《数字信号处理》期末考试复习
- 格式:doc
- 大小:74.50 KB
- 文档页数:7
数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs②.Ωc③.Ωc/2④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
线性系统:系统的输入、输出之间满足线性叠加原理的系统。
时不变系统:若系统对输入信号的运算关系][∙T 在整个运算过程中不随时间变化,或者说系统对于输入信号的响应与信号加于系统的时间无关。
时域离散线性时不变系统:同时满足线性和时不变特性的系统。
系统的因果性:如果系n 时刻的输出只取决于n 时刻以及n 时刻以前的输入序列,而和n 时刻以后的输入序列无关,满足00)(<=n n h ,式的序列称为因果序列, 因果系统的单位脉冲响应必然是因果序列 稳定系统:是指对有界输入,系统输出也是有界的。
系统稳定的充分必要条件:系统的单位脉冲响应绝对可和 ,∞<∑∞-∞=n n h ][ 线性移不变系统是因果稳定系统的充要条件:|()|n h n ∞=-∞<∞∑,()0,0h n n =<采样定理表示的是采样信号X (t)的频谱与原模拟信号X (t )的频谱之间的关系,以及由采样信号不失真地恢复原模拟信号的条件。
采样以后的频谱与原频谱的关系:1.采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的2.理想低通滤波器从采样信号中不失真地提取原模拟信号−−→−)(t x a −→− −→− −→− −→−−→− 预滤:在采样之前加一抗混叠的低通滤波器,滤去高于的一些无用的高频分量,以及滤除其他的一些杂散信号。
A/DC :将模拟信号转换成数字信号,分为采样和量化两个过程。
数字信号处理:对采样信号进行处理。
D/AC :将数字信号转换成模拟信号,包括解码器、零阶保持器和平滑滤波器。
平滑滤波:滤除多余的高频分量,对时间波形其平滑作用。
信号与系统的分析方法有时域分析方法和频域分析方法。
序列的共轭对称性设序列满足)()(*n x n x e e -=,则称为共轭对称序列。
其中)()()(n jx n x n x ei er e +=、)()()(***n jx n x n x ei er e ---=-,共轭对称序列其实部是偶函数(即)()(*n x n x erer -=),而虚部是奇函数(即)()(*n x n x ei ei --=)。
A一、选择题(每题3分,共5题)1、 )63()(π-=n j e n x ,该序列是 。
A 。
非周期序列B.周期6π=N C 。
周期π6=N D 。
周期π2=N 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A 。
a Z <B 。
a Z ≤C 。
a Z >D 。
a Z ≥ 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积.A.70≤≤n B 。
197≤≤n C 。
1912≤≤n D 。
190≤≤n4、 )()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N满足 。
A.16>N B 。
16=N C 。
16<N D.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 .A 。
有限长序列 B.右边序列 C.左边序列 D 。
双边序列二、填空题(每题3分,共5题)1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
3、对两序列x (n)和y (n),其线性相关定义为 。
4、快速傅里叶变换(FFT )算法基本可分为两大类,分别是: ; .5、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型, ,______ 和______ 四种。
三、10)(-≤≥⎩⎨⎧-=n n ba n x n n求该序列的Z 变换、收敛域、零点和极点.(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换.(8分)B一、单项选择题(本大题12分,每小题3分)1、)125.0cos()(n n x π=的基本周期是 。
1如果信号的自变量和函数值都取连续值,则称这种信号为模拟信号或者称为时域连续信号,例如语言信号、温度信号等;2如果自变量取离散值,而函数值取连续值,则称这种信号称为时域离散信号,这种信号通常来源于对模拟信号的采样;3如果信号的自变量和函数值均取离散值,则称为数字信号。
4数字信号是幅度量化了的时域离散信号。
n nnn时时刻以及5如果系统而和时刻的输出只取决于时刻以前的输入序列,刻以后的输入序列无关,则称该系统为因果系统。
6线性时不变系统具有因果性的充分必要条件是系统的单位脉冲响应满足下式:________。
jωXxn)(e(的傅里叶反变换为:)的傅里叶变换 7序列jωXxn)]=(e(————————)=IFT[jωxnX(e)是频率的ω的周期函数,周期是2π8序列。
(这一特点)的傅里叶变换不同于模拟信号的傅里叶变换。
xn)分成实部与虚部两部分,实部对应的傅里叶变换具有共轭对称9序列性,(虚部和j一起对应的傅里叶变换具有共轭反对称性。
jωjωxnxnX X xn)的((e())对应着,而序列(e)10序列的()的共轭对称部分实部R ejωXxn)的虚部(包括(j))对应着。
(e 共轭反对称部分o11时域离散信号的频谱也是模拟信号的频谱周期性延拓,周期为?2?同样要满足采,因此由模拟信号进行采样得到时域离散信号时,F2???ss T样定理,采样频率必须大于等于模拟信号最高频率的2倍以上,否则也会差生s/2附近最严重,在数字域则是在πΩ附近最严重。
频域混叠现象,频率混叠在hn)一定是因果序列( 12因果(可实现)系统其单位脉冲响应,那么其系统函Hz)的收敛域一定包含∞点,即∞点不是极点,极点分布在某个圆(内数,收敛域在某个圆外。
13系统函数H(z)的极点位置主要影响频响的峰值位置及尖锐程度,零点位置主要影响频响的谷点位置及形状。
14freqz计算数字滤波器H(z)的频率响应:[H,ω]=freqz(B,A);B和A为系j ωjωjφ)| eH(e)= |H(e统函数H(z) = B(z)/A(z)的分子和分母多项式系数向量。
第一章 离散时间信号与系统的时域分析1.画出“模拟信号的数字化处理”方框图,图中各部分的作用是什么? 2.模拟信号、离散时间信号、数字信号各自的定义和关系是怎样的? 3.线性系统的判定条件是什么? 4. 时不变系统的判定条件是什么?5. 某系统满足)()()]()([2121n y n y n x n x T +=+,可判断该系统为线性系统吗?6. 某系统满足T[kx(n)]=ky(n),可判断该系统为线性系统吗?7. 差分方程的求解方法有哪些?其中递推法的求解依赖于什么?8. IIR 系统的差分方程中有输出信号y(n)的时延信号吗?9. 一个线性时不变系统,在时域可由差分方程确定吗?10. 因果系统的判定条件是什么?11. 稳定系统的判定条件是什么?12. 稳定系统一定是因果的吗?13. 因果系统一定是稳定的吗?14. 右边序列一定是因果序列吗?左边序列一定是反因果序列吗?15. 当输入序列不同时,线性时不变系统的单位脉冲响应会不会随之改变?16. 如何用单位脉冲序列表示单位阶跃序列和矩形序列?17. IIR 系统的h(n)是有限长的还是无限长的?18. FIR 系统的h(n)是有限长的还是无限长的?19. 有限长序列一定是因果序列吗?20. 级联型数字滤波器的h(n)是各子系统)(n h i 的什么运算? 并联型数字滤波器的h(n)是各子系统)(n h i 的什么运算?21. 时域采样定理的内容是什么?22. 实际工作中,抽样频率总是选得大于或等于两倍模拟信号的最高频率吗?23. 数字角频率π、2π对应的模拟频率(信号的实际频率)分别是什么?24. 采样信号的频谱是原模拟信号频谱的周期函数,其周期为多少?25. 要使正弦序列)sin()(ϕω+=n A n x 是周期序列,其数字频率ω必须满足什么条件?26. 已知离散时间系统的输入输出关系是,11)(5)(+=n x n y ,则系统)(n y 是否是线性的?是否是时不变的?是否是因果的?是否是稳定的?27. 一个线性时不变(LTI )系统,输入为x (n )时,输出为y (n )。
【1】 判断下面的序列是否是周期的,若是周期的,确定其周期。
(1)3()cos()78x n A n ππ=-,A是常数;解:3214,73w w ππ==,这是有理数,因此是周期序列,周期是T=14; 【2】.设系统分别用下面的差分方程描述,()x n 与()y n 分别表示系统输入和输出,判断系统是否是线性非时变的。
(1)()()2(1)3(2)y n x n x n x n =+-+-; 解 令:输入为0()x n n -,输出为'000'0000()()2(1)3(2)()()2(1)3(2)()y n x n n x n n x n n y n n x n n x n n x n n y n =-+--+---=-+--+--=故该系统是时不变系统。
12121212()[()()]()()2((1)(1))3((2)(2))y n T ax n bx n ax n bx n ax n bx n ax n bx n =+=++-+-+-+-2222[()]()2(1)3(2)T bx n bx n bx n bx n =+-+-1212[()()][()][()]T ax n bx n aT x n bT x n +=+故该系统是线性系统。
(2)y(n)=x(n)sin(ωn)解:令输入为x(n -n0)输出为 y ′(n)=x(n -n0) sin(ωn)y(n -n0)=x(n -n0) sin [ω(n -n0)]≠y ′(n) 故系统不是非时变系统。
由于 T [ax1(n)+bx2(n)]=ax1(n) sin(ωn)+bx2(n) sin(ωn)=aT [x1(n)]+bT [x2(n)] 故系统是线性系统。
【3】.给定下述系统的差分方程, 试判定系统是否是因果稳定系统, 并说明理由。
y(n)=x(n)+x(n+1)解: 该系统是非因果系统, 因为n 时间的输出还和n 时间以后((n+1)时间)的输入有关。
一、单项选择题(10小题,每小题2分,共20分)在每小题列出的三个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1. 下面说法中正确的是。
A.连续非周期信号的频谱为周期连续函数B.连续周期信号的频谱为周期连续函数C.离散非周期信号的频谱为周期连续函数D.离散周期信号的频谱为周期连续函数2. 要处理一个连续时间信号,对其进行采样的频率为3kHz,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为。
A.6kHz B.1.5kHz C.3kHz D.2kHz3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为。
A.有限长序列B.右边序列C.左边序列D.双边序列4. 下列对离散傅里叶变换(DFT)的性质论述中错误的是。
A.DFT是一种线性变换B. DFT可以看作是序列z变换在单位圆上的抽样C. DFT具有隐含周期性D.利用DFT可以对连续信号频谱进行精确分析5. 下列关于因果稳定系统说法错误的是。
A.极点可以在单位圆外B.系统函数的z变换收敛区间包括单位圆C.因果稳定系统的单位抽样响应为因果序列D.系统函数的z变换收敛区间包括z=∞6. 设系统的单位抽样响应为h(n),则系统因果的充要条件为。
A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠07. 要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条?答。
(I)原信号为带限 II)抽样频率大于两倍信号谱的最高频率(III)抽样信号通过理想低通滤波器A.I、IIB.II、IIIC.I、III D.I、II、III8. 在窗函数设计法,当选择矩形窗时,最大相对肩峰值为8.95%,N增加时, 2π/N减小,起伏振荡变密,最大相对肩峰值则总是8.95%,这种现象称为。
A.吉布斯效应B.栅栏效应C.泄漏效应 D.奈奎斯特效应9. 下面关于IIR滤波器设计说法正确的是。
数字信号处理期末复习题一、填空题1.数字频率ω与模拟角频率Ω之间的关系为 。
2.理想采样信号的频谱是原模拟信号的频率沿频率轴,每间隔 重复出现一次,并叠加形成的周期函数。
3.序列)(n x 的共轭对称部分)(n x e 对应着)(ωj e X 的 部分。
4.长度为N 的有限长序列)(n x 的M 点离散傅里叶变换的周期为 。
5.对实信号进行谱分析,要求谱分辨率Hz F 10≤,信号最高频率kHz f c 5.2=,则最小记录时间=min p T ,最少的采样点数=min N 。
6.在DIT-FFT 算法分解过程中,有16点的复数序列,可进行4级蝶形运算,则4级运算总的复数乘法次数为 。
7.如果序列)(n x 的长度为M ,则只有当频率采样点数N 满足 条件时,才可有频率采样)(k X 恢复原序列)(n x ,否则产生时域混叠现象。
8.设)(*n x 是)(n x 的复共轭序列,长度为N ,N n x DFT k X )]([)(=,则=N n x D F T )]([* 。
9.线性相位FIR 滤波器,若)1()(---=n N h n h ,N 为奇数的情况下,只能实现 滤波器。
10.给定序列()14j n x n e π⎛⎫- ⎪⎝⎭=,试判断此序列是否为周期序列 ;若为周期序列,请给出此序列的最小正周期 ,若为非周期序列,请列写判别原因 。
(后面两个填空只需填一个)。
11.已知调幅信号的载波频率为,调制信号频率100m f Hz =,则最小记录时间为 ,最低采样频率 。
12.系统差分方程为()()()21y n x n x n =++ ,其中()x n 和()y n 分别表示系统输入和输出,判断此系统(是,非)线性系统,(是,非)时不变系统,(是,非)因果系统,(是,不是)稳定系统。
(划线部分是正确答案)。
13.周期信号()()0sin xn n ω= ,其中02π为有理数,其用欧拉公式展开后表达式为 ,其傅里叶变换为 。
《数字信号处理》期末考试复习题库一、选择题1. δ(n)的z 变换是( A )。
A. 1B.δ(w)C. 2πδ(w)D. 2π2. )(ωj e H 以数字角频率ω的函数周期为( B )。
A.2B. π2C. j π2D.不存在3. 序列x(n)=cos ⎪⎭⎫ ⎝⎛n 8π3的周期为( C ) A.3 B.8C.16D.不存在 4. 已知某序列Z 变换的收敛域为6>|z|>4,则该序列为( D )A.有限长序列B.右边序列C.左边序列D.双边序列5. 线性移不变系统的系统函数的收敛域为|Z|>5,则可以判断系统为( B )A.因果稳定系统B.因果非稳定系统C.非因果稳定系统D.非因果非稳定系统6. 下面说法中正确的是( B )A.连续非周期信号的频谱为非周期离散函数B.连续周期信号的频谱为非周期离散函数C.离散非周期信号的频谱为非周期离散函数D.离散周期信号的频谱为非周期离散函数7. 若离散系统为因果系统,则其单位取样序列( C )。
A. 当n>0时, h(n)=0B. 当n>0时, h(n)≠0C. 当n<0时, h(n)=0D. 当n<0时, h(n)≠08. 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs 与信号最高频率fm 关系为( A )。
A. fs ≥2fmB. fs ≤2fmC. fs ≥fmD. fs ≤fm9. 序列x (n )的长度为4,序列h (n )的长度为3,则它们线性卷积的长度和 5 点圆周卷积的长度分别是( B ) 。
A. 5, 5B. 6, 5C. 6, 6D. 7, 510. 若离散系统的所有零极点都在单位圆以内,则该系统为( A )。
A. 最小相位超前系统B. 最大相位超前系统C. 最小相位延迟系统D. 最大相位延迟系统11. 处理一个连续时间信号,对其进行采样的频率为3kHz ,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为( B )A. 6kHzB. 1.5kHzC. 3kHzD. 2kHz12.下列序列中______为共轭对称序列。
( A )A.x(n)=x*(-n)B.x(n)=x*(n)C.x(n)=-x*(-n)D.x(n)=-x*(n)13.序列x(n)=sin ⎪⎭⎫ ⎝⎛n 3π11的周期为( B ) A.3 B.6 C.11D.∞ 14. 已知某序列Z 变换的收敛域为|Z|>5,则该序列为( B )A.有限长序列B.右边序列C.左边序列D.双边序列15. 线性移不变系统的系统函数的收敛域为|Z|<0.5,则可以判断系统为( B )A.因果稳定系统B.因果非稳定系统C.非因果稳定系统D.非因果非稳定系统17. 已知序列x(n)=δ(n)+δ(n-1),其N 点的DFT 记为X(k),则X(0)=( D )A.N-1B.1C.2D.N18. 设两有限长序列的长度分别是M 与N ,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取( B )A.M+NB.M+N-1C.M+N+1D.2(M+N)19. 对5点有限长序列[1 3 5 7 9]进行向右1点圆周移位后得到序列( B )A.[1 3 5 7 9]B.[9 1 3 5 7]C.[3 5 7 9 1]D.[3 5 7 9 5]20. 若离散系统的所有零极点都在单位圆以外,则该系统为( A )。
A. 最小相位超前系统B. 最大相位超前系统C. 最小相位延迟系统D. 最大相位延迟系统21. 已知x(t)是频带宽度有限的,若想抽样后x(n)=x(nT)能够不失真地还原出原信号x(t),则抽样频率必须大于或等于( C )倍x(t)信号谱的最高频率。
A. 1/2B. 1C. 2D. 422. 下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( C )A.y(n)=y(n-1)x(n)B.y(n)=x(2n)C.y(n)=x(n)+1D.y(n)=x(n)-x(n-1)23. 序列x(n)=cos ⎪⎭⎫ ⎝⎛n 5π3的周期为( C ) A.3 B.5C.10D.∞ 24. 已知某序列Z 变换的收敛域为5>|z|>3,则该序列为( D )A.有限长序列B.右边序列C.左边序列D.双边序列25. 线性移不变系统的系统函数的收敛域为|Z|>2,则可以判断系统为( B )A.因果稳定系统B.因果非稳定系统C.非因果稳定系统D.非因果非稳定系统27. 已知序列x(n)=R N (n),其N 点的DFT 记为X(k),则X(0)=( D )A.N-1B.1C.0D.N 28. 设两有限长序列的长度分别是M 与N ,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取( B )A.M+NB.M+N-1C.M+N+1D.2(M+N)29. 如题图所示的滤波器幅频特性曲线,可以确定该滤波器类型为( B )A.低通滤波器B.高通滤波器C.带通滤波器D.带阻滤波器30. 下列各种滤波器的结构中哪种不是IIR 滤波器的基本结构?( C )A.直接型B.级联型C.频率抽样型D.并联型31. 若信号频带宽度有限,要想对该信号抽样后能够不失真地还原出原信号,则抽样频率Ωs 和信号谱的最高频率Ωc 必须满足( D )A.Ωs<ΩcB.Ωs>ΩcC.Ωs<2ΩcD.Ωs>2Ωc32. 下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( C )A.y(n)=y(n-1)x(n)B.y(n)=x(2n)C.y(n)=x(n)+1D.y(n)=x(n)-x(n-1)33.序列x(n)=sin ⎪⎭⎫ ⎝⎛n 3π11的周期为( B ) A.3 B.6 C.11D.∞ 34. 已知某序列Z 变换的收敛域为|Z|>3,则该序列为( B )A.有限长序列B.右边序列C.左边序列D.双边序列35. 线性移不变系统的系统函数的收敛域为|Z|<2,则可以判断系统为( C )A.因果稳定系统B.因果非稳定系统C.非因果稳定系统D.非因果非稳定系统37. 已知序列x(n)=δ(n),其N点的DFT记为X(k),则X(0)=( D )A.N-1B.1C.0D.N38. 设两有限长序列的长度分别是M与N,欲通过计算两者的圆周卷积来得到两者的线性卷积,则圆周卷积的点数至少应取( B )A.M+NB.M+N-1C.M+N+1D.2(M+N)39. 对5点有限长序列[1 3 0 5 2]进行向右1点圆周移位后得到序列( B )A.[1 2 3 0 5]B.[2 1 3 0 5]C.[3 0 5 2 1]D.[3 0 5 2 0]40. 下列关于FIR滤波器的说法中正确的是(A )A.FIR滤波器容易设计成线性相位特性。
B.FIR滤波器的脉冲响应长度是无限的。
C.FIR滤波器的脉冲响应长度是确定的。
D.对于相同的幅频特性要求,用FIR滤波器实现要比用IIR滤波器实现阶数低。
41、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s=( B )。
A.1111zzz--+=-B.1111zzz---=+sC.11211zzT z---=+D.11211zzT z--+=-42、序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是(),5点圆周卷积的长度是( B )。
A. 5, 5B. 6, 5C. 6, 6D. 7, 543、无限长单位冲激响应(IIR)滤波器的结构是( C )型的。
A. 非递归B. 反馈C. 递归D. 不确定44、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N=( D )。
A. 2πB. 4πC. 2D. 845.下面描述中最适合离散傅立叶变换DFT的是( B )A.时域为离散序列,频域也为离散序列B.时域为离散有限长序列,频域也为离散有限长序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散周期序列,频域也为离散周期序列46.对于序列的傅立叶变换而言,其信号的特点是( D )A.时域连续非周期,频域连续非周期B.时域离散周期,频域连续非周期C.时域离散非周期,频域连续非周期D.时域离散非周期,频域连续周期47.设系统的单位抽样响应为h(n),则系统因果的充要条件为( C )A.当n>0时,h(n)=0B.当n>0时,h(n)≠0C.当n<0时,h(n)=0D.当n<0时,h(n)≠048.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过( A )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器49.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
A.单位圆B.原点C.实轴D.虚轴50.已知序列Z变换的收敛域为|z|<1,则该序列为( C )。
A.有限长序列B.右边序列C.左边序列D.双边序列51.以下对双线性变换的描述中不正确的是( D )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内D.以上说法都不对52.以下对FIR和IIR滤波器特性的论述中不正确的是( )。
A.FIR滤波器主要采用递归结构B.IIR滤波器不易做到线性相位C.FIR滤波器总是稳定的D.IIR滤波器主要用来设计规格化的频率特性为分段常数的标准滤波器二、判断题1、在IIR数字滤波器的设计中,用冲激响应不变法设计时,从模拟角频率向数字角频率转换时,转换关系是线性的。
(√)2.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓。
(√)3、有限长序列的N点DFT相当于该序列的z变换在单位圆上的N点等间隔取样。
(√)4. y(n)=x2(n)+3所代表的系统是时不变系统。
()5. 对于线性移不变系统,其输出序列的离散时间傅里叶变换等于输入序列的离散时间傅里叶变换与系统频率响应的卷积。
(×)6. 对于线性移不变系统,其输出序列的离散时间傅里叶变换等于输入序列的离散时间傅里叶变换与系统频率响应的乘积。
(√)7. 一个线性时不变的离散系统,它是因果系统的充分必要条件是:系统函数H(Z)的极点在单位圆内。
(×)8、一个线性时不变的离散系统,它是稳定系统的充分必要条件是:系统函数H(Z)的极点在单位圆内。
(×)9.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓。
(√)10.对正弦信号进行采样得到的正弦序列必定是周期序列。