对数函数及其性质第一课时
- 格式:doc
- 大小:312.50 KB
- 文档页数:7
对数函数及其性质(第一课时)作者:杨继泰来源:《读写算》2011年第10期一、教材学生学习情况分析本小节是《普通高中课程标准实验教科书·数学必修(1)》(人教A版)第二章基本初等函数,第2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要的初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,而且现在的初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。
教师备课必须认识到这一点,在教学中不仅要力求形象教学且要控制要求的拔高,关注学习过程。
二、教学目标1.知识技能①对数函数的概念,熟悉对数函数的图象与性质规律;②掌握对数函数的性质,能初步运用性质解决问题。
2.过程与方法让学生通过观察对数函数的图象,发现并归纳总结对数函数的性质。
3.情感、态度与价值观①培养学生数形结合的思想以及分析推理的能力;②培养学生严谨的科学态度。
三、学法与教学用具1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质;2.教学手段:多媒体计算机辅助教学。
四、教学重点、难点1、重点:理解对数函数的定义,掌握对数函数的图象和性质。
2、难点:底数对图象的影响及对数函数性质的应用。
五、教学过程(一)、设置情境在2.2.1的例6中,考古学家利用估算出土文物或古遗址的年代,对于每一个含量,通过关系式,都有唯一确定的年代与之对应。
同理,对于每一个对数式中的,任取一个正的实数值,均有唯一的值与之对应,所以的函数。
设计意图:体现了对数函数的应用价值和引入对数函数的概念。
(二)、探索新知识一般地,我们把函数(且)叫做对数函数,其中是自变量,函数的定义域是(0,+∞)。
提问:(1)在函数的定义中,为什么要限定且.(2)为什么对数函数(且)的定义域是(0,+∞)。
对数函数及其性质(第1课时)教学设计柏秀芳沁县实验中学一、教材分析本节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。
对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。
与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。
学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。
对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
对数函数是以指数函数作为基础知识。
本节课的主要任务是抓住对数函数与指数函数的互为反函数的关键,掌握对数函数的概念、图像性质并由对数函数的图像归纳出性质,能运用性质解决比较对数值大小。
为了能使学生理解和掌握教学内容,培养学生自主学习能力和数学建构思想,本节课使用多媒体教学,通过计算机辅助教学课件和网络系统良好的交互性能,适时得到学生的反馈信息,实现教学目标。
二、学情分析对数函数的学习以对数运算和指数函数作为基础,部分学生前面知识不熟练,加之函数概念的抽象性,学生对函数的理解比较困难,对于对数函数学习或多或少有些恐惧感。
学生又是从初中升入高一不久,在学习方法上还保留着初中的学习方法,考虑问题常常以形象思维为主,在教学中,注意培养学生由特殊到一般的归纳能力,让学生多观察,通过数形结合,来感受对数函数的图像和性质的关系。
三、设计思想:本节是在学生已经学过对数,与常用对数以及指数函数的基础上,借助生活中典型实例引出对数函数的概念,借助多媒体辅助手段,创设问题情境,让学生通过分析、推理、归纳、类比等活动过程,从中了解和体验对数函数图象和性质。
因而让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。
诚西郊市崇武区沿街学校对数函数及其性质〔第一课时〕【教学目的】一.知识与技能目的1.掌握对数函数的概念,图象。
2.能由对数函数的图象探究、理解对数函数的性质并学会简单应用。
二.过程与方法目的1.用联络的观点分析问题,通过对对数函数的学习,浸透数形结合的数学思想。
2.培养学生的数学应用意识。
三.情感态度与价值观1.通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联络,认识事物之间的互相转化,用联络的观点分析、解决问题,激发学生的学习兴趣。
2.在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维才能以及数学交流才能,增强学习的积极性。
【教学重点】对数函数的定义、图象和性质。
【教学难点】底数a对对数函数性质的影响。
【教学过程】一.创设情景,引入新课材料1:回忆学习指数函数时用的实例。
某种细胞分裂时,一个分裂成为原来的两个。
细胞的个数y 是分裂次数x 的函数:y=x2。
假设要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,根据下表:对于每一个细胞个数y ,通过对应关系y x2log =,都有唯一确定的分裂次数x 与它对应,所以分裂次数x 就是分裂后要得到的细胞个数y 的函数。
材料2:课本73页2.2.1的例6,考古学家一般通过提取附着在出土文物、古遗址上死亡物体的残留物,利用P t573021log=估算出土文物或者者古遗迹的年代。
根据下表:对于每一个碳14含量P ,通过对应关系573021,都有唯一确定的年代t 与它对应,所以生物死亡年数t 是其体内碳14含量P 的函数。
根据材料1、2,可以得到生活中的又一类与指数函数有着亲密关系的函数模型——对数函数。
二.讲解新课 (一)对数函数的概念1.根据材料1、2中的两个函数x y 2log =,P t 573021log =,我们据此抽象出一个更具有一般性的函数模型:x y a log =结合指数的定义可得函数式x y a log =中的底数a 必须满足a ﹥0且a ≠1。
2.2.2 对数函数及其性质(一)(一)教学目标1.知识技能(1)理解对数函数的概念.(2)掌握对数函数的性质.了解对数函数在生产实际中的简单应用.2.过程与方法(1)培养学生数学交流能力和与人合作精神.(2)用联系的观点分析问题.通过对对数函数的学习,渗透数形结合的数学思想.3.情感、态度与价值观(1)通过学习对数函数的概念、图象和性质,使学生体会知识之间的有机联系,激发学生的学习兴趣.(2)在教学过程中,通过对数函数有关性质的研究,培养观察、分析、归纳的思维能力以及数学交流能力,增强学习的积极性,同时培养学生倾听、接受别人意见的优良品质.(二)教学重点、难点1、重点:(1)对数函数的定义、图象和性质;(2)对数函数性质的初步应用.2、难点:底数a对图象的影响.(三)教学方法通过让学生观察、思考、交流、讨论、发现对数函数的图象的特点.(四)教学过程一般式吗?.概念.质,.的图象之间有什么关系?对数函数图象有以下特征对数函数有以下性质相同点:图象都在y轴的右侧,都过点(1,0).不同点:y=log3x的图象是上升=log x的图象是下降的.备选例题例1 求函数)416(log )1(x x y -=+的定义域. 【解析】由⎪⎩⎪⎨⎧≠+>+>-11010416x x x ,得⎪⎩⎪⎨⎧≠-><012x x x . ∴所求函数定义域为{x | –1<x <0或0<x <2}.【小结】求与对数函数有关的定义域问题,首先要考虑真数大于零,底数大于零且不等于1.例2 求函数y = log 2|x |的定义域,并画出它的图象. 【解析】函数的定义域为{x |x ≠0,x ∈R }. 函数解析式可化为y =⎪⎩⎪⎨⎧<->)0()(log )0(log 22x x xx ,其图象如图所示(其特征是关于y 轴对称).x。
..--对数函数及其性质-第一课时
————————————————————————————————作者:————————————————————————————————日期:
2.2.2 对数函数及其性质(第一课时)
教学目的:
1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系; 2.会求对数函数的定义域;
3.渗透应用意识,培养归纳思维能力和逻辑推理能力,提高数学发现能力。
教学重点:对数函数的定义、图象、性质 教学难点:对数函数与指数函数间的关系. 教学过程: 一、复习引入:
对于函数y =x 2,根据对数的定义,可以写成对数的形式,就是y x 2log = 如果用x 表示自变量,y 表示函数,这个函数就是x y 2log =
由反函数概念可知, x y 2log =与指数函数x y 2=互为反函数。
x y 2log =也是一个非常重要的函数,把它称为对数函数。
二、新授内容: 1.对数函数的定义:
函数x y a log =)10(≠>a a 且叫做对数函数;它是指数函数x a y =
)10(≠>a a 且的反函数。
对数函数x y a log = )10(≠>a a 且的定义域为),0(+∞,值域为),(+∞-∞。
2.对数函数的图象
由于对数函数x y a log =与指数函数x a y =互为反函数,所以x y a log =的图象与x a y =的图象关于直线x y =对称。
因此,我们只要画出和x a y =的图象关于x y =对称的曲线,就可以得到x y a log =的图象,然后根据图象特征得出对数函数的性质。
1
a>01
a
<<
红:对数函数图像
蓝:指数函数图像
3.对数函数的性质
先回顾指数函数
)1
(≠
>
=a
a
a
y x且的图象和性质。
a>1 0<a<1 图
象
1
O a x
y
1
O a x
y
性质1.定义域R
2.值域(0,+∞)
3.过定点(0,1),即x=0时,y=1
4.函数值
分布
x>0时,y>1;
x<0时,0<y<1
x>0时,0<y<1;
x<0时,y>1.
5.单调性在 R上是增函数在R上是减函数
由由反函数的性质和对数函数的图象,观察得出对数函数的性质.(引导学生自己完成下表)
a>1
0<a<1
图 象
x=1
O
1
a
x
y
x=1
O
1
a x
y
性 质 1.定义域 (0,+∞) 2.值域 R
3.过定点
(1,0),即x=1时,y=0
4.函数值分布
x>1时,y>0;
0<x<1时, y<0
0<x<1时, y<0; x>1时,y>0.
5.单调性 在 (0,+∞)上是增函数
在(0,+∞)上是减函数
4、例题:
例1求下列函数的定义域:
(1)2log x y a =; (2))4(log x y a -=; (3))9(log 2x y a -= (4)2x x y lg(2322)=-+⋅- 解:(1)
20,0x x >⇒≠ 故2log x y a =的定义域是{}0x x ≠
(2)定义域{}4x x < (3)定义域{}33x x -<<
(4)2x x x 23220,122,0x 1-+⋅->∴<<∴<<
故函数2x x y lg(2322)=-+⋅-的定义域为(0,1).
例2 求下列函数的反函数
(1)121-⎪⎭
⎫
⎝⎛=x
y (2)3)21(12+=+x y )0(<x
解:(1) 121+=⎪⎭⎫
⎝⎛y x
∴)1(log )(2
11+=-x x f )1(->x
(2) 3)21(12-=+y x ∴112
()log (3)1f x x -=--- )27
3(<<x
例3 求下列函数的值域:
(1))52(log 22++=x x y (2)4
1
21
2
-
=--x y 解: (1)∵44)1(5222≥++=++x x x
从而24log )52(log 222=≥++x x 即函数值域为),2[+∞
(2)
112-≤--x
∴2
12
1
2≤--x ∴41412012≤-≤--x ∴210≤≤y ∴值域为]2
1
,0[
三、课堂总结:这节课我们学习了对数函数的图像和性质及推导过程希望同学们下来后记熟图像并用图像反复推导性质
四、练习:P84 1题 2题
1.画出函数y=3log x 及y=x 3
1log 的图象,并且说明这两个函数的相同性质和不同
性质.
解:相同性质:两图象都位于y 轴右方,都经过点(1,0),这说明两函数的定义域都是(0,+∞),且当x=1,y=0.
不同性质:y=3log x 的图象是上升的曲线,y=x 3
1log 的图象是下降
的曲线,这说明前者在(0,+∞)上是增函数,后者在(0,+∞)上是减函数.
2.求下列函数的定义域:
(1)y=3log (1-x) (2)y=x
2log 1
(3)y=x
311
log 7
- x y 3log )4(= 五、作业:习题2.8 1题,2题。