0
⑵考察对数函数 y = log 0.3 x,因为它
y
的底数为0.3,即0<0.3<1,所以它
在(0,+∞)上是减函数,于是
0
log 0.31.8>log 0.32.7
log0.31.8 log0.32.7
y=log2x
3.4 8.5 x
1.8 2.7 x
y=log0.3x
当底数相同时,利用对数函数的单调性比较大小
loga5.1 0
y=logax (a>1) 5.1 5.9 x
当0<a<1时,函数y=log ax在 (0,+∞)上是减函数,于是
log a5.1>log a5.9
y
0 loga5.1 loga5.9
5.1 5.9 x
y=logax (0<a<1)
当底数a不确定时, 要对a与1的大小进行分类讨论.
(1)log2 3.4, log2 8.5 (2)log0.3 1.8, log0.3 2.7 (3)loga 5.1, loga 5.9(a 0且a 1)
解:⑴考察对数函数 y = log 2x,因为 它的底数2>1,所以它在(0,+∞) 上 是增函数,于是log 23.4<log 28.5
y log28.5 log23.4
y log 1 x
2
画一画:在同一坐标系中画出y log2 x和y log1 x的图象
2
x
1
…
4
1 2
1 24
…
y log2 x … -2
-1
0 12…
y log 1 x … 2
2
y
1
0 -1
-2 …
描 点
2