九年级数学月考试卷一
- 格式:doc
- 大小:80.41 KB
- 文档页数:2
浙江省义乌市丹溪中学2024--2025学年九年级上学期数学第一次月考试卷一、单选题1.下列诗句所描述的事件中,属于必然事件的是( ) A .黄河入海流 B .手可摘星辰 C .锄禾日当午D .大漠孤烟直2.二次函数(3)(5)y x x =-+的图象的对称轴是( ) A .直线3x =B .直线5x =-C .直线=1x -D .直线1x =3.不透明的袋子中装有红球1个,绿球2个,除颜色外三个小球无其他差别.从中随机摸出一个小球,那么摸到红球的概率是( ) A .14B .13C .12D .344.将二次函数221y x x =+-转化为()2y a x h k =-+的形式,结果为( ) A . ()21y x =-B . ()21y x =+C . ()211y x =+-D . ()=+-2y x 125.已知点A (-1,y 1),B (2,y 2),C (-3,y 3)在抛物线y = -x 2+2x +c 上,则下列结论正确的是( ) A .123y y y >>B .213y y y >>C .312y y y >>D .321y y y >>6.在一个不透明的箱子里装有m 个球,其中红球4个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率在0.2,那么可以估算出m 的值为( ) A .8B .12C .16D .207.地面上一个小球被推开后笔直滑行,滑行的距离s 与时间t 的函数关系如图中的部分抛物线所示(其中P 是该抛物线的顶点),则下列说法正确的是( )A .小球滑行12秒停止B .小球滑行6秒停止C .小球滑行6秒回到起点D .小球滑行12秒回到起点8.二次函数24y ax x a =++与一次函数y ax a =+在同一平面直角坐标系中的图象可能是( )A .B .C .D .9.()()()120y a x x x x t a =--+>,点()00,x y 是函数图象上任意一点,( ) A .若0t <,则()20124a y x x <-- B .若0t ≥,则()20124a y x x >-- C .若0t <,则()20124a y x x ≤-- D .若0t ≥,则()20124a y x x ≥-- 10.已知二次函数2y ax bx c =++,当y n >时,x 的取值范围是31m x m -<<-,且该二次函数的图象经过点()()23,5,,4P t Q d t +两点,则d 的值可能是( )A .0B .1-C .4-D .6-二、填空题11.二次函数243y x =-的图像开口向.(填“上”或“下”)12.在一个不透明的箱子里装有m 个球,其中红球4个,这些球除颜色外都相同,每次将球搅拌均匀后,任意摸出一个球记下颜色后再放回,大量重复试验后发现,摸到红球的频率在0.2,那么可以估算出m 的值为.13.某果园有100棵橘子树,平均每一棵树结600个橘子.根据经验估计,每多种一颗树,平均每棵树就会少结5个橘子.设果园增种x 棵橘子树,果园橘子总个数为y 个,则果园里增种棵橘子树,橘子总个数最多.14.某校有两块运动场地,甲、乙、丙三名学生各自随机选择其中的某个运动场地进行跑步训练,则甲、乙、丙三名学生在同一块场地跑步训练的概率为.15.已知二次函数22y x mx m =-++-,当12x -≤≤时,二次函数22y x mx m =-++-的最大值为6,则m 的值为.16.如图所示,从高为2m 的点A 处向右上抛一个小球P ,小球飞行路线呈抛物线L 形状,小球飞行的水平距离2m 时达到最大高度6m ,然后落在下方台阶上弹起,已知4MN =m ,1.2FM DE BC ===m ,1ON CD EF ===m ,若小球弹起形成一条与L 形状相同的抛物线,落下时落点Q 与B ,D 在同一直线上,则小球在台阶弹起时的最大高度是 m .三、解答题17.已知二次函数的表达式为: 265y x x =-+, (1)利用配方法将表达式化成2()y a x h k =-+的形式; (2)写出该二次函数图像的对称轴和顶点坐标.18.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为12.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率.19.数学老师将1个黑球和若干个白球放入一个不透明的口袋并搅匀,让若干生进行摸球实验,每次摸出一个球(有放回),下表是活动进行中的一组统计数据.(1)根据上表数据估计从袋中摸出一个球是黑球的概率是_______;(精确到0.01) (2)估算袋中白球的个数.20.已知二次函数经过点()1,0-,()3,0,且最大值为4.(1)求二次函数的解析式;(2)在平面直角坐标系xOy 中,画出二次函数的图象; (3)当14x <<时,结合函数图象,直接写出y 的取值范围.21.为了落实劳动教育,某学校邀请农科院专家指导学生进行小番茄的种植,经过试验,其平均单株产量y 千克与每平方米种植的株数x (28x ≤≤,且x 为整数)构成一种函数关系.每平方米种植2株时,平均单株产量为4千克;以同样的栽培条件,每平方米种植的株数每增加1株,单株产量减少0.5千克. (1)求y 关于x 的函数表达式.(2)每平方米种植多少株时,能获得最大的产量?最大产量为多少千克? 22.根据以下素材,探索完成任务.素材1中23.二次函数2y ax bx c =++(a ,b ,c 是常数,0ab ≠).当2bx a=-时,函数y 有最小值1-.(1)若该函数图象的对称轴为直线1x =,并且经过()0,0点,求该函数的表达式. (2)若一次函数y ax c =+的图象经过二次函数2y ax bx c =++图象的顶点. ①求该二次函数图象的顶点坐标.②若()(),,,a p c q 是该二次函数图象上的两点,求证:p q >.24.在平面直角坐标系中,抛物线2y x bx c =++(b 、c 为常数)经过点()0,3-,()2,3-.点A 、B 在抛物线上(点A 与点B 不重合),且点A 的横坐标为m ,点B 的横坐标为123m -,将此抛物线在A 、B 两点之间的部分(包含A 、B 两点)记为G . (1)求此抛物线对应的函数表达式;(2)当G 的函数值y 随x 的增大而先减小后增大时,求m 的取值范围; (3)当A 、B 两点到直线=2y -距离相等时,求m 的值;(4)设点C 的坐标为()1,2m --,点D 的坐标为()1,2m --,连接CD ,当线段CD 与G 有一个公共点时,直接写出m 的取值范围.。
2023-2024学年河南省郑州实验中学九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程是一元二次方程的是()A. B.C. D.、b、c为常数2.若关于x的一元二次方程的一个根为0,则m的值为()A. B.0 C.2 D.或23.输一组数,按下程序进行计,输出结果表:/空格x206207208/空出析格中的据,估计方程一个数解x的大致范围为()A.B.C.D.4.关于x的方程为常数的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根5.有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为()A. B.C. D.6.如图,四边形ABCD是平行四边形,下列说法能判定四边形ABCD是菱形的是()A. B.C. D.7.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路图中阴影部分,余下部分种植草坪,要使草坪的面积为540平方米,设道路的宽x米,则可列方程为()A. B.C. D.8.如图,矩形ABCD的对角线AC,BD交于点O,,,过点O作,交AD于点E,过点E作,垂足为F,则的值为()A. B. C. D.9.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点,则下列说法:①若,则四边形EFGH为矩形;②若,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;其中正确的个数是()A.0B.1C.2D.310.如图,菱形ABCD中,点E、F分别在边BC、CD上,且若,则的面积为()A.B.C.D.二、填空题:本题共5小题,每小题3分,共15分。
11.已知m是关于x的方程的一个根,则______.12.若关于x的一元二次方程有实数根,则实数k的取值范围是______.13.如图,已知菱形ABCD的对角线AC,BD的长分别是4cm,6cm,,垂足为E,则AE的长是______14.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且,,则______.15.如图,在菱形ABCD中,,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点,,,则______.三、解答题:本题共8小题,共64分。
陕西省宝鸡市三迪中学2024-2025学年九年级上学期第一次月考数学试卷一、单选题1.下列是一元二次方程的是()A .210x +=B .21x y +=C .2210x x ++=D .211x x+=2.在四边形ABCD 中,AB CD ∥,AB CD =.下列说法能使四边形ABCD 为矩形的是()A .AC BD=B .AD BC=C .A C∠=∠D .AC BD⊥3.用配方法解方程2410x x --=时,配方后正确的是()A .2(2)3x +=B .2(2)17x +=C .2(2)5x -=D .2(2)17x -=4.如图,在平行四边形ABCD 中,4AB =,6BC =,将线段AB 水平向右平移a 个单位长度得到线段EF ,若四边形ECDF 为菱形时,则a 的值为()A .1B .2C .3D .45.根据下表:x3-2-1- (45625)x bx --1351-…1-513确定方程250x bx --=的解的取值范围是()A .2<<1x --或45x <<B .2<<1x --或56x <<C .32-<<-x 或56x <<D .32-<<-x 或45x <<6.下列命题中,真命题是()A .顺次联结平行四边形各边的中点,所得的四边形一定是矩形B .顺次联结等腰梯形各边的中点,所得的四边形一定是菱形C .顺次联结对角线垂直的四边形各边的中点,所得的四边形一定是菱形D .顺次联结对角线相等的四边形各边的中点,所得的四边形一定是矩形7.若一个菱形的两条对角线长分别是关于x 的一元二次方程2100x x m -+=的两个实数根,且其面积为11,则m 为()A .11BC .D .228.如图,矩形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作OE BD ⊥交AD 于点E ,已知4AB =,DOE 的面积为5,则AE 的长为()A .2B .3CD 9.原定于2020年10月在昆明举办的世界生物多样性大会第15次缔约方大会,因疫情推迟到2021年5月举办,为喜迎“COP 15”,某校团委举办了以“COP 15”为主题的学生绘画展览,为美化画面,要在长为30cm 、宽为20cm 的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画面面积相等(如图),若设彩纸的宽度为x cm ,根据题意可列方程()A .()()3022021200x x ++=B .()()30201200x x ++=C .()()302202600x x --=D .()()3020600x x ++=10.如图,在正方形ABCD 中,4AB =,E 为对角线AC 上与点A ,C 不重合的一个动点,过点E 作EF AB ⊥于点F ,EG BC ⊥与点G ,连接DE ,FG ,有下列结论:①DE FG =.②DE FG ^.③BFG ADE ∠=∠.④FG 的最小值为3,其中正确结论的序号为()A .①②B .②③C .①②③D .①③④二、填空题11.关于x 的方程()21150mm x mx ++++=是一元二次方程,则m =.12.如图,正方形ABCD 的对角线AC ,BD 交于点O ,P 为边BC 上一点,且BP OB =,则COP ∠的度数为.13.a 是方程2210x x +-=的一个根,则代数式222020a a ++的值是.14.如图,将一张长方形纸片ABCD 沿AC 折起,重叠部分为ACE ∆,若6,4AB BC ==,则重叠部分ACE ∆的面积为.15.如图,在Rt ABC △中,90BAC ∠=︒,且6,8AB AC ==,点D 是斜边BC 上的一个动点,过点D 分别作DM AB ⊥于点M ,DN AC ⊥于点N ,连接MN ,点O 为MN 的中点,则线段AO 的最小值为.16.一农户要建一个长方形羊舍,羊舍的一边利用长18m 的住房墙,另外三边用34m 长的栅栏围成,为方便进出,在垂直于墙的一边留一个宽2m 的木门,当羊舍的面积是2160m 时,所围的羊舍与墙平行的边长为m .三、解答题17.解方程:(1)()22x x x +=+;(2)23610x x --=.18.如图,已知线段AC 利用尺规作图的方法作一个菱形ABCD ,使AC 为菱形的对角线.(保留作图痕迹,不要求写作法).19.已知关于x 的一元二次方程2210x x m -+-=,若2x =是这个方程的一个根,求m 的值和另一根.20.如图,在四边形ABCD 中,BD 为一条对角线,AD BC ∥,2AD BC =,90ABD Ð=°,E 为AD 的中点,连接BE .求证:四边形BCDE 为菱形.21.已知关于x 的一元二次方程²2²30x mx m ++-=.(1)求证:无论m 为何值,该方程总有两个不相等的实数根;(2)若该方程的两个根为p 和q ,且满足0pq p q --=,求m 的值.22.如图,在ABC V 中,6cm 7cm 30AB BC ABC ==Ð=°,,,点P 从A 点出发,以1cm/s 的速度向B 点移动,点Q 从B 点出发,以2cm/s 的速度向C 点移动,当一个点到达终点时,另一个点也随即停止运动.如果P 、Q 两点同时出发,经过几秒后PBQ 的面积等于24cm23.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,延长CB 到点E ,使得BE BC =.连接AE .过点B 作BF AC ∥,交AE 于点F ,连接OF .(1)求证:四边形AFBO 是矩形;(2)若30E ∠=︒,1BF =,求OF 的长.24.阅读材料:在学习解一元二次方程以后,对于某些不是一元二次方程的方程,我们可通过变形将其转化为一元二次方程来解.例如:解方程:2–320x x +=.解:设x t =,则原方程可化为:2–320t t +=.解得:1212t t ==,.当1t =时,1x =,∴1x =±;当2t =时,2x =,∴2x =±.∴原方程的解是:12341122x x x x ==-==-,,,.上述解方程的方法叫做“换元法”.请用“换元法”解决下列问题:(1)解方程:220x x -=;(2)解方程:42–1090x x +=.(3)解方程:221211x x x x +-=+.25.感知:感知:如图①,在正方形ABCD 中,E 为边AB 上一点(点E 不与点AB 重合),连接DE ,过点A 作AF D E ⊥,交BC 于点F ,易证:DE AF =.(不需要证明)探究:如图②,在正方形ABCD中,E,F分别为边AB,CD上的点(点E,F不与正方形的顶点重合),连接EF,作EF的垂线分别交边AD,BC于点G,H,垂足为O.若E为AB中点,1AB=,求GH的长.DF=,4应用:=,BF,AE相应用:如图③,在正方形ABCD中,点E,F分别在BC,CD上,BE CF的交于点G.若3AB=,图中阴影部分的面积与正方形ABCD的面积之比为2:3,则ABG的周长为.面积为,ABG。
2024-2025学年辽宁省大连市名校联盟九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.以下是回收、绿色包装、节水、低碳四个标志,其中为中心对称图形的是( )A. B. C. D.2.用配方法解方程x2+8x+7=0,则配方正确的是( )A. (x+4)2=9B. (x−4)2=9C. (x−8)2=16D. (x+8)2=573.若关于x的一元二次方程kx2−6x+9=0有实数根,则k的取值范围是( )A. k<1B. k≤1C. k<1且k≠0D. k≤1且k≠04.抛物线y=−(x+2)2−3的顶点坐标是()。
A. (−2,−3)B. (2,−3)C. (2,3)D. (−2,3)5.关于函数y=−3(x+1)2−2,下列描述错误的是( )A. 开口向下B. 对称轴是直线x=−1C. 函数最大值是−2D. 当x>−1时,y随x的增大而增大6.反比例函数y=−1的图象位于( )xA. 第一、三象限B. 第二、四象限C. 第一、四象限D. 第二、三象限7.如图,点P是反比例函数y=k(k≠0,x<0)图象上一点,过点P作PA⊥y轴于点A,x点B是点A关于x轴的对称点,连接PB,若△PAB的面积为18,则k的值为( )A. 18B. 36C. −18D. −368.如图,将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2.将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为( )A. (3,−1)B. (1,−3)C. (2,−2)D. (−2,2)9.如图,D 是△ABC 边AB 上一点,添加一个条件后,仍不能使△ACD ∽△ABC 的是( )A. ∠ACD =∠BB. ∠ADC =∠ACBC. AD AC =CD BCD. AC 2=AD ⋅AB10.如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接GM ,有如下结论:①DE =AF ;②AN = 24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,正确的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
安徽省铜陵市枞阳县2024-2025学年九年级上学期第一次月考数学试卷一、单选题1.下列函数是二次函数的是( )A .233y x =-B .2133y x =- C .32y x =+ D .y =2.抛物线()2321y x =-++的顶点坐标是( )A .()3,1-B .()3,1--C .()2,1-D .()2,1 3.把抛物线22y x =先向右平移1个单位,再向下平移2个单位,则平移后抛物线的表达式为( )A .()2212y x =--B .()2212y x =+-C .()212y x =--D .()=+-2y x 12 4.二次函数()232y x =-的图象的对称轴是( )A .直线0x =B .直线3x =C .直线2x =-D .直线2x = 5.下列二次函数解析式中,其图象与y 轴的交点在x 轴下方的是( ) A .23y x =+B .23y x =-C .23y x =-+D .2y x = 6.在函数()231y x =--+的图象上,当y 随x 的增大而减小时,x 的取值范围为( )A .3x ≥B .3x ≤C .1x ≥D .1x ≤7.二次函数2y ax bx c =++(a b c ,,为常数,且0a ≠)中的x 与y 的部分对应值如下表:则代数式2b a b c a +++的值为( ) A .2.5 B .3.5 C .8.5 D . 3.5-8.如图1是抛物线形石拱桥,当水面离拱顶2m 时,水面宽4m .建立如图2所示的平面直角坐标系,则抛物线的表达式为( )A .2122y x x =-+B .2122y x x =--C .24y x x =-+D .24y x x =--9.如图是抛物线()210y ax bx c a =++≠图象的一部分,抛物线的顶点A 的坐标是()1,3,与x轴的一个交点B 的坐标为()4,0,直线()20y mx n m =+≠经过A B ,两点.下列结论错误的是( )A .0abc >B .方程230ax bx c ++-=有两个相等的实数根C .当14x <<时,12y y >D .抛物线与x 轴的另一个交点是()2,0- 10.如图,函数232y ax x =++和y ax a =-+(a 是常数,且0a ≠)在同一平面直角坐标系中的图象可能是( )A .B .C .D .二、填空题11.若二次函数()()2311y m x m x m =-++-+的图象经过原点,则m 的值为.12.把二次函数23y x bx =++由一般式化成顶点式为()22y x k =++,则k 的值为. 13.若抛物线2y ax =的图像与一次函数y bx c =+的图像有两个交点,分别为()2,8-,()1,2,则关于x 的方程20ax bx c --=的解为.14.如图,在平面直角坐标系中,点()8,0A ,点()0,4B ,点M 为OA 上一点,过点M 作⊥CM BM ,且CM BM =,连接AC .(1)当点M 为OA 的中点时,AC 的长为.(2)当点M 在OA 上移动时,AC 的最小值为.三、解答题15.已知二次函数2y x bx c =++的图象经过点()()1,01,2--,,求该二次函数的表达式. 16.已知抛物线212y x x =--与直线26y x =+的图象交于A B ,两点(点A 在点B 的左侧),试分别求A B ,两点的横坐标.17.已知抛物线2364y x x =-++.(1)求该抛物线的开口方向、对称轴及顶点坐标;(2)当x 为何值时,y 随x 的增大而减小,当x 为何值时,y 随x 的增大而增大? 18.如图是学校校园内一堵围墙边上的一块空地,现准备用木栏围成一个矩形菜园ABCD 作为学生的实践基地.已知矩形菜园的一边AD 靠墙(墙足够长),另三边一共用了100m 木栏.请设计一个修建方案,使得矩形菜园的面积最大.19.已知二次函数2y x bx c =-++的图像的顶点为()2,3.(1)求b ,c 的值;(2)当1y ≤-时,求x 的取值范围.20.已知二次函数22y x x m =-+-(m 是常数).(1)若该函数的图象与x 轴有两个不同的交点,求m 的取值范围.(2)若该二次函数的图象与x 轴的其中一个交点坐标为()1,0-,求一元二次方程220x x m -+-=的解.21.如图,点A 在x 轴的正半轴上,且4OA =,点B 在y 轴的正半轴上,且6OB =,直线AB 与抛物线21y ax =-在第一象限内相交于点P ,连接OP ,已知6OAP S =△.(1)求a 的值;(2)若将抛物线21y ax =-先向右平移2个单位,再向下平移()0t t >个单位,恰好经过点A ,试确定t 的值.22.又到了板栗飘香的季节,为提高大家购买的积极性,销售板栗的顺发果业每天拿出2000元现金,作为红包发给购买者.已知板栗每日销售量()y kg 与销售单价x (元/kg )满足关系:1004000y x =-+.当每日销售量低于3000kg 时,成本价格为6元/kg ;当每日销售量不低于3000kg 时,成本价格为5元/kg ;在销售中销售单价不低于成本价格且不高于30元/kg .设销售板栗的日获利为w (元).(1)当日销售量不低于3000kg 时,x 的取值范围是______;(2)请求出日获利w 与销售单价x 之间的函数关系式;(3)当销售单价定为多少时,销售这种板栗日获利最大?最大利润为多少元?23.如图,抛物线()250y ax bx a =++≠与x 轴交于()5,0A ,()1,0C -两点,交y 轴于点B .(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的一点,过点P 作直线PD x ⊥轴于点D ,交直线AB 于点E . ①当PE DE =时,求点E 的坐标;②当PE 取得最大值时,求点P 的坐标.。
九年级上册数学第一次月考试卷一、选择题(每题3分,共30分)1. 下列二次根式中,最简二次根式是()A. √(8a)B. √(2a/3)C. √(3a)D. √(a^2b^4)2. 下列函数中,是一次函数但不是正比例函数的是()A. y = 2xB. y = -x/2C. y = 3/xD. y = -2x + 13. 下列运算正确的是()A. 3a + 2b = 5abB. 5a^2 - 2b^2 = 3C. 7a + a = 7a^2D. (x - 1)^2 = x^2 - 14. 下列说法中,正确的是()A. 无限小数是无理数B. 绝对值等于它本身的数是非负数C. 垂直于同一直线的两条直线互相平行D. 相等的角是对顶角5. 下列方程中,是一元二次方程的是()A. x^2 + 2x = x^2 - 1B. (x + 1)^2 = 4xC. x^2 + y = 1D. 1/x^2 + x = 16. 已知直线y = kx + b 经过点(1, -2) 和(-2, 4),则k 的值为()A. -2B. 2C. -4/3D. 4/37. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆8. 下列不等式组中,解集为x > 3 的是()A. { x > 2, x < 3 }B. { x > 3, x > 4 }C. { x ≤2, x > 3 }D. { x > 3, x ≥2 }9. 下列调查中,适合采用全面调查(普查)方式的是()A. 对全市中学生目前使用手机情况的调查B. 对某品牌电视机的使用寿命的调查C. 对乘坐飞机的旅客是否携带违禁物品的调查D. 对全国小学生课外阅读情况的调查10. 下列关于概率的描述性定义中正确的是()A. 必然发生的事件的概率是0B. 不可能发生的事件的概率是1C. 概率是1 的事件在一次试验中一定不会发生D. 概率是0.5 的事件在一次试验中有可能不发生二、填空题(每题3分,共18分)11. 计算:√(16) = _______。
广东省江门市蓬江区怡福中学2024—2025学年上学期第一次月考九年级数学试卷一、单选题1.下列方程中,一定是关于x 的一元二次方程的是()A .20ax bx c ++=B .()212x x x x --=+C .()2210x x --=D .212x x-=2.将一元二次方程223x x +=化成一般形式后二次项的系数、一次项系数、常数项分别是()A .2、1-、3B .2、1、1C .2、1、3-D .2、1、33.关于x 的一元二次方程20ax bx c ++=,若满足0a b c -+=,则方程必有一个根是()A .1x =B .1x =-C .0x =D .2x =4.一元二次方程230x -=的根是()A .x =B .x =C .3x =D .0x =5.已知关于x 的一元二次方程220x x m -+=有两个实数根,则m 的取值范围是()A .1m <B .1m >C .1m ≤D .1m ≥6.若1x ,2x 是方程2890x x --=的两个根,则()A .128x x +=-B .128x x +=C .1298x x =D .129x x =7.将抛物线2y x =-向右平移3个单位,再向上平移2个单位,则所得的抛物线的函数表达式为()A .()23y x =-+B .()232y x =-++C .()232y x =--+D .()23y x =--8.怡福中学体育组计划组织一场篮球邀请赛,参赛队伍由同学们自由组合,参赛的每两个队伍之间都要比赛两场,根据场地和时间等条件,赛程计划安排10天,每天安排3场比赛,则可以邀请的队伍有()A .5个B .6个C .7个D .8个9.一次函数()10y ax a =-≠与二次函数()20y ax x a =-≠在同一平面直角坐标系中的图象可能是()A .B .C .D .10.已知二次函数2y ax bx c =++(0a ≠)如图所示,有下列4个结论:①0abc >;②24b ac <;③20a b +=;④<0a b c -+;⑤()a b m am b +≥+,其中正确的结论有()A .1个B .2个C .3个D .4个二、填空题11.若关于x 的一元二次方程260x x c ++=配方后得到方程238x +=(),则c 的值为.12.抛物线()223y x =-+-的顶点坐标是.13.若关于x 的函数1m y m x =-()是二次函数,且其有最大值,则m =.14.如图,已经二次函数()2<0y ax bx c a =++的图象如图所示,直线l x ∥轴,则当21ax bx c ++≥时x 的取值范围15.如图,在一个长为15m ,宽为10m 的矩形场地内修筑两条等宽的道路,剩余部分为绿化用地,如果绿化用地的面积为2104m ,那么道路的宽为m .三、解答题16.解方程:(1)219x +=();(2)2422x x -=+().17.二次函数的图象经过点(1,0)A -,(3,0)B ,(2,3)C -.(1)求该二次函数解析式;(2)当14x -<<时,求函数值y 的取值范围.18.受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素.某汽车零部件生产企业的利润率年提高,据统计,2021年利润为5亿元,2023年利润为7.2亿元,若该企业2021年到2023年的年平均增长率都相同.(1)求该企业的年平均增长率;(2)若2024年保持前两年利润的年平均增长率不变,该企业2024年的利润能否超过9亿元?19.【阅读材料】方程()()22215140x x ---+=是一个一元四次方程,我们可以把21x -看成一个整体,设21x y -=,则原方程可化为2540y y -+= ①解方程①可得121,4y y ==.当1y =时,211x -=,∴22x =,∴x =当4y =时,214x -=,∴25x =,∴x =;∴原方程的解为1x =,2x =3x =4x =【解决问题】(1)在由原方程的到方程①的过程中,是利用换元法达到的目的(填“降次”或“消元”),体现了数学的转化思想.(2)请仿照材料的方法,解下列方程:①4260x x --=;②()()2224120x x x x ----=.20.已知关于x 的一元二次方程26210x x m -+-=有1x ,2x 两不相等的实数根.(1)求m 的取值范围;(2)是否存在实数m ,满足2121231x x x x m --=-?若存在,求出实数m 的值;若不存在,请说明理由.21.已知二次函数223y x mx m =++-(m 为常数,0m >)的图象过点()2,4P .(1)求m 的值;(2)求二次函数的表达式,并写出它的对称轴;(3)判断二次函数的图象与坐标轴的交点个数,并说明理由.22.怡福中学九年级的小臻同学暑期参加社区举办的义卖活动,有一款小家电成本价为每台20元,市场调查发现,该款小家电每天的销售量y (台)与销售单价x (元)有如下关系:()2802040y x x =-+≤≤.设这款小家电每天的销售利润为w 元.(1)如果销售单价定为25元,那么每天能卖出该款小家电多少台?(2)如果小臻有天想筹集192元义卖款,那小家电的销售单价应定为多少?(3)这款小家电的销售单价应定为多少时,每天的销售利润最大?最大的利润是多少元?23.如图,抛物线过点()()0,0,10,0O E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设(),0B t ,当2t =时,4BC =.(1)求抛物线的函数表达式;(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?t 时的矩形ABCD不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个(3)保持2交点G,H,且直线GH平分矩形ABCD的面积,求抛物线平移的距离.。
九年级数学第一次月考试卷一、选择题(每题3分,共30分)1. 一元二次方程x^2 - 2x = 0的根是()A. x_1=0,x_2=-2B. x_1=1,x_2=2C. x_1=1,x_2=-2D. x_1=0,x_2=22. 二次函数y = x^2+2x - 3的顶点坐标是()A. ( - 1,-4)B. (1,-4)C. ( - 1,4)D. (1,4)3. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 等边三角形B. 平行四边形C. 正五边形D. 圆。
4. 关于x的一元二次方程(m - 1)x^2+5x + m^2-3m + 2 = 0的常数项为0,则m等于()A. 1B. 2C. 1或2D. 05. 抛物线y=(x - 1)^2+2的对称轴是()A. 直线x=-1B. 直线x = 1C. 直线x=-2D. 直线x = 26. 把二次函数y = 3x^2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数表达式是()A. y = 3(x - 2)^2+1B. y = 3(x + 2)^2-1C. y = 3(x - 2)^2-1D. y = 3(x + 2)^2+17. 若关于x的一元二次方程x^2-kx - 6 = 0的一个根为x = 3,则实数k的值为()A. 1B. -1C. 2D. -28. 二次函数y = ax^2+bx + c(a≠0)的图象如图所示,则下列结论正确的是()(此处可插入一个二次函数图象,顶点在第二象限,开口向下,与x轴有两个交点)A. a < 0,b < 0,c > 0,b^2-4ac > 0B. a < 0,b < 0,c < 0,b^2-4ac > 0C. a < 0,b > 0,c > 0,b^2-4ac < 0D. a < 0,b > 0,c > 0,b^2-4ac > 09. 已知二次函数y = kx^2-7x - 7的图象和x轴有交点,则k的取值范围是()A. k>-(7)/(4)B. k≥slant-(7)/(4)且k≠0C. k≥slant-(7)/(4)D. k > -(7)/(4)且k≠010. 某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()A. 200(1 + a%)^2=148B. 200(1 - a%)^2=148C. 200(1 - 2a%) = 148D. 200(1 - a^2%)=148二、填空题(每题3分,共18分)11. 方程(x - 1)^2=4的解为___。
江苏省南京市联合体2024--2025学年上学期九年级数学月考试卷一、单选题1.下列关于x 的方程中,一定是一元二次方程的为( )A .223x xy +=B .21x =C .2350x x +-=D .20ax bx c ++= 2.用配方法解方程2440x x --=时,原方程应变形为( )A .()220x -=B .()228x -=C .()220x +=D .()228x += 3.O e 的半径为5,圆心O 的坐标为()0,0,点P 的坐标为()4,2,则点P 与O e 的位置关系是( )A .点P 在O e 内B .点P 在O e 上C .点P 在O e 外D .点P 在O e 上或O e 外4.如图,AB 是O e 直径,130AOC ∠=︒,则D ∠的度数是( )A .15︒B .25︒C .35︒D .65︒5.如图,AB 是O e 的直径,OD 垂直于弦AC 于点D ,DO 的延长线交O e 于点E .若AC =4DE =,则BC 的长是( )A .1BC .2D .46.如图,AB 是半圆O 的直径,点D 在半圆O 上,AB =10AD =,C 是弧BD 上的一个动点,连接AC ,过D 点作DH AC ⊥于H ,连接BH ,在点C 移动的过程中,BH 的最小值是( )A .5B .6C .7D .8二、填空题7.一元二次方程22x =的根是.8.若关于x 的一元二次方程kx 2-6x +1=0有两个不相等的实数根,则k 的取值范围是 . 9.某菜鸟驿站第一天揽件100件,第三天揽件169件,设该菜鸟驿站揽件日平均增长率为x ,根据题意所列方程为.10.如图,AB 是半圆O 的直径,点C ,D 在半圆O 上.若54ABC ∠=︒,则BDC ∠的度数为 .11.直角三角形的两直角边长分别为6和8,那么这个三角形的外接圆半径等于. 12.若弦长等于半径,则弦所对圆周角的度数是.13.若三角形的两边长分别是2和4,第三边的长是方程2680x x -+=的一个根,则这个三角形的周长为.14.平面上一点A 与O e 上点的最短距离为2,最长距离为10,则O e 半径为.15.已知a ,b 是关于x 的方程2320100x x +-=的两根,则24a a b --的值是.16.如图,在半圆O 中,C 是半圆上的一个点,将»AC 沿弦AC 折叠交直径AB 于点D ,点E是»AD 的中点,连接OE ,若OE 1,则AB =.三、解答题17.解方程:(1)x 2-2x -3=0(2)(x ﹣3)2=2x ﹣618.如图,在⊙O 中,点C 是»AB 的中点,D 、E 分别是半径OA 和OB 的中点,求证:CD CE =.19.已知关于x 的方程(x -3)(x -2)-p 2=0.(1)求证:无论p 取何值时,方程总有两个不相等的实数根;(2)设方程两实数根分别为x 1、x 2,且满足x 12+x 22=3 x 1x 2,求实数p 的值.20.如图这是一个残缺的圆形部件,已知,,A B C 是该部件圆弧上的三点.(1)利用尺规作图作出该部件的圆心;(保留作图痕迹)(2)若ABC V 是等腰三角形,底边16cm BC =,腰10cm AB =,求该部件的半径R . 21.如图,AB 为O e 的直径,D 是弦AC 延长线上一点,AC CD =,DB 的延长线交⊙O 于点E ,连接CE .(1)求证A D ∠=∠;(2)若»AE 的度数为108︒,求E ∠的度数.22.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.23.如图,四边形ABCD 内接于O e ,连接AC 、BD 相交于点E .(1)如图1,若AC BD =,求证:AE DE =;(2)如图2,若AC BD ⊥,连接OC ,求证:OCD ACB ∠=∠.24.已知,在O e 中,设»BC 所对的圆周角为BAC ∠.求证: 12BAC BOC =∠∠ 证明;圆心O 可能在BAC ∠的一边上,内部和外部(如图①、②和③).如图①,当圆心O 在BAC ∠的一边上时.∵OA OC =,∴A C ∠=∠,∵BOC A C ∠=∠+∠,∴2BOC A ∠=∠,即12BAC BOC =∠∠ 请你完成图②、图③的证明.25.如图,AB 是O e 的直径,弦CD AB ⊥,垂足为E ,K 为弧AC 上一动点,AK DC ,的延长线相交于点F ,连接CK KD ,.(1)求证:AKD CKF ∠=∠;(2)已知8AB CD ==,CKF ∠的大小.26.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =.当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±;∴原方程有四个根:11x =,21x =-,32x =,42x =-.(1)解方程()()2224120x x x x +-+-=. (2)解方程2318x x -=27.问题背景:在一次数学兴趣小组活动中,小军对苏科版数学九年级教材第42页的第4题很感兴趣.教材原题:如图1,BD 、CE 是ABC V 的高,M 是BC 的中点.点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?小军在完成此题解答后提出:如图2,若BD 、CE 的交点为点O ,则点A 、D 、O 、E 四点也在同一个圆上.(1)请对教材原题或小军提出的问题进行解答.(选择一个解答即可)直接应用: 当大家将上述两题都解决后,组员小明想起了在七年级通过画图归纳出的一个结论:三角形的三条高所在直线交于同一点,可通过上面的结论加以解决.(2)如图3,ABC V 的两条高BD 、CE 相交于点O ,连接AO 并延长交BC 于点F . 求证:AF 为ABC V 的边BC 上的高.拓展延伸:在大家完成讨论后,曾老师根据大家的研究提出一个问题:(3)在(2)的条件下连接DE 、EF 、FD (如图4),设DEF α∠=,则AOB ∠的度数为________.(用含α的式子表示)。
2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。
九年级第一次段考数学试卷(人教版)
测试内容:二次根式 测试时间:80分钟
一、选择题。
(每小题4分,共32分)
1、下列式子一定是二次根式的是 ( )
A 、2--x
B 、x
C 、22+x
D 、22-x
2、已知一个正方形的面积是5,那么它的边长是 ( )
A 、5
B 、5
C 、5
1 D 、以上都不对 3、已知:a a a
a -=-112,那么a 的取值范围是 ( ) A 、a ≤0 B 、a <0 C 、0<a ≤1 D 、a >0
4、化简a
a 1-的结果是 ( ) A 、a - B 、-a - C 、a D 、-a
5、下列计算正确的是 ( )
A 、532=+
B 、632=•
C 、48=
D 、3)3(2-=-
6、若a <0,则a a -2的值是 ( )
A 、0
B 、– a
C 、– 2a
D 、–3a
7、下列根式中,不是最简二次根式的是 ( )
A 、12+a
B 、12+x
C 、y 3.0
D 、4
2b 8、若14+x 有意义,则x 的最小整数值是 ( )
A 、1
B 、0
C 、– 1
D 、–4
二、填空题。
(每小题4分,共32分)
9、若二次根式x x -+-52有意义,则x 的取值范围是_________。
10、已知322+-+-=x x y ,则y x =_________。
11、在实数范围内分解因式:44-x =_________。
12、若024=+++b a ,则ab=_________。
13、已知:a<2,则()22-a =_________。
14、比较大小:56________75--。
15、1112-=-•+x x x 成立的条件是_________。
16、三角形的三边长分别是cm cm cm 45,40,20,则这个三角形的周长是_________。
三、解答题。
17、已知:a 、b 为实数,且421025+=-+-b a a ,求a 、b 的值。
18、已知:231-=x ,231
+=y ,求:xy y xy x 2
2++的值。
(本小题7分)
19、计算:32275)
21()1(10--+-+--π。
(本小题7分)
20、已知:71=+
a a ,求:a a 1-的值。
(本小题8分)
21、已知矩形的长与宽之比为5:3,它们的对角线长为68,求这个矩形的长与宽。
(本小题8分)。