23.已知a、b、c均为有理数,判定关于x的方程22-+=-是不ax x c b31是一元二次方程?如果是,请写出二次项系数、一次项系数及常数项;如果不是,请说明理由.24.如图,把一张长15cm,宽12cm的矩形硬纸板的四周各剪去一个同样大小的小正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).设剪去的小正方形的边长为xcm.()1请用含x的代数式表示长方体盒子的底面积;()2当剪去的小正方形的边长为多少时,其底面积是2130cm?()3试判断折合而成的长方体盒子的侧面积是否有最大值?若有,试求出最大值和此时剪去的小正方形的边长;若没有,试说明理由.25.已知函数()229123y k x kx =-++是关于x 的二次函数,求不等式141123k k -+≥-的解集.26.已知函数223y x x =--的图象,根据图象回答下列问题.() 1当x 取何值时0y =.() 2方程2230x x --=的解是什么?() 3当x 取何值时,0y <?当x 取何值时,0y >?() 4不等式2230x x --<的解集是什么?27.如图,已知直线AB 经过点(0,4),与抛物线y=14x 2交于A ,B 两点,其中点A 的横坐标是2-.(1)求这条直线的函数关系式及点B 的坐标.(2)在x 轴上是否存在点C ,使得△ABC 是直角三角形?若存在,求出点C 的坐标,若不存在请说明理由.(3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?参考答案1.D2.D3.B4.B5.C6.C7.C8.C9.A10.C11.B12.B13.D14.B15 16.2(2)4y x =+-17.4或5-18.(-2,0)19.232y x x =- 20.92k < 21.21y n n =-+22.,16.523.方程为一元二次方程,二次项系数、一次项系数及常数项分别是:a (3-+,1c b -+.24.(1)()()2152122x x cm --;(2)当剪去的小正方形的边长为1cm 时,其底面积是2130cm ;(3)当剪去的小正方形的边长为278cm 时,长方体盒子的侧面积有最大值27298cm . 25.15k ≤且13k ≠-. 26.() 1当1x =-或3时,0y =;()12?1x =-,23x =;()3?13x -<<当时,0y <, 当1x <-或3x >时,0y >;()4?13x -<<. 27.(1)直线y=32x+4,点B 的坐标为(8,16);(2)点C 的坐标为(﹣12,0),(0,0),(6,0),(32,0);(3)当M 的横坐标为6时,MN+3PM 的长度的最大值是18.。
人教版九年级上册数学《第一次月考》考试题及答案【必考题】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥33.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 4.若函数y =(3﹣m )27mx -﹣x+1是二次函数,则m 的值为( ) A .3 B .﹣3C .±3D .9 5.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,将▱ABCD 沿对角线AC 折叠,使点B 落在B ′处,若∠1=∠2=44°,则∠B 为( )A .66°B .104°C .114°D .124°8.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x9.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.610.如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC,若∠A=60°,∠ADC=85°,则∠C的度数是()A.25°B.27.5°C.30°D.35°二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是____________.2.分解因式:2x y4y-=_______.3.若代数式1﹣8x与9x﹣3的值互为相反数,则x=__________.4.如图,直线34y x=+与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.5.如图所示的网格由边长为1个单位长度的小正方形组成,点A 、B 、C 、在直角坐标系中的坐标分别为()3,6,()3,3-,()7,2-,则ABC 内心的坐标为__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解方程:15102x x x x-+--=22.先化简,再求值:2111x y x y xy y⎛⎫+÷ ⎪+-+⎝⎭,其中x 52,y 5 2.3.某市推出电脑上网包月制,每月收取费用y (元)与上网时间x (小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65ACB∠的度数.∠=︒,求FGCABC∠=︒,2875迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了全面了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分为四个类别:A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)将图1补充完整;(2)通过分析,贫困户对扶贫工作的满意度(A、B、C类视为满意)是;(3)市扶贫办从该旗县甲乡镇3户、乙乡镇2户共5户贫困户中,随机抽取两户进行满意度回访,求这两户贫困户恰好都是同一乡镇的概率.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、B5、A6、A7、C8、C9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、()()y x 2x 2+-.3、24、5、(2,3)6、①③④.三、解答题(本大题共6小题,共72分)1、x =7.2、2xy x y- ,12 3、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)略;(2)78°.5、(1)答案见解析 (2)95% (3)256、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
人教版九年级上册数学月考试卷(带详解答案)九年级上册第一次月考试卷数学注意事项:1.本试卷分试题卷和答题卡两部分。
2.请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效。
3.考生务必将姓名、准考证号填写在答题卡第一面的指定位置上。
一、选择题1.已知关于x的一元二次方程x^2+2x-a=0有两个相等的实数根,则a的值是()A。
4B。
-4C。
1D。
-12.如果x^2+x-1=0,那么代数式x^3+2x^2-7的值是()A。
6B。
8C。
-6D。
-83.如图,抛物线y=ax^2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,4),则a-b+c的值为()A。
-1B。
1C。
24.已知二次函数的图象如图所示,则这个二次函数的表达式为()A。
y=x^2-2x+3B。
y=x^2-2x-3C。
y=x^2+2x-3D。
y=x^2+2x+35.用配方法解方程x^2+4x-1=0,下列配方结果正确的是().A。
(x+2)^2=5B。
(x+2)^2=1C。
(x-2)^2=1D。
(x-2)^2=56.如图,在一次函数y=-x+5的图象上取点P,作PA⊥x 轴于A,PB⊥y轴于B,且长方形OAPB的面积为6,则这样的点P个数共有()A。
4B。
3C。
2D。
17.在同一坐标系内,一次函数y=ax+b与二次函数y=ax^2+8x+b的图象可能是()8.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是二、填空题9.要组织一场足球比赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,问比赛组织者应邀请多少只球队参赛?设比赛组织者应邀请x支球队参赛,根据题意列出的方程是______________________。
10.如图,二次函数y=ax^2+bx+c的图象开口向上,图象经过点(-1,2)和(1,0),且与y轴相交于负半轴。
人教版九年级数学上学期第一次月考试卷(含答案)一、选择题(本大题共有10小题,每小题3分,共30分)1.如果a为任意实数,下列各式中一定有意义的是…………………………………………()A.aB.a2C.a21D.a212.下列各式中,属于最简二次根式的是…………………………………………………………()A.某2y2B.某y1C.12D.1某23.下列方程,是一元二次方程的是………………………………………………………………()22①3某某20②2某3某y40③某21某4④某20⑤某230某3A.①②B.①②④⑤C.①③④D.①④⑤4.若某3某某,则某的取值范围是……………………………………………………()3某A.某<3B.某3C.0某<3D.某05.方程(某3)(某3)的根为………………………………………………………………()A.3B.4C.4或3D.4或36.用配方法解方程某28某70,则配方正确的是……………………………………………()A.某49B.某49C.某816D.某8577.关于某的一元二次方程(a1)某某a10的一个根为0,则a的值为……………()A.1B.-1C.1或-1D.22222222128.三角形两边长分别是8和6,第三边长是一元二次方程某16某600的一个实数根,则该三角形的面积是……………………………………………………………………………………()A.24B.48C.24或85D.859.下列二次根式中,与3是同类二次根式的是………………………………………………()2310.某农场的粮食产量在两年内从2800吨增加到3090吨,若设平均每年增产的百分率为某,则所列的方程为…………………………………………………………………………………………()A.18B.12C.6D.A.28001某3090;B.1某290;二、填空题(本大题共有10小题,每小题3分,共30分)11.某10某(某).12.在直角坐标系内,点P(5,5)到原点的距离为.13.若a23,b2,且ab0,则ab.14.10在两个连续整数a和b之间,且a10b,那么a、b的值分别是.15.已知一元二次方程某+3某+m=0的一个根为-1,则另一个根为__________.16.某矩形的长为a,宽为b,且(a+b)(a+b+2)=8,则a+b的值为_。
人教版九年级上册数学第一次月考试题一、单选题1.方程2(2)10a x x -++=是关于x 的一元二次方程,则a 的取值范围是( ) A .0a ≠ B .2a ≠ C .2a = D .0a = 2.一元二次方程2y 2﹣7=3y 的二次项系数、一次项系数、常数项分别是( ) A .2,﹣3,﹣7 B .﹣2,﹣3,﹣7 C .2,﹣7,3 D .﹣2,﹣3,7 3.抛物线y =x 2+4x +7的对称轴是( )A .直线x =4B .直线x =﹣4C .直线x =2D .直线x =﹣2 4.一元二次方程x 2+x ﹣14=0的根的情况是( ) A .有两个不等的实数根 B .有两个相等的实数根C .无实数根D .无法确定 5.抛物线2245y x x a =+++(a 是常数)的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限 6.疫情期间,某快递公司推出无接触配送服务,第1周接到5万件订单,第2周到第3周订单量增长率是第1周到第2周订单量增长率的1.5倍,若第3周接到订单为7.8万件,设第1周到第2周的订单增长率为x ,可列得方程为( ).A .()51 1.57.8x x ++=B .()51 1.57.8x x +⨯=C .()()7.811 1.55x x --=D .()()511 1.57.8x x ++= 7.在同一坐标系中,二次函数2y ax b =+的图象与一次函数y bx a =+的图象可能是( ) A . B .C .D .8.若点()2,A m -,()3,B n 都在二次函数225y ax ax =-+(a 为常数,且0a >)的图象上,则m 和n 的大小关系是( )A .m n >B .m n =C .m n <D .以上答案都不对 9.如图是二次函数y =ax 2+bx+c 的部分图象,使y≥﹣1成立的x 的取值范围是( )A .x≥﹣1B .x≤﹣1C .﹣1≤x≤3D .x≤﹣1或x≥3 10.二次函数y =ax 2+bx +c (a≠0)的图象的对称轴是直线x =1,其图象的一部分如图所示,则:①abc <0;②a +b +c <0;③3a +c <0;④当﹣1<x <3时,y >0;⑤4ac >b 2,其中判断正确的有( )个.A .1B .2C .3D .4二、填空题 11.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a =____ 12.若关于x 的方程2(2)430k x x --+=有两个不相等的实数根,则k 的取值范围是__________.13.将抛物线y =﹣3x 2﹣1向左平移2个单位长度,再向下平移3个单位长度,所得到的抛物线为_____.14.已知二次函数y =mx 2+(m 2﹣3)x+1,当x =﹣1时,y 取得最大值,则m =______. 15.已知关于x 的方程()2650a x x a -++-=的两根都是整数,则整数a =________ 16.二次函数213y x =的图象如图所示,点A 0位于坐标原点O ,A 1,A 2,A 3…在y 轴的正半轴上,点B 1,B 2,B 3…在二次函数213y x =第一象限的图象上,若△A 0A 1B 1,△A 1A 2B 2,△A 2A 3B 3…,都为等边三角形,则点A 5的坐标为_____.17.如图所示的抛物线是二次函数y =(m ﹣2)x 2﹣3x +m 2+m ﹣6的图象,那么m 的值是_____.三、解答题18.解方程:(1)x 2﹣2x ﹣3=0;(2)2x 2+3x ﹣1=0.19.已知抛物线21y ax bx =++经过点(1,﹣2),(﹣2,13).(1)求a ,b 的值;(2)若(5,1y ),(m ,2y )是抛物线上不同的两点,且2112y y =-,求m 的值.20.已知关于x 的方程2(2)(1)30k x k x ++--=.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根1x 和2x ,且221210x x +=,求k 的值.21.已知一个二次函数图象上部分点的横坐标x 与纵坐标y 的对应值如表所示:(1)求这个二次函数的表达式:(2)在给定的平面直角坐标系中画出这个二次函数的图象:(3)当40x -≤≤时,直接写出y 的取值范围.22.如果关于x 的一元二次方程ax 2+bx+c=0(a≠0)有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程x 2+x=0的两个根是x 1=0,x 2=-1,则方程x 2+x=0是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”;①x 2-x-6=0;②2x 2;(2)已知关于x 的方程x 2-(m-1)x-m=0(m 是常数)是“邻根方程”,求m 的值;(3)若关于x 的方程ax 2+bx+1=0(a 、b 是常数,a >0)是“邻根方程”,令t=12a-b 2,试求t 的最大值.23.已知,点P 为二次函数()²21y x m m =---+图象的顶点,直线2y kx =+分别交x 轴的负半轴和y 轴于点A ,点B .(1)若二次函数图象经过点B ,求二次函数的解析式.(2)如图,若点A 坐标为(40)-,,且点P 在AOB 内部(不包含边界). ①求m 的取值范围;②若点16,5C y ⎛⎫- ⎪⎝⎭,21,5D y ⎛⎫ ⎪⎝⎭都在二次函数图象上,试比较1y 与2y 的大小24.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的矩形的周长与面积相等,则称这个点为“美好点”,如图,过点P 分别作x 轴,y 轴的垂线,与坐标轴围成的矩形OAPB 的周长与面积相等,则P 为“美好点”.(1)在点M (2,2),N (4,4),Q (﹣6,3)中,是“美好点”的有 . (2)若“美好点”P (a ,﹣3)在直线y =x +b (b 为常数)上,求a 和b 的值;(3)若“美好点”P 恰好在抛物线y =112x 2第一象限的图象上,在x 轴上是否存在一点Q 使得△POQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.(4)若平行于y 轴的直线l 分别与直线y =x ﹣(a ﹣1)和抛物线y =x 2﹣2ax 交于P 、Q 两点.若平移直线l的过程中,可使P、Q都在x轴的下方的情况存在,求a的取值范围.25.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的长方形花圃(由两个小矩形花圃组成).设花圃的一边AB为x m,面积为S m2.(1)求S与x之间的函数表达式(写出自变量的取值范围).(2)如果要围成面积为45m2的花圃,那么AB的长是多少米?(3)能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.参考答案1.B2.A3.D4.A5.B6.D7.C8.A9.C10.B11.112.k <103且k≠2. 13.y =﹣3(x +2)2﹣414.﹣1.15.5或716.(0,30)17.﹣318.(1)x 1=3,x 2=﹣1;(2)x 1,x 2=34- 19.(1)1,4a b ==-;(2)1m =-20.(1)证明见解析;(2)1-或3-.21.(1)y=x 2+2x-3;(2)见解析;(3)-4≤y≤522.(1)①不是;②是;(2)0或-2;(3)1623.(1)2(1)3y x =-++;(2)①205m -<<,②12y y <. 24.(1)N 、Q ;(2)a =6,b =﹣9或a =﹣6,b =3;(3)存在,Q (12,0)或(154,0)或(0)或(﹣0);(4)a <﹣1或a >125.(1)S =-3x 2+24x(143≤x<8);(2)AB 的长为5m ;(3)能围成面积比45m 2更大的花圃,最大面积为1403m 2,,此时AB =143m ,BC =10m .。
上学期九年级第一次月考数学试卷一、选择题(每题3分共30分)1、下列选项中一定是关于x 的一元二次方程的是( )(A )221xx +(B )bx ax +2(C )()()121=+-x x (D )052322=--y xy x 2、设a=19-1,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和53、下列运算正确的是( ) A.25=±5 B.43-27=1 C.18÷2=9 D.24·32=6 4、方程(x +1)(x -2)=x +1的解是( )(A )2 (B )3 (C )-1,2 (D )-1,35、关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定6、已知关于x 的方程x 2+bx +a =0有一个根是-a (a≠0),则a -b 的值为( )A .-1B .0C .1D .2 7、下列二次根式中,最简二次根式是( ).(A) . 8、下列各式中,正确的有( )个3- 3=-3± (-2)2的算术平方根是±2 A 、1 B 、2 C 、3 D 、4 9.已知关于x 的一元二次方程(a -1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( )A.a<2 B,a>2 C.a<2且a ≠1 D.a<-2·10、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均2x 11的结果是12、如果代数式有意义,那么x 的取值范围是13、若方程013)2-(||=++mx x m m 是关于x 的一元二次方程,则m 的值为14、计算的结果是15、用配方法解方程22250x x --=时,将原方程化为的形式,应变为16、若x=2是关于x 的方程2250x x a --+=的一个根,则的a 为___17、以-2和3为根,且二次项系数为1的关于x 的一元二次方程为18、若方程042=+-mx x 有两个相等的实数根,则m = ,两个根分别为19、若分式1322+--x x x 的值为0,则x 的值为 20、已知a 、b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于________.三、解答题(60分)21、计算下列各题(每题3分,共6分)221-631+80(3)1--22、(每题4分,共8分)下列一元二次方程(1) 3x 2–4x –1=0 (2) 4x 2–8x +1=0(用配方法)23、(本题6分)方程+bx+c=0两根分别是23+,23-,b,c 的值24、(本题7分)一次函数2y x =+与反比例函数k y x =,其中一次函数2y x =+的图象经过点P (k ,5).①试确定反比例函数的表达式;②若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标25、(本题7分)方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有=+ax--1xxx,求a的值121226、(本题7分)一元二次方程x2+2x+k-1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果y=+-x 1x2,求y的最小值。
人教版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.下列方程中,关于x 的一元二次方程是( )A .ax 2+bx+c=0B .x 2-x (x+7)=0C .2x 2-y-1=0D .x 2-2x-3=0 2.抛物线y=-2x 2-1的顶点坐标是( )A .(0,-2)B .(-2,-1)C .(0,-1)D .(1,0)- 3.下列一元二次方程中有两个相等实数根的是A .2x 30+=B .2x 2x 0+=C .()2x 10+=D .()()x 3x 10+-= 4.二次函数y=ax 2+bx ﹣1(a≠0)的图象经过点(1,1),则a+b+1的值是( ) A .﹣3 B .﹣1C .2D .3 5.二次函数()2221y x =+-的图象是( )A .B .C .D . 6.关于抛物线y=﹣2(x ﹣1)2说法正确的是( )A .顶点坐标为(﹣2,1)B .当x <1时,y 随x 的增大而增大C .当x=0时,y 有最大值1D .抛物线的对称轴为直线x=﹣27.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( ) A .122y y >> B .212y y >> C .122y y >> D .212y y >> 8.已知关于x 的方程x 2-3mx+5m-2=0的一个根为x=2,且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC 的周长为( )A .8B .10C .8或10D .6m 9.如图,在长为70 m ,宽为40 m 的长方形花园中,欲修宽度相等的观赏路(阴影部分所示),要使观赏路面积占总面积的18,则路宽x 应满足的方程是( )A .(40-x)(70-x)=2450B .(40-x)(70-x)=350C .(40-2x)(70-3x)=2450D .(40-2x)(70-3x)=35010.如图所示,桥拱是抛物线形,其函数的表达式为 y=﹣14x 2,当水位线在 AB 位置时,水面宽 12m ,这时水面离桥顶的高度为( )A .3mB .6mC .4mD .9m11.某农产品市场经销一种销售成本为40元的水产品.据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨2元,月销售量就减少10千克.设每千克涨x 元,月销售利润为y 元,则y 与x 的函数关系式为( )A .y =(50+x-40)(500﹣10x )B .y =(x+40)(10x ﹣500)C .y =(x ﹣40)[500﹣5(x ﹣50)]D .y =(50+x-40)(500﹣5x )12.如图抛物线y =ax 2+bx +c(a≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②0a b c -+<;③20b a +=;④当y <0时,x 的取值范围是-1<x <3;⑤当x <0时,y 随x 增大而增大;⑥方程ax 2+bx +c =2有两个不等的实数根,其中结论正确的个数是( )A .4个B .3个C .2个D .1个二、填空题13.方程5x 2=6x ﹣8一次项系数是________14.抛物线y =x 2的对称轴是____15.若 a 是方程 x 2﹣x+5=0 的一个根,则代数式 a 2﹣a 的值是___.16.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为________. 17.若关于x 的一元二次方程kx 2+2x +1=0有实数根,则k 的取值范围是____. 18.如图,P 是抛物线y=﹣x 2+x+2在第一象限上的点,过点P 分别向x 轴和y 轴引垂线,垂足分别为A ,B ,则四边形OAPB 周长的最大值为__三、解答题19.解方程:(1)(31)31x x x +=+(2)x 2-4x+1=020.把二次函数y =﹣2x 2﹣4x+5化成y=a(x-h)2+k 形式,并求出它的图象顶点坐标、对称轴21.已知二次函数的图象过顶点(8,9),且其图象过点(0,1)(1)求二次函数的解析式.(2)判断点A(16,1)是否在此二次函数的图象上?22.如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为11米),围成中间隔有一道篱笆的长方形花圃.()1如果要围成面积为45平方米的花圃,那么AD 的长为多少米?()2能否围成面积为60平方米的花圃?若能,请求出AD 的长;若不能,请说明理由.23.为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?24.如图,抛物线y=x 2 +bx+c 与x 轴交于A (﹣1,0),B (2,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P ,当点P 在该抛物线上滑动到什么位置时,满足6PAB S =△,并求出此时P 点的坐标.25.某大型商场出售一种时令鞋,每双进价100元,售价300元,则每天能售出400双.经市场调查发现:每双售价每降价1元,则每天可多售出5双.(1)如果每双降价40元 ,每天总获利润多少元?(2)每双时令鞋售价应定为多少元时,商场可获得最大利润?最大利润是多少?26.如图,抛物线213222y x x =--与x 轴交于A 、B 两点,与y 轴交于C 点(1)求A 点和点B 的坐标;(2)判断△ABC 的形状,证明你的结论;(3)点M 是x 轴上的一个动点,当MD+MC 的值最小时,求点M 的坐标.参考答案1.D2.C3.C4.D5.C6.B7.A8.B9.C10.D11.D12.A13.﹣614.y 轴15.-516.1117.k ≠0且k ≤118.619.(1) 121,13x x =-=;(2) 122,2x x ==20.()22+17y x =-+,对称轴为直线1x =-,顶点坐标为()1,7-. 21.(1) ()21898y x =--+;(2)在,理由见详解. 22.(1)AD 的长为5米;()2不能围成面积为60平方米的花圃.23.(1)50%;(2)27.24.(1)2y x x 2=--;(2)(3,4),(﹣2,4)25.(1)如果降价40元,每天总获利96000元;(2)每双售价为240元时,每天的总获利最大,最大获利是98000元.26.(1)()()4,0,1,0B A -;(2)△ABC 是直角三角形,详见解析;(3)24,041M ⎛⎫ ⎪⎝⎭.。
人教版九年级上册数学第一次月考试题(9月23日)
一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡相应位置上) 1.如果a 为任意实数, 下列各式中一定有意义的是( )
2.下列各式中,属于最简二次根式的是( ) A.22y x + B.x
y x
C.12
D.211
3.下列方程,是一元二次方程的是( )
①2032=+x x ②04322
=+-xy x ③412
=-
x x ④02=x ⑤033
2=+-x
x A.①② B.①②④⑤ C.①③④ D.①④⑤ 4.若
x
x
x
x -=
-33,则x 的取值范围是( ) A.x <3 B. x ≤3 C.0≤x <3 D.x ≥0 5.方程)3()3(2
-=-x x 的根为( )
A.3
B.4
C.4或3
D.4-或3 6.用配方法解方程2870x x ++=,则配方正确的是( )
A.()2
49x -= B.()2
49x += C.()2
816x -= D.()2
857x +=
7.关于x 的一元二次方程01)1(2
2
=-++-a x x a 的一个根为0,则a 的值为( ) A.1 B.-1 C.1或-1 D.
2
1 8.三角形两边长分别是8和6,第三边长是一元二次方程060162
=+-x x 的一个实数根,则该三角形的面积是( )
A.24
B.48
C.24或85
D. 85
二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)
9.+-x x 102
-=x ( 2
).
10.在直角坐标系内,点P (2,3)关于原点的对称点坐标为 .
11. 若=-<==b a ab b a 则且,0,2,32 .
12.10在两个连续整数a 和b 之间,且b a <<10,那么a 、b 的值分别是 . 13.已知一元二次方程x2+3x+m=0的一个根为-1,则另一个根为__________. 14.某矩形的长为a ,宽为b ,且(a +b )(a +b +2)=8,则a +b 的值为 _。
15.已知点A 的坐标为(a ,b ),O 是坐标原点,连接OA ,将线段OA 绕点O 按逆时针方向旋转90°得OA1 ,则点A1 的坐标为 ____ __. 16.观察分析下列数据,寻找规律:0,3,6,3,23,15,32,…… ,那么第10个数据应是 .
17.已知方程01272
=+-x x 的两根恰好Rt △ABC 的两条边的长,则Rt △ABC 的第三边长为 .
18. 一个两位数,个位数字比十位数字大3,个位数字的平方刚好等于这个两位数,则这个两位数是 .
三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算: (1)
)272(4
3
)23(21--+ ; (2)27)4648(÷+ ;
20.(本题满分8分)用适当的方法解下列方程:
(1)2
2
)1()13(+=-x x (2)02
1
22
=-
+x x 21.(本题满分8分)若x=1是方程mx2+3x +n=0的根,求(m -n)2+4mn 的值。
22.(本题满分8分)已知a 、b 、c 满足()
018582
=-+-+-c b a
⑴求a 、b 、c 的值;
⑵试问以a 、b 、c 为边能否构成三角形?若能构成三角形,请求出三角形的周长,若不能,请说明理由。
23.(本题满分10分)
⑴半径为R 的圆的面积恰好是半径为5与半径为2的两个圆面积之差,求R 的值。
⑵某次商品交易会上,所有参加会议的商家之间都签订了一份合同,共签订合同36份,求共有多少商家参加了交易会? 24.(本题满分10分)如图,在1010⨯正方形网格中,每个小正方形的边长均为1个单位.将ABC △向下平移4个单位,得到A B C '''△,再把A B C '''△绕点C '顺时针旋转
90,得到A B C '''''△,请你画出A B C '''△和A B C '''''△(不要求写画法).
25.(本题满分10分)已知a 、b 、c 是△ABC 的三条边,关于x 的一元二次方程
02
1
212=-++a c x b x 有两个相等的实数根,方程a b cx 223=+的根为x=0。
(1)试判断△ABC 的形状。
(2)若a 、b 为关于x 的一元二次方程x2 +mx -3m=0的两个根,求m 的值。
26.(本题满分10分)三门旅行社为吸引市民组团去蛇蟠岛风景区旅游,推出如下收费标准:
A B C
某中学九(一)班去蛇蟠岛风景区旅游,共支付给三门旅行社旅游费用5888元,请问该班这次共有多少名同学去蛇蟠岛风景区旅游? 27.(本题满分12分)
(1)如图①所示,P 是等边△ABC 内的一点,连结PA 、PB 、PC ,将△BAP 绕B 点顺时针旋转60°得△BCQ,连结PQ .若PA2+PB2=PC2,证明∠PQC=90°. (2) 如图②所示,P 是等腰直角△ABC (∠ABC=90°)内的一点,连结PA 、PB 、PC ,将△BAP 绕B 点顺时针旋转90°得△BCQ,连结PQ .当PA 、PB 、PC 满足什么条件时,∠PQC=90°?请说明理由.
28.(本题满分12分)已知:关于x 的一元二次方程2
(32)220(0)mx m x m m -+++=>. ⑴求证:方程有两个不相等的实数根;
如果人数不超过
35人,人均旅游
费用为150元
如果人数超过35人,
每增加1人,人均旅
游费用降低2元,但
人均旅游费用不得
低于120元
Q
C
P
A B
第27题图①
A B
C
P
Q 第27题图②
⑵设方程的两个实数根分别为1x 、2x (其中12x x <).若y 是关于m 的函数,且
212y x x =-,求这个函数的解析式;
⑶在(2)的条件下,结合函数的图象回答:当自变量m 的取值范围满足什么条件时,
2y m ≤.
数学月考参考答案
二、填空题(本大题共有10小题,每小题3分,共30分)
9. 25 ,5 ; 10. (-2,-3) ; 11. -7 ; 12. a=3 ,b=4 ; 13. -2; 14. 2; 15. (-b , a); 16. 17. 5; 18.25或36 . 三、解答题(本大题共有10小题,共96分.) 19.⑴
24
13411- ⑵2121
34+
20.⑴1,021==x x ⑵4
5
1,45121--=+-=
x x 21.由题意得:m + n = -3, 所以(m - n )2+ 4mn = (m + n )2 = 9 22.⑴ a=
8=22 b=5 c=18= 32
⑵∵a <b,c <b, a +c >b ∴能构成三角形,此时三角形的周长为5 + 52 23.(1)21; (2)9个
24.(本题10分)每个图形5分。
略
25.(1)ABC 为等边三角形 ; (2)m=-12
26.(本题10分)46名。
27.(本题10分)⑴略;⑵2
2
2
2PA PB PC += 28.(本题12分)
(1)222[(32)]4(22)44(2)m m m m m m ∆=-+-+=++=+>0 (2)2(0)y m m
=>
(3)当1m ≥时,2y m ≤.。