光器件基础知识
- 格式:docx
- 大小:2.68 MB
- 文档页数:16
光器件测试知识点总结光器件测试是指对各种光学器件进行性能测试和质量评估的过程。
在光通信、光电子、医疗设备等领域中,光器件测试起着至关重要的作用。
光器件测试知识点包括测试方法、测试原理、测试技术等多方面内容。
以下是光器件测试知识点的总结:一、光器件测试的基本概念1.光器件测试的定义光器件测试是指通过一系列的测试方法和技术,对光学器件的性能进行检测和评估的过程。
光器件测试的目的是为了保证器件的性能指标符合规定的要求,以满足特定的应用需求。
2.光器件测试的意义光器件测试是保证光学器件性能的重要手段,可以有效地验证器件的质量和性能,评估器件的可靠性和稳定性,为光通信、光电子、医疗设备等领域的应用提供支持。
3.光器件测试的分类根据测试的对象和目的,光器件测试可以分为器件性能测试、器件可靠性测试、器件光学特性测试等不同的分类。
二、光器件测试的常用设备1.光功率计光功率计是用来测量光功率的设备,通常有单波长和多波长两种类型,广泛用于测试光源、激光器、光纤连接等。
2.光谱仪光谱仪是用来测量光谱分布的设备,可以用于测试光源的光谱特性、滤波器的透射率、光纤的光损耗等。
3.光波长计光波长计是用来测量光波长的设备,通常有单波长和多波长两种类型,用于测试激光器、光纤光谱特性等。
4.光衰减器光衰减器是用来模拟光衰减的设备,通常用于测试光纤的衰减特性和传输性能。
5.光学显微镜光学显微镜是用来观察光学器件表面和内部结构的设备,可用于检测器件的外观质量和组装精度。
6.其他测试设备除上述设备外,还有一些专用的测试设备,如偏振度测试仪、群速度测试仪、自相关测试仪等,用于测试特定的光学器件性能。
三、光器件测试的常用测试指标1.光功率光功率是指光源发出的光的功率大小,通常以单位时间内通过单位面积的能量来表示,是衡量光源亮度的重要指标。
2.光谱特性光谱特性是指光在不同波长下的能量分布情况,通过光谱仪测试可以得到光源的光谱分布曲线,用于评估光源的颜色性能和光谱平坦度。
光器件和芯片的结构介绍光器件和芯片是光通信、光电子和光学等领域中重要的元器件,具有将光信号转换和处理的功能。
光器件是指用于控制、调制、放大、分束、耦合和检测光信号的器件,如光纤、光电二极管、激光器等;而芯片是指在半导体材料上制造的微小元件,通过对光电子学原理的应用,实现对光信号的处理和控制。
本文将介绍光器件和芯片的结构、功能和应用。
一、光器件的结构与功能1.光电二极管光电二极管是一种半导体器件,主要由p-n结构组成。
当接受到光信号时,光子激发了半导体材料中的载流子,产生电流,从而实现光信号到电信号的转换。
光电二极管广泛应用于光通信、光电检测和传感等领域。
2.光纤光纤是一种细长且透明的光导波导管,由芯部和包层构成。
光信号通过光纤中的总反射传输,可以减少信号衰减和互相干扰,实现高速、远距离的数据传输。
光纤在通信、网络和传感等领域中具有重要应用价值。
3.激光器激光器是一种将电能转换为光能的器件,主要由激活件、反射腔和光输出系统等组成。
激光器通过激发激活件中的电子跃迁,产生一种具有相干性和高亮度的激光光源。
激光器在通信、医疗、材料加工等领域有着广泛的应用。
4.光调制器光调制器是一种用于调制光信号的器件,主要分为强度调制器和相位调制器两种。
强度调制器通过调节光信号的强度来实现信号的调制,而相位调制器则通过调节光信号的相位来实现信号的调制。
光调制器广泛应用于光通信、激光雷达和光谱分析等领域。
5.光检测器光检测器是一种用于检测光信号的器件,主要包括光电二极管、光电倍增管、光电子管等。
光检测器可以将光信号转换为电信号,并进行放大和处理,用于光通信、光谱分析和光学成像等领域。
二、光芯片的结构与功能1.光波导光波导是一种用于光信号传输和耦合的微型结构,主要由光导芯部和包层构成。
光波导可以实现将光信号引导在芯部中传输,并通过布拉格光栅、光环等结构实现信号的调制和耦合。
光波导在光通信、传感和信息处理等领域中有着重要的应用。
光器件基础知识培训考试试题答题人姓名:工号:一、填空题:(35分,每空1分)1.光纤通信是利用作为信息载波信号并通过来传递信息的通信系统。
2.世界上第一台激光器是在年研制成功的;世界上第一条跨大西洋光缆投入运营的时间是年。
3.光纤通信的主要优点有:、、、、、、、。
4.原子中的电子在正常状态下(处于热平衡条件下),并不能都处于最低能级上。
因为泡利不相容原理指出,每一能级上至多只能有个电子,而且它们的自旋方向还必须。
5.本征半导体是指。
6.发生光吸收过程的必要条件是:入射光子的能量必须。
7.产生激光的基本条件是:、、、。
8.实现粒子数反转的条件有:、、。
9.LD的中心波长在管芯工作温度升高时,会向方向移动。
10.光电探测器的核心是:。
11.激光器件在操作过程中,其器件管角的焊接时间一般不得超过秒钟,焊接温度应严格控制在以内。
12.光电组件尾纤的最大牵引力为,最小弯曲半径为。
13.我们所佩带的防静电腕带的电阻是。
14.光电组件的最佳贮存温度范围是,相对湿度为。
15.浪涌的种类主要有:、、。
二、判断题:(5分,每题1分)1.PN结反向击穿会马上造成PN结的永久性损坏。
()2.激光二极管在操作使用时可以施加反向电压。
()3.经过受激辐射,辐射光与入射光同相位、同频率、同方向、同偏振态,相互叠加而使强度变强,即入射光得到了放大。
()4.光电通信用激光二极管所发射出的光,因为是不可见光,所以可以直接用肉眼接触。
()5.PIN光电二极管有一定的波长响应范围,入射光波必须小于其截至波长,而且不能远远小于其截止波长。
()三、简答题:(30分,每题10分)1.为什么说电子在原子中的运动轨道是量子化的?2.简述自发辐射的特点。
3.简述LED和LD之间的主要差别。
四、填图题:(10分)试填出下面点到点的光纤通信传输系统框图的关键元件名称:))五、计算题:(20分,每题10分)1.试用作图法估算出下图所示激光二极管的阈值电流:I(mA)P(mW)2.在对某一激光器组件进行高低温测试时,得到这样一组数据:25℃时的输出功率为1mW;85℃时的输出功率为0.75mW;-20℃时的输出功率为1.2mW。
光器件原理
光器件是一种利用光学原理来实现光信号传输和处理的器件。
它在光通信、光存储、光显示等领域发挥着重要作用。
光器件的原理涉及光学、材料科学、电子学等多个学科,具有复杂的工作原理和结构。
本文将从光器件的基本原理入手,介绍光器件的工作原理及其应用。
光器件的工作原理主要涉及光的发射、传输、探测和调制等方面。
光器件的发射原理是利用激光二极管、LED等器件将电信号转换成光信号,实现光的发射。
光的传输原理是利用光纤、光波导等传输介质将光信号传输到目的地。
光的探测原理是利用光电二极管、光电探测器等器件将光信号转换成电信号,实现光的探测。
光的调制原理是利用调制器件对光信号进行调制,实现光信号的调制。
这些原理共同构成了光器件的基本工作原理。
光器件在光通信、光存储、光显示等领域有着广泛的应用。
在光通信领域,光器件可以实现光信号的发射、传输、探测和调制,实现高速、大容量的光通信。
在光存储领域,光器件可以实现光盘、光存储器等设备,实现高密度、长寿命的光存储。
在光显示领域,光器件可以实现LED显示屏、激光投影仪等设备,实现高亮度、高清晰度的光显示。
这些应用表明了光器件在现代科技领域的重要作用。
总之,光器件是一种利用光学原理来实现光信号传输和处理的器件,具有复杂的工作原理和结构。
光器件的工作原理涉及光的发射、传输、探测和调制等方面,应用广泛,包括光通信、光存储、光显示等领域。
随着科技的不断发展,光器件将会在更多的领域发挥重要作用,推动科技的进步和社会的发展。
光学元器件分类光学元器件是指用于控制、调节、转换和操控光信号的器件。
根据其功能和性质的不同,光学元器件可以分为光源器件、光电探测器、光调制器和光传输器件等几大类。
一、光源器件光源器件是产生光信号的器件,常见的有激光器和发光二极管(LED)。
激光器是一种产生高强度、单色、相干光的器件。
其工作原理是通过激发介质中的原子或分子,使其处于高能级,然后通过受激辐射产生一束相干光。
激光器广泛应用于通信、材料加工、医疗和科学研究等领域。
发光二极管是一种将电能直接转换为光能的器件。
其工作原理是通过正向偏置电压驱动半导体结,使其发生复合辐射,产生光信号。
发光二极管在照明、显示、通信等领域有着广泛的应用。
二、光电探测器光电探测器是将光信号转换为电信号的器件,常见的有光电二极管(PD)和光电倍增管(PMT)。
光电二极管是一种将光能转换为电能的器件。
其工作原理是通过光照射到PN结上,产生光电效应,使得光电二极管产生电流。
光电二极管广泛应用于光通信、光测量和光电子学等领域。
光电倍增管是一种利用光电效应和倍增效应将弱光信号放大的器件。
其工作原理是通过光电效应将光信号转换为电信号,然后通过倍增效应将电信号放大。
光电倍增管在光谱分析、核物理实验和夜视仪器等领域有着重要的应用。
三、光调制器光调制器是一种能够调节光信号的器件,常见的有电吸收调制器(EAM)和电光调制器(EOM)。
电吸收调制器是一种利用光吸收效应调节光信号的器件。
其工作原理是通过改变电场引起光吸收系数的变化,从而实现对光信号的调制。
电吸收调制器广泛应用于光通信和光传输系统中。
电光调制器是一种利用光的电光效应调节光信号的器件。
其工作原理是通过改变电场引起折射率的变化,从而实现对光信号的调制。
电光调制器在光通信和光传输系统中具有重要的作用。
四、光传输器件光传输器件是用于控制和传输光信号的器件,常见的有光纤和光波导器件。
光纤是一种能够传输光信号的光导波结构。
其工作原理是通过光的全反射效应使光信号在光纤中传输。
光学的有关知识点总结一、光的基本特性光的本质是电磁波,它具有一系列独特的特性:1. 光速恒定:光在真空中的速度是光速,等于30万公里/秒,但在介质中的速度会有所改变。
2. 光的波粒二象性:光既有波动性,也有粒子性,表现为波粒二象性。
3. 光的波长和频率:波长和频率是光的两个基本参数,波长越短,频率越高,能量越大。
4. 光的直线传播:在均匀介质中,光沿直线传播。
5. 光的反射和折射:光与介质交界面产生反射和折射现象。
6. 光的干涉和衍射:光具有干涉和衍射现象,这是光波动性的表现。
二、光学基本原理1. 光的传播:光在真空中是直线传播,但在介质中会产生折射和散射现象。
2. 光的反射和折射:当光射入介质时,会发生反射和折射。
反射是光线与物体表面相交后发生的现象,而折射是光线从一种介质到另一种介质时产生的弯曲现象。
3. 光的焦点和成像:透镜和凸面镜具有成像功能,能够将光线聚焦到一个点上,这个点称为焦点。
通过透镜和凸面镜,可以实现光学成像。
4. 光的干涉和衍射:当两束光线交叠在一起时,会产生干涉现象;当光波通过障碍物后发生偏折时,会产生衍射现象。
三、光学器件1. 透镜:透镜是一种具有成像功能的光学器件,它可以将光线聚焦或发散。
透镜有凸透镜和凹透镜之分,可以用来成像、矫正视力等。
2. 凸面镜:凸面镜也是一种具有成像功能的光学器件,它可以将光线聚焦到一点上,通常用于放大物体、制作望远镜等。
3. 光栅:光栅是一种具有干涉功能的光学器件,它通过光的干涉现象来分离光谱,常用于光谱分析、激光器、光通信等领域。
4. 红外和紫外光学器件:红外和紫外光学器件广泛应用于红外和紫外光学系统中,包括红外夜视仪、红外热像仪、紫外消毒灯等。
5. 其他光学器件:还有偏振片、棱镜等光学器件,它们在光学领域有着重要的应用。
四、光学仪器1. 显微镜:显微镜是一种用来观察微小物体的仪器,它可以放大物体的微小结构,并通过眼镜或相机进行观察和研究。
光器件基础知识目录一、光纤通信基础 (2)1、光纤通信的概念 (2)2、光纤通信的优点 (2)二、光纤基础知识 (2)1、光纤的结构 (2)2、光纤的工作波长 (3)3、光纤的分类 (3)3.1按照光纤的模式分类 (3)3.2按照光纤的材料分类 (3)3.3按照光纤的折射率分类 (4)4、光纤的尺寸 (4)5、光纤接头类型 (5)6、光功率的换算 (6)7、光纤损耗 (6)三、常用光器件介绍 (6)3.1法兰盘 (6)3.2光衰减器 (7)3.3光模块 (8)2、光模块的主要参数 (8)3、光模块的种类 (9)四、光器件的工程应用 (11)1、单收光模块的使用 (11)2、双纤双向模块的使用 (11)3、长距离高灵敏度模块的使用 (11)4、QSFP+ MPO模块的使用 (12)5、万兆高速电缆的使用 (12)六、光模块和光纤使用注意事项 (13)七、光模块和光纤的故障排查方法 (14)八、光功率计的使用 (14)一、光纤通信基础1、光纤通信的概念所谓光纤通信就是利用光纤来传输携带信息的光波以达到通信的目的。
一般由数据源、光发射端、光纤、光接收端组成。
2、光纤通信的优点1)通信容量大,比传统的电缆、微波等高出几千乃至几十万倍的通信容量。
2)传输距离远,光纤具有极低的衰耗系数,传输距离可达一千公里以上。
3)保密性能好,光信号不具备向外辐射的特点,不易被侦听。
4)适应能力强,具有不怕外界强电磁场的干扰、耐腐蚀等优点。
5)体积小、重量轻。
原材料丰富、价格低廉。
二、光纤基础知识1、光纤的结构如上图所示,光纤呈圆柱形,主要由纤芯和包层和保护套三部分组成。
1、纤芯:位于光纤的中心部位,成分为高纯度的二氧化硅,掺有极少量杂质,折射率较高,用来传送光。
2、包层:位于纤芯的周围,其成分也是含有极少量掺杂质的高纯度二氧化硅,折射率较低,与纤芯一起形成全反射条件。
3、涂覆层:光纤的最外层,由丙烯酸酯、硅橡胶和尼龙组成,强度大,能承受较大冲击,起到保护光纤的作用。
2、光纤的工作波长光纤的工作波长主要分为短波长光纤和长波长光纤。
1、短波长光纤短波长光纤的工作波长在800nm-900nm范围内,具体工作在850nm波长,主要用于短距离、小容量的光纤通信系统中。
2、长波长光纤长波长光纤的工作波长在1100nm -1800nm范围内,具体工作在1310nm和1550nm两个波长,主要用于长距离、大容量的光通信系统中。
3、光纤的分类3.1按照光纤的模式分类1、单模光纤单模光纤的纤芯很细(10um左右),只能传一种模式的光,其模间色散很小,工作在1310nm和1550nm波长,适用于远程通讯。
2、多模光纤多模光纤的芯较粗(50um或62.5um),工作在850nm或1310nm波长,可传多种模式的光,其模间色散较大,适用于短距离通讯。
3.2按照光纤的材料分类1、玻璃光纤:纤芯与包层都是玻璃,损耗小,传输距离长,成本高;2、胶套硅光纤:纤芯是玻璃,包层为塑料,特性同玻璃光纤差不多,成本较低;3、塑料光纤:纤芯与包层都是塑料,损耗大,传输距离很短,价格很低。
多用于家电、音响以及短距离的图像传输。
3.3按照光纤的折射率分类1、阶跃型光纤如果纤芯的折射率是均匀不变的常数n1,包层折射率也是均匀不变的常数n2,且在纤芯和包层的界面折射率发生突变,即使由n1突变为n2,则这种光纤称为阶跃型光纤。
2、渐变型光纤如果纤芯折射率不是常数,而是随着半径的加大而逐渐减小,到了纤芯和包层界面降至包层的折射率n2,则这种光纤称为渐变型光纤。
4、光纤的尺寸光纤的外径一般为125um,光纤内径尺寸则根据不同光纤类型而不一样:单模光纤为8-10um,多模光纤为50/62.5um。
此外,多模光纤又分为OM1、OM2和OM3三种,其中OM1指62.5um的多模光纤,OM2指50um的多模光纤,OM3是目前新增的万兆光纤。
5、光纤接头类型光纤接头熔接在光纤线缆两端,用于将光纤与光模块、ODF架等光器件相连。
常见的光纤接头有LC、ST、SC和FC。
●LC型连接器:连接SFP模块的连接器,它采用操作方便的模块化插孔(RJ)闩锁机理制成。
●ST型连接器:外壳呈圆形,紧固方式为螺丝扣,常用于光纤配线架。
●SC型连接器:连接GBIC光模块的连接器,它的外壳呈矩形,紧固方式是采用插拔销闩式,不须旋转。
●FC型连接器:外部加强方式是采用金属套,紧固方式为螺丝扣,一般在ODF上采用较多。
2、常见的光纤接头图示3、在表示光纤接头的标注中,我们常见到“FC/PC”、“SC/PC”等,其具体的含义如下:●斜杠的前面部分的LC/SC/FC/ST表示光纤的连接器型号。
●斜杠的后面部分的PC/UPC/APC表示光纤接头截面的工艺,即研磨方式。
6、光功率的换算光功率常用毫瓦(mw)和分贝毫瓦(dBm)表示,其中毫瓦和分贝毫瓦两者的关系为:1mw=0dBm。
以1mw为基准的dBm的算法是:dBm=10*lg(mw)例如:功率为1W,1W=1000mw,换算成dBm为:10×lg1000=30dBm7、光纤损耗光纤损耗是指光波在光纤中传输时随着传输距离的增长光功率逐渐减小的现象。
产生光纤损耗的原因包括吸收损耗、散射损耗、弯曲和微弯曲损耗。
光纤损耗还与工作波长密切相关,下表是列出常见工作波长与光纤损耗之间接的关系:此外,光纤熔接点也会对光信号造成损耗,通常每个熔接点的损耗为0.2dB。
三、常用光器件介绍3.1法兰盘法兰盘俗称活接头,用于连接两根跳纤或光缆形成连续光通路的无源器件。
在工程中如果我们需要将两条跳纤连接起来时即可以使用法兰盘,相连两根跳纤的光纤接头可以是同类型的(如两端都是LC接头),也可以是不同类型的(如一是LC,另一端是SC)。
常见的法兰盘如下图所示:3.2光衰减器光衰减器一种可增加光纤链路上光功率衰减量的无源器件,主要作用避免光接收器件因接收超强光功率而导致光接收机产生失真和损坏。
光衰减器的型号分为阴阳式和法兰盘式,阴阳式衰减器通常串接在光模块和跳纤接头间,法兰盘式衰减器通常串接在两根跳纤的接头间。
日常工作中常用到的是LC/PC阴阳式衰减器。
光衰减器的衰减值可根据实际需要灵活定制(如3dB、5dB、10dB等)。
常见的阴阳式衰减器:常见的法兰盘式衰减器:3.3光模块光模块由光电子器件、功能电路和光接口等组成,主要是实现电信号转换成光信号和光信号转换成电信号的产品。
2、光模块的主要参数输出光功率输出光功率指光模块发送端光源的输出光功率(发射光功率),单位:dBm。
接收灵敏度接收灵敏度指的是在一定速率、误码率情况下光模块的最小接收光功率,单位:dBm。
一般情况下,速率越高接收灵敏度越高(即最小接收光功率越小),对于光模块接收端器件的要求也越高。
常见的光模块的传输速率、传输距离与输出光功率和灵敏度的关系如下:饱和光功率值指光模块接收端器件最大可以探测到的光功率。
当光接收器接收到大于饱和光功率的光信号时会出现光电流饱和现象。
在此情况下光接收器需要一定的时间恢复,此时接收灵敏度下降,接收到的信号有可能出现误判而造成误码现象,而且还非常容易损坏接收端器件,在使用操作中应尽量避免超出其饱和光功率。
3、光模块的种类1、按封装形式分类光模块按封装形式可分为SFP、SFP+、XFP、QSFP+、CFP、CSFP、GBIC、Xenpak、X2、1X9、SFF、200/3000pin、XPAK等,目前工作中经常使用到的光模块封装形式有SFP+、SFP和QSFP+三种。
部分光模块封装形式如下:2、按工作波长分类目前常用的光模块的中心波长(指光信号传输所使用的主要光波段)主要有五种:850nm波段、1310nm波段、1550nm波段,CWDM波段以及DWDM波段。
工程中会使用到的是前面三种波段的光模块。
3、按接口形式分光模块按接口形式可分为LC、SC、RJ-45等多种类型。
4、按传输速率分按不同的应用场景和速率要求,光模块可分为以下多种:以太网应用:100Base、1000Base、10GBase、40GBase、100GBaseSDH应用(POS):155Mbps、622Mbps、2.5G、10G、40G、100GFC应用:1.063G、2.125G、4.25G、8.5G、10.7G、16G、40G、56G、120G5、按传输距离分类多模短距:如万兆850nm 300M,千兆850nm 550M光模块单模短距:如千兆1310nm 2KM,2.5G POS 1310nm 2KM光模块单模中距:如万兆1310nm 10KM/15KM光模块单模长距:如万兆1550nm 40KMKM光模块单模超长距:如万兆1550nm 80KM光模块6、按收发能力分类光模块按收发能力可分为双纤双向、单纤双向、双单纤双向、单发、单收光模块。
双纤双向市面上绝大部分光模块属于此类型,这类光模块使用2芯光纤实现链路信号的发送和接收,同时模块上有2个光纤接口,一个负责发送一个负责接收。
单纤双向利用波分复用原理,实现2个不同波长光信号在一根光纤上传输,光模块上只有一个光纤接口,以下是单纤双向光模块的工作原理图。
双单纤双向是目前新的技术,一个模块2个光纤接口,实现4个通道的信号传输,典型如CSFP光模块。
单发或单收这两种类型的光模块是双纤双向光模块的变体。
单发光模块是把双纤双向光模块的收光部分器件去掉,仅保留发光部分器件。
而单收光模块则是把双纤双向光模块的发光部分器件去掉,仅保留收光部分器件。
这两种模块的外形与双纤双向光s模块一样。
工程中单收光模块可以用在分流器上与分光器配合形成并接监控方案。
常见光模块外观图四、光器件的工程应用1、单收光模块的使用单收光模块通常用于接收经分光器分光后输出的光信号。
通常我们在选择光模块时总是以光链路的光信号工作波长为依据进行选择,例如1310nm波长的光链路选择1310nm的光模块接收,1550nm波长的光链路选择1550nm的模块接收。
但在实际工程中如果工作在1310nm波长的光链路经分光后输出时光功率小于-14dBm,但高于-21dBm则可以使用1550nm -24dBm高灵敏度模块接收。
反之,工作在1550nm波长的光链路分光后输出的光功率高于-14dBm,我们也可以使用1310nm -16dBm的光模块接收。
这是由于1310nm和1550nm的光模块其所能接受并正常工作的波长范围很宽,完全覆盖上述两个工作波长。
但对于850nm的链路分光后只能使用850nm的光模块进行接收。
2、双纤双向模块的使用双纤双向光模块的选择通常情况下同样以链路实际工作波长进行选择。
但对于1310nm和1550nm的光链路可以变通使用,当互连的设备距离较近时(如在同一机房内)可以用1310nm的光模块与1550nm的光模块进行互连。