对数函数(第一课时).doc
- 格式:doc
- 大小:34.51 KB
- 文档页数:20
诚西郊市崇武区沿街学校对数函数〔第一课时〕一、教学分析1、教学内容教学内容为对数函数的概念、图像及性质。
本节是学习指数、指数函数和对数的后继内容,根据描点法,作出对数函数的图像以及得到相应的对数函数性质。
对数函数既是指数函数的反函数,也是高中乃至以后的数学学习中应用极为广泛的重要初等函数之一,其研究方法以及研究的问题具有普遍意义。
2、学生学习情况分析学生在学习过程中,仍保存着初中生许多学习特点,才能开展正处于形象思维向抽象思维转折阶段,但更注重形象思维。
由于函数概念非常抽象,又以对数运算为根底,同时,初中函数教学要求降低,初中生运算才能有所下降,这双重问题增加了对数函数教学的难度。
教师必须认识到这一点,教学中要控制要求的拔高,关注学习过程。
3、设计理念本节课以建构主义根本理论为指导,以新课标根本理念为根据进展设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、交流的时机,确实改变学生的学习方式。
4、教学目的知识技能〔1〕掌握对数函数的概念、图像及性质。
〔2〕应用对数函数性质,掌握求简单对数函数定义域的方法;〔3〕掌握三种简单的分别比较对数、真数和底数大小的方法。
过程与方法利用指数函数以及性质导出对数函数概念和相应的函数,在学习和应用对数函数性质的过程中,着重数学思想方法的培养。
〔1〕类比的思想。
指数函数和对数函数概念和性质的类比。
〔2〕对称的思想。
指数函数与对数函数概念与性质的类比。
〔3〕数形结合思想。
通过函数图像研究函数的代数性质,以及通过函数表达式探究函数的几何性质,学习和领会图形语言与符号语言之间的互相转化,并能运用这些语言表达有关函数的性质。
〔4〕分类讨论的思想。
根据对数函数的底数大于1或者者小于1的不同情况进展讨论,初步理解分类的原那么,体会分类讨论的思想。
〔5〕换元的思想。
通过换元,将教复杂的对数函数问题转化为根本的对数函数问题。
对数函数及其性质(第一课时)作者:杨继泰来源:《读写算》2011年第10期一、教材学生学习情况分析本小节是《普通高中课程标准实验教科书·数学必修(1)》(人教A版)第二章基本初等函数,第2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要的初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,而且现在的初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。
教师备课必须认识到这一点,在教学中不仅要力求形象教学且要控制要求的拔高,关注学习过程。
二、教学目标1.知识技能①对数函数的概念,熟悉对数函数的图象与性质规律;②掌握对数函数的性质,能初步运用性质解决问题。
2.过程与方法让学生通过观察对数函数的图象,发现并归纳总结对数函数的性质。
3.情感、态度与价值观①培养学生数形结合的思想以及分析推理的能力;②培养学生严谨的科学态度。
三、学法与教学用具1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质;2.教学手段:多媒体计算机辅助教学。
四、教学重点、难点1、重点:理解对数函数的定义,掌握对数函数的图象和性质。
2、难点:底数对图象的影响及对数函数性质的应用。
五、教学过程(一)、设置情境在2.2.1的例6中,考古学家利用估算出土文物或古遗址的年代,对于每一个含量,通过关系式,都有唯一确定的年代与之对应。
同理,对于每一个对数式中的,任取一个正的实数值,均有唯一的值与之对应,所以的函数。
设计意图:体现了对数函数的应用价值和引入对数函数的概念。
(二)、探索新知识一般地,我们把函数(且)叫做对数函数,其中是自变量,函数的定义域是(0,+∞)。
提问:(1)在函数的定义中,为什么要限定且.(2)为什么对数函数(且)的定义域是(0,+∞)。
《对数函数》学历案(第一课时)一、学习主题本课时学习主题为“对数函数”。
对数函数是中职数学课程中的重要内容,是理解和掌握数学基础知识和基本技能的重要环节。
本课时将通过理论学习、实例分析、实践操作等多种方式,使学生掌握对数函数的概念、性质及基本运算。
二、学习目标1. 理解对数函数的定义、基本形式及其意义;2. 掌握对数函数的图像特点,理解真数与底数的变化对图像的影响;3. 能够根据对数函数性质解决简单的应用问题;4. 培养分析问题和解决问题的能力,提升数学思维能力。
三、评价任务1. 评价学生对对数函数定义的理解程度,能否准确描述对数函数的基本形式;2. 评价学生对对数函数图像的掌握情况,能否根据真数和底数的变化绘制出相应的图像;3. 通过解决实际问题,评价学生运用对数函数知识的能力;4. 评价学生的学习态度和课堂表现,包括参与度、合作能力等。
四、学习过程1. 导入新课:通过回顾指数函数的定义和性质,引出对数函数的概念,激发学生的学习兴趣。
2. 新课讲解:详细讲解对数函数的定义、基本形式及意义,通过对数与指数的互化关系说明对数函数的重要性。
3. 图像分析:展示不同真数和底数下的对数函数图像,让学生理解真数和底数变化对图像的影响。
4. 实例分析:通过具体的生活实例,引导学生运用对数函数知识解决问题,加深学生对知识的理解。
5. 练习巩固:布置相关练习题,让学生通过练习巩固对数函数的知识。
6. 课堂小结:总结本课时学习的重点和难点,回答学生疑问。
五、检测与作业1. 检测:通过课堂小测验,检测学生对对数函数定义、性质及基本运算的掌握情况。
2. 作业:布置相关作业,包括对数函数的计算题、应用题等,让学生在家中继续巩固和练习。
六、学后反思1. 学生反思:引导学生反思本课时的学习过程,总结收获和不足,为后续学习做好准备。
2. 教师反思:教师反思本课时的教学效果,总结教学过程中的优点和不足,为改进教学方法提供依据。
诚西郊市崇武区沿街学校对数函数及其性质〔第一课时〕【教学目的】一.知识与技能目的1.掌握对数函数的概念,图象。
2.能由对数函数的图象探究、理解对数函数的性质并学会简单应用。
二.过程与方法目的1.用联络的观点分析问题,通过对对数函数的学习,浸透数形结合的数学思想。
2.培养学生的数学应用意识。
三.情感态度与价值观1.通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联络,认识事物之间的互相转化,用联络的观点分析、解决问题,激发学生的学习兴趣。
2.在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维才能以及数学交流才能,增强学习的积极性。
【教学重点】对数函数的定义、图象和性质。
【教学难点】底数a对对数函数性质的影响。
【教学过程】一.创设情景,引入新课材料1:回忆学习指数函数时用的实例。
某种细胞分裂时,一个分裂成为原来的两个。
细胞的个数y 是分裂次数x 的函数:y=x2。
假设要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,根据下表:对于每一个细胞个数y ,通过对应关系y x2log =,都有唯一确定的分裂次数x 与它对应,所以分裂次数x 就是分裂后要得到的细胞个数y 的函数。
材料2:课本73页2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用P t573021log=估算出土文物或者者古遗迹的年代。
根据下表:对于每一个碳14含量P ,通过对应关系573021,都有唯一确定的年代t 与它对应,所以生物死亡年数t 是其体内碳14含量P 的函数。
根据材料1、2,可以得到生活中的又一类与指数函数有着亲密关系的函数模型——对数函数。
二.讲解新课 (一)对数函数的概念1.根据材料1、2中的两个函数x y 2log =,P t 573021log =,我们据此抽象出一个更具有一般性的函数模型:x y a log =结合指数的定义可得函数式x y a log =中的底数a 必须满足a ﹥0且a ≠1。
对数函数(第一课时)一、教材分析1、教材的地位与作用函数是高中数学的核心,对数函数是重要的基本初等函数之一,它是学生已学过指数函数及对数与常用对数基础上引入的,这为过渡到本节的学习起到辅垫作用;“对数函数”这节教材是在没有学习反函数的基础上研究指数函数和对数函数的自变量与因变量之间的关系。
学习本节使学生的知识体系更加完整、系统,同时又是指数函数知识的拓展和延伸,它是解决有关自然科学领域中实际问题的重要工具。
2、教学目标的确定及依据通过对教材的研究和结合学生的实际情况等方面的要求,本节的知识目标:理解对数函数的概念,掌握对数函数的图象和性质,在掌握性质的基础上学会初步应用。
能力目标是:通过对数函数的学习,培养学生数形结合,分类讨论的数学思想;注重培养学生分析、类比、归纳的能力。
情态及价值观目标:用联系的观点分析问题,认识事物之间的转化,在民主和谐的教学气氛中,培养合作意识,感受学习乐趣,动脑思考的良好个性品质。
3、教学重点、难点重点:对数函数的概念,图象和性质难点:①指数函数与对数函数的内在关系②通过已知的指数函数图象和性质再类比对数函数的图象和性质。
二、教法分析数学是一门培养和发展人的思维的重要学科,因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”。
1、教法——发现法发现法的教学方法,体现了认知心理学的应用。
在教学过程中,首先创设一个问题的情境,引导学生积极思考,容易激发其兴趣,唤起其有意注意,兴趣可调动学习积极性。
由学生熟悉的指数函数知识逐步过渡到对数函数知识的认识,其次,借助老师和学习伙伴的帮助,发挥其主动性来对知识的“发现”和接受(即在学习过程中帮助学生很好地掌握对数函数的概念,图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解)2、学法启发式与独立自主学习,合作交流学习相结合提出富有启发性的问题激发他们的独立自主探索,与合作交流。
以学生作为教学主体,教师作为教学主导,在讨论中以教师的点拔如“类比法”使学生能够找到解决问题的方法,从而解决所提问题,通过加强合作交流,反馈练习法,激发他们手脑并用,引发和加强学生的有意注意。
3、教学手段①利用学校局域网,采用计算机辅助教学,让形象、直观、清晰的对数函数与指数函数图象加深学生的理解。
②利用投影仪提出问题三、教学过程教学矛盾的主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。
创设情境提出问题类比联想动手操作观察分析合作交流巩固应用知识整合(一)教学流程图引入新课XX年10月18日,美国某城市的日报醒目标题刊登了“市政委员会今天宣布,本市垃圾的体积达到50000立方米”,副标题“垃圾的体积每三年增加一倍”(1)设想城市垃圾的体积继续每三年增加一倍,24年后本市的垃圾的体积是多少?(2)若按现在这个速度,该市要经过多少年垃圾的体积达到百万立方米、千万立方米,……(由环保问题引出)这个问题的解决方法,就是今天所要学习的内容——对数函数设计意图:通过“引例”使学生对本节内容产生兴趣。
有了“引例”辅垫,学生将产生有意注意,对新知识的学习产生求知欲。
3一、教材分析1、教材的地位与作用函数是高中数学的核心,对数函数是重要的基本初等函数之一,它是学生已学过指数函数及对数与常用对数基础上引入的,这为过渡到本节的学习起到辅垫作用;“对数函数”这节教材是在没有学习反函数的基础上研究指数函数和对数函数的自变量与因变量之间的关系。
学习本节使学生的知识体系更加完整、系统,同时又是指数函数知识的拓展和延伸,它是解决有关自然科学领域中实际问题的重要工具。
2、教学目标的确定及依据通过对教材的研究和结合学生的实际情况等方面的要求,本节的知识目标:理解对数函数的概念,掌握对数函数的图象和性质,在掌握性质的基础上学会初步应用。
能力目标是:通过对数函数的学习,培养学生数形结合,分类讨论的数学思想;注重培养学生分析、类比、归纳的能力。
情态及价值观目标:用联系的观点分析问题,认识事物之间的转化,在民主和谐的教学气氛中,培养合作意识,感受学习乐趣,动脑思考的良好个性品质。
3、教学重点、难点重点:对数函数的概念,图象和性质难点:①指数函数与对数函数的内在关系②通过已知的指数函数图象和性质再类比对数函数的图象和性质。
二、教法分析数学是一门培养和发展人的思维的重要学科,因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”。
1、教法——发现法发现法的教学方法,体现了认知心理学的应用。
在教学过程中,首先创设一个问题的情境,引导学生积极思考,容易激发其兴趣,唤起其有意注意,兴趣可调动学习积极性。
由学生熟悉的指数函数知识逐步过渡到对数函数知识的认识,其次,借助老师和学习伙伴的帮助,发挥其主动性来对知识的“发现”和接受(即在学习过程中帮助学生很好地掌握对数函数的概念,图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解)2、学法启发式与独立自主学习,合作交流学习相结合提出富有启发性的问题激发他们的独立自主探索,与合作交流。
以学生作为教学主体,教师作为教学主导,在讨论中以教师的点拔如“类比法”使学生能够找到解决问题的方法,从而解决所提问题,通过加强合作交流,反馈练习法,激发他们手脑并用,引发和加强学生的有意注意。
3、教学手段①利用学校局域网,采用计算机辅助教学,让形象、直观、清晰的对数函数与指数函数图象加深学生的理解。
②利用投影仪提出问题三、教学过程教学矛盾的主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。
创设情境提出问题类比联想动手操作观察分析合作交流巩固应用知识整合(一)教学流程图引入新课XX年10月18日,美国某城市的日报醒目标题刊登了“市政委员会今天宣布,本市垃圾的体积达到50000立方米”,副标题“垃圾的体积每三年增加一倍”(1)设想城市垃圾的体积继续每三年增加一倍,24年后本市的垃圾的体积是多少?(2)若按现在这个速度,该市要经过多少年垃圾的体积达到百万立方米、千万立方米,……(由环保问题引出)这个问题的解决方法,就是今天所要学习的内容——对数函数设计意图:通过“引例”使学生对本节内容产生兴趣。
有了“引例”辅垫,学生将产生有意注意,对新知识的学习产生求知欲。
3一、教材分析1、教材的地位与作用函数是高中数学的核心,对数函数是重要的基本初等函数之一,它是学生已学过指数函数及对数与常用对数基础上引入的,这为过渡到本节的学习起到辅垫作用;“对数函数”这节教材是在没有学习反函数的基础上研究指数函数和对数函数的自变量与因变量之间的关系。
学习本节使学生的知识体系更加完整、系统,同时又是指数函数知识的拓展和延伸,它是解决有关自然科学领域中实际问题的重要工具。
2、教学目标的确定及依据通过对教材的研究和结合学生的实际情况等方面的要求,本节的知识目标:理解对数函数的概念,掌握对数函数的图象和性质,在掌握性质的基础上学会初步应用。
能力目标是:通过对数函数的学习,培养学生数形结合,分类讨论的数学思想;注重培养学生分析、类比、归纳的能力。
情态及价值观目标:用联系的观点分析问题,认识事物之间的转化,在民主和谐的教学气氛中,培养合作意识,感受学习乐趣,动脑思考的良好个性品质。
3、教学重点、难点重点:对数函数的概念,图象和性质难点:①指数函数与对数函数的内在关系②通过已知的指数函数图象和性质再类比对数函数的图象和性质。
二、教法分析数学是一门培养和发展人的思维的重要学科,因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”。
1、教法——发现法发现法的教学方法,体现了认知心理学的应用。
在教学过程中,首先创设一个问题的情境,引导学生积极思考,容易激发其兴趣,唤起其有意注意,兴趣可调动学习积极性。
由学生熟悉的指数函数知识逐步过渡到对数函数知识的认识,其次,借助老师和学习伙伴的帮助,发挥其主动性来对知识的“发现”和接受(即在学习过程中帮助学生很好地掌握对数函数的概念,图象和性质,并对指数函数与对数函数的内在关系达到较深刻的理解)2、学法启发式与独立自主学习,合作交流学习相结合提出富有启发性的问题激发他们的独立自主探索,与合作交流。
以学生作为教学主体,教师作为教学主导,在讨论中以教师的点拔如“类比法”使学生能够找到解决问题的方法,从而解决所提问题,通过加强合作交流,反馈练习法,激发他们手脑并用,引发和加强学生的有意注意。
3、教学手段①利用学校局域网,采用计算机辅助教学,让形象、直观、清晰的对数函数与指数函数图象加深学生的理解。
②利用投影仪提出问题三、教学过程教学矛盾的主要方面是学生的学,学是中心,会学是目的,因此在教学中要不断指导学生学会学习。
创设情境提出问题类比联想动手操作观察分析合作交流巩固应用知识整合(一)教学流程图引入新课XX年10月18日,美国某城市的日报醒目标题刊登了“市政委员会今天宣布,本市垃圾的体积达到50000立方米”,副标题“垃圾的体积每三年增加一倍”(1)设想城市垃圾的体积继续每三年增加一倍,24年后本市的垃圾的体积是多少?(2)若按现在这个速度,该市要经过多少年垃圾的体积达到百万立方米、千万立方米,……(由环保问题引出)这个问题的解决方法,就是今天所要学习的内容——对数函数设计意图:通过“引例”使学生对本节内容产生兴趣。
有了“引例”辅垫,学生将产生有意注意,对新知识的学习产生求知欲。
3一、教材分析1、教材的地位与作用函数是高中数学的核心,对数函数是重要的基本初等函数之一,它是学生已学过指数函数及对数与常用对数基础上引入的,这为过渡到本节的学习起到辅垫作用;“对数函数”这节教材是在没有学习反函数的基础上研究指数函数和对数函数的自变量与因变量之间的关系。
学习本节使学生的知识体系更加完整、系统,同时又是指数函数知识的拓展和延伸,它是解决有关自然科学领域中实际问题的重要工具。
2、教学目标的确定及依据通过对教材的研究和结合学生的实际情况等方面的要求,本节的知识目标:理解对数函数的概念,掌握对数函数的图象和性质,在掌握性质的基础上学会初步应用。
能力目标是:通过对数函数的学习,培养学生数形结合,分类讨论的数学思想;注重培养学生分析、类比、归纳的能力。
情态及价值观目标:用联系的观点分析问题,认识事物之间的转化,在民主和谐的教学气氛中,培养合作意识,感受学习乐趣,动脑思考的良好个性品质。
3、教学重点、难点重点:对数函数的概念,图象和性质难点:①指数函数与对数函数的内在关系②通过已知的指数函数图象和性质再类比对数函数的图象和性质。
二、教法分析数学是一门培养和发展人的思维的重要学科,因此,在教学中不仅要使学生“知其然”而且要使学生“知其所以然”。
1、教法——发现法发现法的教学方法,体现了认知心理学的应用。