排队论(queuing theory)
- 格式:doc
- 大小:60.50 KB
- 文档页数:4
第1篇一、实验背景排队论是运筹学的一个重要分支,主要研究在服务系统中顾客的等待时间和服务效率等问题。
在现实生活中,排队现象无处不在,如银行、医院、超市、餐厅等。
通过对排队问题的研究,可以帮助我们优化服务系统,提高顾客满意度,降低运营成本。
本实验旨在通过模拟排队系统,探究排队论在实际问题中的应用。
二、实验目的1. 理解排队论的基本概念和原理。
2. 掌握排队模型的建立方法。
3. 熟悉排队系统参数的估计和调整。
4. 分析排队系统的性能指标,如平均等待时间、服务效率等。
5. 培养运用排队论解决实际问题的能力。
三、实验内容1. 建立排队模型本实验以银行排队系统为例,建立M/M/1排队模型。
该模型假设顾客到达服从泊松分布,服务时间服从负指数分布,服务台数量为1。
2. 参数估计根据实际数据,估计排队系统参数。
假设顾客到达率为λ=2(人/分钟),服务时间为μ=5(分钟/人)。
3. 模拟排队系统使用计算机模拟排队系统,记录顾客到达、等待、服务、离开等过程。
4. 性能分析分析排队系统的性能指标,如平均等待时间、服务效率、顾客满意度等。
四、实验步骤1. 初始化参数设置顾客到达率λ、服务时间μ、服务台数量n。
2. 生成顾客到达序列根据泊松分布生成顾客到达序列。
3. 模拟排队过程(1)当服务台空闲时,允许顾客进入队列。
(2)当顾客进入队列后,开始计时,等待服务。
(3)当服务台服务完毕,顾客离开,开始下一个顾客的服务。
4. 统计性能指标记录顾客等待时间、服务时间、顾客满意度等数据。
5. 分析结果根据实验数据,分析排队系统的性能,并提出优化建议。
五、实验结果与分析1. 平均等待时间根据模拟结果,平均等待时间为2.5分钟。
2. 服务效率服务效率为80%,即每分钟处理0.8个顾客。
3. 顾客满意度根据模拟结果,顾客满意度为85%。
4. 优化建议(1)增加服务台数量,提高服务效率。
(2)优化顾客到达率,降低顾客等待时间。
(3)调整服务时间,缩短顾客等待时间。
第八章排队论8.1 前言排队论(Queuing Theory),又称随机服务系统理论(Random Service System Theory),是一门研究拥挤现象(排队、等待)的科学。
具体地说,它是在研究各种排队系统概率规律性的基础上,解决相应排队系统的最优设计和最优控制问题。
排队是我们在日常生活和生产中经常遇到的现象。
例如,上、下班搭乘公共汽车;顾客到商店购买物品;病员到医院看病;旅客到售票处购买车票;学生去食堂就餐等就常常出现排队和等待现象。
除了上述有形的排队之外,还有大量的所谓“无形”排队现象,如几个顾客打电话到出租汽车站要求派车,如果出租汽车站无足够车辆、则部分顾客只得在各自的要车处等待,他们分散在不同地方,却形成了一个无形队列在等待派车。
排队的不一定是人,也可以是物:例如,通讯卫星与地面若干待传递的信息;生产线上的原料、半成品等待加工;因故障停止运转的机器等待工人修理;码头的船只等待装卸货物;要降落的飞机因跑道不空而在空中盘旋等等。
显然,上述各种问题虽互不相同,但却都有要求得到某种服务的人或物和提供服务的人或机构。
排队论里把要求服务的对象统称为“顾客”,而把提供服务的人或机构称为“服务台”或“服务员”。
不同的顾客与服务组成了各式各样的服务系统。
顾客为了得到某种服务而到达系统、若不能立即获得服务而又允许排队等待,则加入等待队伍,待获得服务后不同的顾客与服务组成了各式各样的服务系统。
顾客为了得到某种服务而到达系统、若不能立即获得服务而又允许排队等待,则加入等待队伍,不同的顾客与服务组成了各式各样的服务系统。
顾客为了得到某种服务而到达系统、若不能立即获得服务而又允许排队等待,则加入等待队伍,图8-1 单服务台排队系统图8-2 单队列——S个服务台并联的排队系统图8-3 S个队列——S个服务台的并联排队系统图8-4 单队——多个服务台的串联排队系统图8-5 多队——多服务台混联网络系统一般的排队系统,都可由下面图8-6加以描述图8-6 随机服务系统面对拥挤现象,人们总是希望尽量设法减少排队,通常的做法是增加服务设施。
排队论的基本原理:
排队论(Queuing Theory)是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,其基本原理主要包括以下几个方面:
1.排队系统的组成:排队系统通常由输入过程、排队规则和服务机构三个部分组成。
输入过程是指顾客到达服务系统的随机方式,排队规则是指顾客到达后按照怎样的规则排队等待服务,服务机构则是指服务的提供方式。
2.概率论和随机过程:排队论中需要用到概率论和随机过程的数学知识,如概率分布、
期望、方差等。
这些知识用于描述顾客到达和服务时间的统计规律。
3.状态分析:排队论中的状态分析主要是指对排队系统的状态进行描述和分类,如空
闲状态、忙状态等。
通过对状态的分析,可以确定系统的各种性能指标,如等待时间、队长等。
4.最优化原理:排队论中的最优化原理是指通过调整系统参数,如服务时间、服务速
率等,使得系统的性能指标达到最优。
最优化原理的目的是在满足一定约束条件下,使系统的某种性能指标达到最优。
5.可靠性理论:可靠性理论是排队论中的一个重要组成部分,它研究的是系统可靠性
的概念、指标和计算方法。
可靠性理论可以帮助我们分析系统的可靠性、故障率和可用性等方面的问题,为系统的设计和优化提供依据。
排队论
排队论(Queuing Theory) ,是研究系统随机聚散现象和随机服务系统工作过程的数学理论和方法,又称随机服务系统理论,为运筹学的一个分支。
1.定义
排队论(queuing theory), 或称随机服务系统理论,是通过对服务对象到来及服务时间的统计研究,得出这些数量指标(等待时间、排队长度、忙期长短等)的统计规律,然后根据这些规律来改进服务系统的结构或重新组织被服务对象,使得服务系统既能满足服务对象的需要,又能使机构的费用最经济或某些指标最优。
1、排队模型的表示
X/Y/Z/A/B/C
X—顾客相继到达的间隔时间的分布;
Y—服务时间的分布;
M—负指数分布、D—确定型、Ek —k阶爱尔兰分布;
Z—服务台个数;
A—系统容量限制(默认为∞);
B—顾客源数目(默认为∞);
C—服务规则(默认为先到先服务FCFS)。
2、排队系统的衡量指标
队长Ls—系统中的顾客总数;
排队长Lq—队列中的顾客数;
逗留时间Ws—顾客在系统中的停留时间;
等待时间Wq—顾客在队列中的等待时间;
忙期—服务机构两次空闲的时间间隔;
服务强度ρ;
稳态—系统运行充分长时间后,初始状态的影响基本消失,系统状态不再随时间变化。
3、到达间隔时间与服务时间的分布
泊松分布;
负指数分布;
爱尔兰分布;
统计数据的分布判断。
排队系统的构成及应用前景
排队系统由输入过程与到达规则、排队规则、服务机构的结构、服务时间与服务规划组成。
一般还假设到达间隔时间序列与服务时间均为独立同分布随机变量序列,且这两个序列也相互独立。
评价一个排队系统的好坏要以顾客与服务机构两方面的利益为标准。
就顾客来说总希望等待时间或逗留时间越短越好,从而希望服务台个数尽可能多些但是,就服务机构来说,增加服务台数,就意味着增加投资,增加多了会造成浪费,增加少了要引起顾客的抱怨甚至失去顾客,增加多少比较好呢?顾客与服务机构为了照顾自己的利益对排队系统中的3个指标:队长、等待时间、服务台的忙期(简称忙期)都很关心。
因此这3个指标也就成了排队论的主要研究内容。
2.组成部分
排队系统又称服务系统。
服务系统由服务机构和服务对象(顾客)构成。
服务对象到来的时刻和对他服务的时间(即占用服务系统的时间)都是随机的。
输入过程
输入过程考察的是顾客到达服务系统的规律。
它可以用一定时间内顾客到达数或前后两个顾客相继到达的间隔时间来描述,一般分为确定型和随机型两种。
例如,在生产线上加工的零件按规定的间隔时间依次到达加工地点,定期运行的班车、班机等都属于确定型输入。
随机型的输入是指在时间t内顾客到达数n(t)服从一定的随机分布。
如服从泊松分布,则在时间t内到达n个顾客的概率为或相继到达的顾客的间隔时间T 服从负指数分布,即
式中λ为单位时间顾客期望到达数,称为平均到达率;1/λ为平均间隔时间。
在排队论中,讨论的输入过程主要是随机型的。
排队规则
排队规则分为等待制、损失制和混合制三种。
当顾客到达时,所有服务机构都被占用,则顾客排队等候,即为等待制。
在等待制中,为顾客进行服务的次序可以是先到先服务,或后到先服务,或是随机服务和有优先权服务(如医院接待急救病人)。
如果顾客来到后看到服务机构没有空闲立即离去,则为损失制。
有些系统因留给顾客排队等待的空间有限,因此超过所能容纳人数的顾客必须离开系统,这种排队规则就是混合制。
服务机构
可以是一个或多个服务台。
多个服务台可以是平行排列的,也可以是串连排列的。
服务时间一般也分成确定型和随机型两种。
例如,自动冲洗汽车的装置对每辆汽车冲洗(服务)时间是相同的,因而是确定型的。
而随机型服务时间v 则服从一定的随机分布。
如果服从负指数分布,则其分布函数是
式中μ为平均服务率,1/μ为平均服务时间。
3.分类
只能按主要特征进行分类。
一般是以相继顾客到达系统的间隔时间分布、服务时间的分布和服务台数目为分类标志。
现代常用的分类方法是英国数学家D.G.
肯德尔提出的分类方法,即用肯德尔记号X/Y/Z进行分类。
X处填写相继到达间隔时间的分布;
Y处填写服务时间分布;
Z处填写并列的服务台数目。
各种分布符号有:M-负指数分布;D-确定型; Ek-k阶埃尔朗分布;GI-一般相互独立分布;G-一般随机分布等。
这里k阶埃尔朗分布是
为相互独立且服从相同指数分布的随机变量时服从自由度为2k的χ2分布。
⑥等待时间:一个顾客在系统中排队等待时间,其平均值记为Wg。
M/M/1排队系统是一种最简单的排队系统。
系统的各项指标可由图2中状态转移速度图推算出来(表1)。
其他类型的排队系统的各种指标计算公式则复杂得多,可专门列出计算公式图表备查。
现已开始应用计算机仿真来求解排队系统问题。