河南省郑州市2018届高三第三次质量预测数学文试题(PDF版)
- 格式:pdf
- 大小:949.85 KB
- 文档页数:2
2018年高中毕业年级第三次质量预测语文试题卷注意事项1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
3.写在本试卷上无效。
一、现代文阅读(35分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成1~3题。
君子人格,是中华传统文化在数千年发展进程中不断塑造和培育的正面人格被历代中国人广泛接受并尊崇。
“君子”一词在西周时早已流行,主要指称贵族和执政者。
春秋末期,孔子赋予“君子”概念许多优秀道德的意蕴。
冯友兰说,孔子一生思考的问题很广泛,其中最根本的就是对如何做人的反思。
如果说,孔子思想的核心是探求如何做人的道理,那么他求索的结果,就是做人要做君子。
君子作为孔子心目中崇德向善的人格,既理想又现实,既高尚又平凡,是可见可感、可学可做、应学应做的人格范式。
孔子一生最大的成就,是创立了儒家学派。
什么是儒学?有一种观点回答得很干脆:儒学就是君子之学。
具体来说,在修己和治人两方面,儒学都以“君子的理想”为枢纽观念:修己即所以成为“君子”,治人则必须先成为“君子”。
从这一角度说,儒学事实上便是“君子之学”。
这种观点从儒学的目标追求和功能作用上说明儒学的特点,无疑抓住了本质,对于我们理解儒学乃至整个中华传统文化的特质,在今天继承和弘扬以儒学为主干的中华优秀传统文化,都具有不可忽视的积极意义。
儒学乃至整个中华传统文化,更多的时候是一种面向现实人生的伦理学说,与西方文化大相径庭。
西方文化热衷于构造能够解释思维与存在、精神与物质关系的严密理论系统,热衷于探寻认识论、方法论、辩证法等。
中华传统文化虽然也包括对认识论、方法论和辩证法的思考,却并不层层追问“是什么、为什么”,而是直截了当地告诉你“做什么、怎么做”。
这种不仅讲究“知”,更看重“行”的“知行合一”的理念,在有关君子及君子文化的论述中尤为突出。
2017-2018学年 文科数学试题卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设复数2(,)1i a bi a b R i-=+∈+,则a b +=( ) A .1 B .2 C .-1 D .-2 2.“存在00,20xx R ∈≤”的否定是( )A .不存在00,20xx R ∈> B .存在00,20xx R ∈≥ C .对任意的00,20xx R ∈≤ D .对任意的00,20xx R ∈> 3.已知集合1{|lg}xM x y x-==,2{|23}N y y x x ==++,则()R C M N = ( ) A .(0,1) B .[1,)+∞ C .[2,)+∞ D .(,0][1,)-∞+∞4.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m n >的概率为( ) A .710 B .310 C .35 D .255.一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+.4π+ C .23π+D .43π+6.已知抛物线2(0)y ax a =>的焦点恰好为双曲线222y x -=的一个焦点,则a 的值为( ) A .4 B .14 C .8 D .187.某程序框图如图所示,该程序运行后输出的S 的值是( ) A .1007 B .2015 C .2016 D .30248.在数列{}n a 中,1112,ln(1)n n a a a n+==++,则n a =( ) A .2ln n + B .2(1)ln n n +- C .2ln n n + D .1ln n n ++9. 若不等式组1010102x y x y y ⎧⎪+-≤⎪-+≥⎨⎪⎪+≥⎩表示的区域Ω,不等式2211()24x y -+≤表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻约为( ) A .114 B .10 C .150 D .5010. 已知球的直径4CS =,,A B 在球面上,2AB =,45CSA CSB ∠=∠=,则棱锥S ABC -的体积为( )A.3B.3 C.3 D.311.若将函数2sin(3)y x ϕ=+的图象向右平移4π个单位后得到的图象关于点(,0)3π对称,则||ϕ的最小值是( )A .4π B .3π C .2π D .34π12.已知函数21,0()(2)1,0x x f x f x x ⎧-≤=⎨-+>⎩把函数1()()2g x f x x =-的偶数零点按从小到大的顺序排列成一个数列,该数列的前10项的和10S 等于( ) A .45 B .55 C .90 D .110第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图是甲、乙两名篮球运动员某赛季一些场次得分的茎叶图,茎表示得分的十位数,据图可知甲运动员得分的中位数和乙运动员得分的众数之和为 .14.已知cos()sin 6παα-+=7sin()6πα+= .15.若关于x 的不等式211()022n x x +-≥,当(,]x λ∈-∞时对任意*n N ∈恒成立,则实数λ的取值范围是 . 16. 函数2()ln 12a f x x x x x =--+有两个极值点,则a 的取值范围为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分) 设函数2()2sin cos cos sin sin (0)2f x x x x ϕϕϕπ=+-<<在x π=处取得最小值.(1)求ϕ的值;(2)在ABC ∆中,,,a b c 分别为内角,,A B C 的对边,已知1,()2a b f A ===,求角C .18. (本小题满分12分)有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表. 优秀 非优秀 总计 甲班 10 乙班 30 合计105已知从全班105人中随机抽取1人为优秀的概率为27. (1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”; (3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号,试求抽到6号或10号的概率. 参考数据:22()()()()()n ad bc k a b c d a c b d -=++++ 2()P K k ≥ 0.050.010 K3.8416.63519. (本小题满分12分)如图,在直三棱柱111ABC A B C -中,ABC ∆为等腰直角三角形,90BAC ∠=,且1A B A A=,,E F 分别为1,BC CC 的中点.(1)求证:1B E ⊥平面AEF ;(2)当2AB =时,求点E 到平面1B AF 的距离.20. (本小题满分12分)已知12,F F 分别为椭圆22122:1(0)x y C a b a b+=>>的上、下焦点,其中1F 也是抛物线22:4C x y =的焦点,点M 是1C 与2C 在第二象限的交点,且15||3MF =. (1)求椭圆的方程;(2)已知点(1,3)P 和圆222:O x y b +=,过点P 的动直线l 与圆O 相交于不同的两点,A B ,在线段AB 取一点Q ,满足:AP PB λ=- ,AQ QB λ=(0λ≠且1λ≠±),探究是否存在一条直线使得点Q 总在该直线上,若存在求出该直线方程. 21. (本小题满分12分) 设函数1()2ln ()f x x m x m R x=--∈. (1)讨论函数()f x 的单调性;(2)若()f x 有两个极值是12,x x ,过点11(,())A x f x ,22(,())B x f x 的直线的斜率为k ,问:是否存在m ,使得22k m =-?若存在,求出m 的值;若不存在,请说明理由. 请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-1:几何证明选讲如图,,D E 分别为ABC ∆边,AB AC 的中点,直线DE 交ABC ∆的外接圆于,F G 两点,若//CF AB .证明:(1)CD BC =; (2)BCD ∆∽GBD ∆.23. (本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知直线l上两点,M N 的极坐标分别为(2,0),)2π,圆C的参数方程为22cos 2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数).(1)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程; (2)判断直线l 与圆C 的位置关系.24. (本小题满分10分)选修4-5:不等式选讲 设函数()|31|3f x x ax =-++. (1)若1a =,解不等式()4f x ≤;(2)若函数()f x 有最小值,求a 的取值范围.2016年高中毕业年级第三次质量预测数学(文科) 参考答案一、选择题:二、填空题:13.64 14. - 15.16.三、解答题:17. (Ⅰ)———————2分因为函数f(x)在处取最小值,所以,由诱导公式知,———————4分因为,所以.所以———————6分(Ⅱ)因为,所以,因为角A为ABC的内角,所以. ———————8分又因为所以由正弦定高考,得,也就是,因为,所以或. ———————10分当时,;当时,. ———————12分18.解 (1)(2)根据列联表中的数据,得到k =55×50×30×75105×(10×30-20×452≈6.109>3.841, ———————5分因此有95%的把握认为“成绩与班级有关系”. ———————7分(3)设“抽到6号或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ),则所有的基本事件有(1,1)、(1,2)、(1,3)、…、(6,6),共36个.为等腰直角三角形,,,E 、F 分别为BC 、的中点,,,,有,,又平面ABC ,,,平面AEF.…………………………………………………………(6分)(Ⅱ)解:由条件知,,,…………………………………………………………(8分),,在中,,,………………(10分)设点到平面的距离为,则,所以,即点到平面的距离为1.………………………………………………(12分)20.(I)由:知(0,1),设,因M在抛物线上,故①又,则②,由①②解得,椭圆的两个焦点(0,1),,点M在椭圆上,由椭圆定义可得∴又,∴,椭圆的方程为:. ……………5分(II)设,由可得:,即由可得:,即⑤×⑦得:,⑥×⑧得:,两式相加得,又点A,B在圆上,且,所以,,即,所以点Q总在定直线上. ……12分21. (Ⅰ)--------------------------------------3分---------------------------------------5分-------------------------------------6分(Ⅱ)----------------------------------------------7分------------------------8分-------------------------------------------9分----------------------------10分,,----------------------------------------------------------12分22.证明:(Ⅰ)CD=BC;(2)△BCD∽△GBD.证明 (1)因为D,E分别为AB,AC的中点,所以DE∥BC.又已知CF∥AB,故四边形BCFD是平行四边形,所以CF=BD=AD.而CF∥AD,连结AF,所以四边形ADCF是平行四边形,故CD=AF.因为CF∥AB,所以BC=AF,故CD=BC. ———————5分(2)因为FG∥BC,故GB=CF.由(1)可知BD=CF,所以GB=BD.所以∠BGD=∠BDG.由BC=CD知∠CBD=∠CDB.而∠DGB=∠EFC=∠DBC,故△BCD∽△GBD. ———————10分23.(1)由题意知,M,N的平面直角坐标分别为(2,0),又P为线段MN的中点,从而点P的平面直角坐标为,故直线OP的直角坐标方程为———————5分(2)因为直线l上两点M,N的平面直角坐标分别为(2,0),,所以直线l的平面直角坐标方程为又圆C的圆心坐标为,半径r=2,圆心到直线l的距离故直线l与圆C相交.———————10分24.。
河南省郑州市2018届高三第三次质量预测数学(文科)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】分析:分别解出集合A、B,进而得到详解:或,即又故选B.点睛:本题主要考查分式不等式的解法,函数的定义域,集合的交集运算,属于基础题。
2. 若复数满足,则()A. B. C. D.【答案】A【解析】分析:由,变形为,再用复数的四则运算化简得到z的代数形式,进而求得。
详解:由题可知,所以故选A。
点睛:本题主要考查复数的运算、复数的模长计算,属于基础题。
3. 阅读程序框图,该算法的功能是输出()A. 数列的第4项B. 数列的第5项C. 数列的前4项的和D. 数列的前5项的和【答案】B【解析】分析:模拟程序的运行,依次写出每次循环,直到满足条件,退出循环,输出A的值即可。
详解:模拟程序的运行,可得:A=0,i=1执行循环体,,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,不满足条件,执行循环体,满足条件,退出循环,输出A的值为31.观察规律可得该算法的功能是输出数列{}的第5项.所以B选项是正确的.点睛:模拟程序的运行,依次写出每次循环得到的A,i的值,当i=6时满足条件,退出循环,输出A的值,观察规律即可得解.4. 在中,,,,则()A. B. C. D.【答案】D【解析】分析:由平面向量基本定理=,进而可计算详解:故选D.点睛:本题主要考查平面向量的线性运算,平面向量的基本定理,属于基础题。
5. 七巧板是我国古代劳动人民的发明之一,被誉为“东方模板”,它是由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成的.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A. B. C. D.【答案】C【解析】分析:由七巧板的构造,设小正方形的边长为1,计算出黑色平行四边形和黑色等腰直角三角形的面积之和。
2017 — 2018学年度高三第三次调研测试文科数学本试卷共23小题,共150分,共6页,考试时间120分钟,考试结束后,将答题卡和试 题卷一并交回。
注意事项:1 •答题前,考生务必先将自己的姓名、准考证号填写在答题卡上,认真核对条 形码、姓名、准考证号,并将条形码粘贴在答题卡的指定位置上。
2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案 的标号;非选择题答案必须使用 0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3•请按照题号在各题的答题区域 (黑色线框)内作答,超出答题区域书写的答案无效。
4. 作图可先用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮 纸刀。
本大题共 12题,每小题5分,共60分,在每小题给出的四个选项中,只有个是符合题目要求。
设全集 U =Z , A ={-1,1,3,5,7,9}, B ={-1,5,7},贝V AplG u B)二B. {-1,5,7}D. {-1,1,3,5,9}__nA . -P : X 。
R,X o 2 乞3X oB . -p: x R,x 22< 3x2C . — p: 一x R,x ■ 2 3xnD . _p: x 0 R,x 0 2 _ 3x 。
2. 已知复数 i z =1—i(i 为虚数单位),则z 的虚部为3.1 .A. i2已知命题P :X o1 .B.i 2R,x ; 2 3x 0,则命题 1 C.2p 的否命题为D.4. F 列各组向量中,可以作为基底的是A. q =(0,0), e ? =(1,2)B.eiC.e 1 = (3,5), e 2 = (6,10)D.6 = (-1,2),0 = (5,7)、选择题: 1.A. {1,3,9}C.{-1,1,3x - y 3 _ 0设x, y 满足约束条件*x + yZ0,则z = 3x + y 的最小值是x 兰2S n ,则 S n =,定点的坐标是是某几何体的三视图,则该几何体的体积为C. D.5.6. A. -5 B. 4 C. -3D. 11已知等差数列{务}的公差不为0,可=1,且32,34,38成等比数列,设{a n }的前n 项和A.n( n 1) 2B.2C. n 2 12 D.n(n 3) 47.以抛物线y 2=8x 上的任意一点为圆心作圆与直线X 二-2相切,这些圆必过一定点,则8. 9. A. (0,2)B. (2, 0)执行如图所示的程序框图,当输出则输入n 的值可以为A.B. C. D.如图,网格纸上小正方形的边长为 C.S =210 时,1,粗实线画出的 (4, 0) D. (0, 4)——n = n - 1否甲S = n ・S(■结束2)A.14二B.310二3 5-J IS = 1C 开始3*/ 输入n // 输岀S /n < 5 ?是俯视图正视图F I +•B 8;侧视图-10.已知锐角:•满足cos( ) =cos2>,则sin〉cos 等于414 411.朱世杰是历史上最伟大的数学家之一, 他所著的《四元玉鉴》卷中如像招数”五问有如下问题:今有官司差夫一千八百六十四人筑堤•只云初日差六十四人,次日转多七人,每 人日支米三升,共支米四百三石九斗二升, 问筑堤几日”.其大意为:官府陆续派遣1864人前往修筑堤坝,第一天派出 64人,从第二天开始,每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升,共发出大米40392升,问修筑堤坝多少天”.这个问题中, 前5天应发大米12•对于定义域为 R 的函数f(x),若同时满足下列三个条件:①且 X = 0 时,都有 xf (x)0 ;③当 x 1 ::: 0 x 2,且 I 片 |=| x 2 |时,都有 f (xj ::: f (x 2),则称f(x)为偏对称函数”.现给出下列三个函数:3 3 2 x ] ln(1—x), x 兰 0 f i (x)-X x ; f 2(x) = e - x-1; f 3(x)二212x, x > 0则其中是偏对称函数”的函数个数为 A. 0B. 1C. 2D. 3二、填空题:本大题共 4个小题,每小题5分。
2018年河南省郑州市高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|x﹣x2>0},B={x|(x+1)(m﹣x)>0},则“m>1”是“A∩B≠∅”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件2.为了解600名学生的视力情况,采用系统抽样的方法,从中抽取容量为20的样本,则需要分成几个小组进行抽取()A.20 B.30 C.40 D.503.已知z=m﹣1+(m+2)i在复平面内对应的点在第二象限,则实数m的取值范围是()A.(﹣1,2)B.(﹣2,1)C.(1,+∞)D.(﹣∞,﹣2)4.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为()A.B.C.D.5.已知,则的值等于()A.B.C.D.6.已知f'(x)=2x+m,且f(0)=0,函数f(x)的图象在点A(1,f(1))处的切线的斜率为3,数列的前n项和为S n,则S2018的值为()A.B.C.D.7.如图是某个几何体的三视图,则这个几何体体积是()A.B.C.D.8.已知等比数列{a n},且a6+a8=4,则a8(a4+2a6+a8)的值为()A.2 B.4 C.8 D.169.若实数a、b、c>0,且(a+c)•(a+b)=6﹣2,则2a+b+c的最小值为()A.﹣1 B. +1 C.2+2 D.2﹣210.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.11.四面体A﹣BCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体A﹣BCD外接球的表面积为()A.50π B.100πC.200πD.300π12.已知函数f(x)=,且f=()A.﹣2018 B.﹣2018 C.﹣2018 D.﹣2018二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设变量x,y满足约束条件:,则目标函数z=x+2y的最小值为.14.已知向量,,若向量,的夹角为30°,则实数m= .15.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b=a,A=2B,则cosA= .16.在△ABC中,∠A=,O为平面内一点.且||,M为劣弧上一动点,且.则p+q的取值范围为.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}是等差数列,首项a1=2,且a3是a2与a4+1的等比中项.(1)求数列{a n}的通项公式;(2)设b n=,求数列{b n}的前n项和S n.18.2018年3月2日,国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2018年1月1日到2018年4月30日这120天对某居民区的PM2.5平均浓度的监测数据统计如下:(Ⅰ)在这120天中抽取30天的数据做进一步分析,每一组应抽取多少天?(Ⅱ)在(I)中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率.19.如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜边AB=,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).(1)求证:不论λ取何值时,恒有CD⊥B1E;(2)当λ=时,求多面体C1B﹣ECD的体积.20.已知点P是圆F1:(x﹣1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.(1)求点M的轨迹C的方程;(2)过点的动直线l与点M的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.21.已知函数h(x)=(x﹣a)e x+a.(1)若x∈,求函数h(x)的最小值;(2)当a=3时,若对∀x1∈,∃x2∈,使得h(x1)≥x22﹣2bx2﹣ae+e+成立,求b的范围.22.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(1)若∃x∈R,使得f(x)≤m成立,求m的范围;(2)求不等式x2﹣8x+15+f(x)≤0的解集.2018年河南省郑州市高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|x﹣x2>0},B={x|(x+1)(m﹣x)>0},则“m>1”是“A∩B≠∅”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【分析】集合A={x|x﹣x2>0}=(0,1).对于B:(x+1)(m﹣x)>0,化为:(x+1)(x﹣m)<0,对m与﹣1的大小关系分类讨论,再利用集合的运算性质即可判断出结论.【解答】解:集合A={x|x﹣x2>0}=(0,1),对于B:(x+1)(m﹣x)>0,化为:(x+1)(x﹣m)<0,m=﹣1时,x∈∅.m>﹣1,解得﹣1<x<m,即B=(﹣1,m).m<﹣1时,解得m<x<﹣1,即B=(m,﹣1).∴“m>1”⇒“A∩B≠∅”,反之不成立,例如取m=.∴“m>1”是“A∩B≠∅”的充分而不必要条件.故选:A.2.为了解600名学生的视力情况,采用系统抽样的方法,从中抽取容量为20的样本,则需要分成几个小组进行抽取()A.20 B.30 C.40 D.50【考点】B4:系统抽样方法.【分析】根据系统抽样的特征,求出分段间隔即可.【解答】解:根据系统抽样的特征,得;从600名学生中抽取20个学生,分段间隔为=30.故选:B.3.已知z=m﹣1+(m+2)i在复平面内对应的点在第二象限,则实数m的取值范围是()A.(﹣1,2)B.(﹣2,1)C.(1,+∞)D.(﹣∞,﹣2)【考点】A4:复数的代数表示法及其几何意义.【分析】利用复数的几何意义、不等式的解法即可得出.【解答】解:z=m﹣1+(m+2)i在复平面内对应的点在第二象限,∴m﹣1<0,m+2>0,解得﹣2<m<1.则实数m的取值范围是(﹣2,1).故选:B4.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为()A.B.C.D.【考点】F1:归纳推理.【分析】根据新定义直接判断即可.【解答】解:由题意各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,则5288 用算筹可表示为11,故选:C5.已知,则的值等于()A .B .C .D .【考点】GQ :两角和与差的正弦函数;GP :两角和与差的余弦函数. 【分析】由已知利用诱导公式即可计算得解.【解答】解:∵,可得:cos (﹣α)=﹣,∴sin[﹣(﹣α)]=sin (+α)=﹣.故选:D .6.已知f'(x )=2x+m ,且f (0)=0,函数f (x )的图象在点A (1,f (1))处的切线的斜率为3,数列的前n 项和为S n ,则S 2018的值为( )A .B .C .D .【考点】6H :利用导数研究曲线上某点切线方程.【分析】由题意可设f (x )=x 2+mx+c ,运用导数的几何意义,由条件可得m ,c 的值,求出==﹣,再由数列的求和方法:裂项相消求和,计算即可得到所求和.【解答】解:f'(x )=2x+m ,可设f (x )=x 2+mx+c , 由f (0)=0,可得c=0.可得函数f (x )的图象在点A (1,f (1))处的切线的斜率为2+m=3, 解得m=1, 即f (x )=x 2+x ,则==﹣,数列的前n 项和为S n ,则S 2018=1﹣+﹣+…+﹣=1﹣=.故选:A .7.如图是某个几何体的三视图,则这个几何体体积是( )A.B.C.D.【考点】L!:由三视图求面积、体积.【分析】由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.【解答】解:由三视图可知:该几何体由一个半圆柱与三棱柱组成的几何体.这个几何体体积V=+×()2×2=2+.故选:A.8.已知等比数列{a n},且a6+a8=4,则a8(a4+2a6+a8)的值为()A.2 B.4 C.8 D.16【考点】8G:等比数列的性质.【分析】将式子“a8(a4+2a6+a8)”展开,由等比数列的性质:若m,n,p,q∈N*,且m+n=p+q,则有a m a n=a p a q可得,a8(a4+2a6+a8)=(a6+a8)2,将条件代入得到答案.【解答】解:由题意知:a8(a4+2a6+a8)=a8a4+2a8a6+a82,∵a6+a8=4,∴a8a4+2a8a6+a82=(a6+a8)2=16.故选D.9.若实数a、b、c>0,且(a+c)•(a+b)=6﹣2,则2a+b+c的最小值为()A.﹣1 B. +1 C.2+2 D.2﹣2【考点】7F:基本不等式.【分析】根据题意,将2a+b+c变形可得2a+b+c=(a+c)+(a+b),由基本不等式分析可得2a+b+c=(a+c)+(a+b)≥2=2,计算可得答案.【解答】解:根据题意,2a+b+c=(a+c)+(a+b),又由a、b、c>0,则(a+c)>0,(a+b)>0,则2a+b+c=(a+c)+(a+b)≥2=2=2(﹣1)=2﹣2,即2a+b+c的最小值为2﹣2,故选:D.10.椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.【考点】K4:椭圆的简单性质.【分析】设右焦点为F′,连接MF′,NF′,由于|MF′|+|NF′|≥|MN|,可得当直线x=a过右焦点时,△FMN的周长最大.c==1.把c=1代入椭圆标准方程可得: =1,解得y,即可得出此时△FMN的面积S.【解答】解:设右焦点为F′,连接MF′,NF′,∵|MF′|+|NF′|≥|MN|,∴当直线x=a过右焦点时,△FMN的周长最大.由椭圆的定义可得:△FMN的周长的最大值=4a=4.c==1.把c=1代入椭圆标准方程可得: =1,解得y=±.∴此时△FMN的面积S==.故选:C.11.四面体A﹣BCD中,AB=CD=10,AC=BD=2,AD=BC=2,则四面体A﹣BCD外接球的表面积为()A.50π B.100πC.200πD.300π【考点】LE:棱柱、棱锥、棱台的侧面积和表面积.【分析】由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以10,2,2为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,由此能求出球的半径,进而求出球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以10,2,2为三边的三角形作为底面,且以分别为x,y,z,长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=100,x2+z2=136,y2+z2=164,设球半径为R,则有(2R)2=x2+y2+z2=200,∴4R2=200,∴球的表面积为S=4πR2=200π.故选C.12.已知函数f(x)=,且f=()A.﹣2018 B.﹣2018 C.﹣2018 D.﹣2018【考点】3T:函数的值.【分析】推导出函数f(x)=1++,令h(x)=,则h(x)是奇函数,由此能求出结果.【解答】解:∵函数f(x)=,=1++=1++,令h(x)=,则h(﹣x)=﹣+=﹣h(x),即h(x)是奇函数,∵f=2018,∴h=1+h(﹣2018)=1﹣h13.设变量x,y满足约束条件:,则目标函数z=x+2y的最小值为 4 .【考点】7C:简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(2,1),化目标函数z=x+2y为y=﹣,由图可知,当直线y=﹣过点A时,直线在y轴上的截距最小,z有最小值为4.故答案为:4.14.已知向量,,若向量,的夹角为30°,则实数m= .【考点】9S:数量积表示两个向量的夹角.【分析】利用两个向量的数量积的定义,两个向量的数量积公式,求得m的值.【解答】解:∵,,向量,的夹角为30°,∴=m+3=•2•cos30°,求得,故答案为:.15.在△ABC中,内角A,B,C所对的边分别是a,b,c,已知b=a,A=2B,则cosA= .【考点】HP:正弦定理.【分析】由已知及正弦定理,二倍角的正弦函数公式化简可得cosB=,进而利用二倍角的余弦函数公式即可计算得解.【解答】解:∵A=2B,∴sinA=sin2B=2sinBcosB,∵b=a,∴由正弦定理可得: ===2cosB,∴cosB=,∴cosA=cos2B=2cos2B﹣1=.故答案为:.16.在△ABC中,∠A=,O为平面内一点.且||,M为劣弧上一动点,且.则p+q的取值范围为.【考点】9H:平面向量的基本定理及其意义.【分析】根据题意画出图形,结合图形,设外接圆的半径为r,对=p+q两边平方,建立p、q的解析式,利用基本不等式求出p+q的取值范围.【解答】解:如图所示,△ABC中,∠A=,∴∠BOC=;设|=r,则O为△ABC外接圆圆心;∵=p+q,∴==r2,即p2r2+q2r2+2pqr2cos=r2,∴p2+q2﹣pq=1,∴(p+q)2=3pq+1;又M为劣弧AC上一动点,∴0≤p≤1,0≤q≤1,∴p+q≥2,∴pq≤=,∴1≤(p+q)2≤(p+q)2+1,解得1≤(p+q)2≤4,∴1≤p+q≤2;即p+q的取值范围是.故答案为:.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知数列{a n}是等差数列,首项a1=2,且a3是a2与a4+1的等比中项.(1)求数列{a n }的通项公式;(2)设b n =,求数列{b n }的前n 项和S n .【考点】8E :数列的求和;8H :数列递推式.【分析】(1)设等差数列的公差为d ,首项a 1=2,且a 3是a 2与a 4+1的等比中项即可求出公差d ,再写出通项公式即可,(2)化简b n 根据式子的特点进行裂项,再代入数列{b n }的前n 项和S n ,利用裂项相消法求出S n .【解答】解:(1)设等差数列{a n }的公差为d ,由a 1=2,且a 3是a 2与a 4+1的等比中项. ∴(2+2d )2=(3+3d )(2+d ), 解得d=2,∴a n =a 1+(n ﹣1)d=2+2(n ﹣1)=2n ,(2)b n ====(﹣),∴S n =(﹣+﹣+﹣+…+﹣+﹣)=(+﹣﹣)=﹣18.2018年3月2日,国家环保部发布了新修订的《环境空气质量标准》,其中规定:居民区 的PM2.5的年平均浓度不得超过35微克/立方米.某城市环保部门在2018年1月1日到 2018年4月30日这120天对某居民区的PM2.5平均浓度的监测数据统计如下:(Ⅰ)在这120天中抽取30天的数据做进一步分析,每一组应抽取多少天?(Ⅱ)在(I )中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随 机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率. 【考点】CB :古典概型及其概率计算公式;B3:分层抽样方法.【分析】(Ⅰ)由这120天中的数据中,各个数据之间存在差异,故应采取分层抽样,计算出抽样比k后,可得每一组应抽取多少天;(Ⅱ)设PM2.5的平均浓度在(75,115]内的4天记为A,B,C,D,PM2.5的平均浓度在115以上的两天记为1,2,列举出从6天任取2天的所有情况和满足恰有一天平均浓度超过115(微克/立方米)的情况数,代入古典概型概率计算公式,可得答案.【解答】解:(Ⅰ)这120天中抽取30天,应采取分层抽样,抽样比k==,第一组抽取32×=8天;第二组抽取64×=16天;第三组抽取16×=4天;第四组抽取8×=2天(Ⅱ)设PM2.5的平均浓度在(75,115]内的4天记为A,B,C,D,PM2.5的平均浓度在115以上的两天记为1,2.所以6天任取2天的情况有:AB,AC,AD,A1,A2,BC,BD,B1,B2,CD,C1,C2,D1,D2,12,共15种记“恰好有一天平均浓度超过115(微克/立方米)”为事件A,其中符合条件的有:A1,A2,B1,B2,C1,C2,D1,D2,共8种所以,所求事件A的概率P=19.如图,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜边AB=,侧棱AA1=2,点D为AB的中点,点E在线段AA1上,AE=λAA1(λ为实数).(1)求证:不论λ取何值时,恒有CD⊥B1E;(2)当λ=时,求多面体C1B﹣ECD的体积.【考点】LF:棱柱、棱锥、棱台的体积;LX:直线与平面垂直的性质.【分析】(1)由已知可得CD⊥AB.再由AA1⊥平面ABC,得AA1⊥CD.利用线面垂直的判定可得CD⊥平面ABB1A1.进一步得到CD⊥B1E;(2)当λ=时,.再由△ABC是等腰直角三角形,且斜边,得AC=BC=1.然后利用结合等积法得答案.【解答】(1)证明:∵△ABC是等腰直角三角形,点D为AB的中点,∴CD⊥AB.∵AA1⊥平面ABC,CD⊂平面ABC,∴AA1⊥CD.又∵AA1⊂平面ABB1A1,AB⊂平面ABB1A1,AA1∩AB=A,∴CD⊥平面ABB1A1.∵点E在线段AA1上,∴B1E⊂平面ABB1A1,∴CD⊥B1E;(2)解:当λ=时,.∵△ABC是等腰直角三角形,且斜边,∴AC=BC=1.∴,,∴.20.已知点P是圆F1:(x﹣1)2+y2=8上任意一点,点F2与点F1关于原点对称,线段PF2的垂直平分线分别与PF1,PF2交于M,N两点.(1)求点M的轨迹C的方程;(2)过点的动直线l与点M的轨迹C交于A,B两点,在y轴上是否存在定点Q,使以AB为直径的圆恒过这个点?若存在,求出点Q的坐标;若不存在,请说明理由.【考点】KS:圆锥曲线的存在性问题;J3:轨迹方程;KL:直线与椭圆的位置关系.【分析】(1)判断轨迹方程是椭圆,然后求解即可.(2)直线l的方程可设为,设A(x1,y1),B(x2,y2),联立直线与椭圆方程,通过韦达定理,假设在y轴上是否存在定点Q(0,m),使以AB为直径的圆恒过这个点,利用,求得m=﹣1.推出结果即可.【解答】解:(1)由题意得,∴点M的轨迹C为以F1,F2为焦点的椭圆∵,∴点M的轨迹C的方程为.(2)直线l的方程可设为,设A(x1,y1),B(x2,y2),联立可得9(1+2k2)x2+12kx﹣16=0.由求根公式化简整理得,假设在y轴上是否存在定点Q(0,m),使以AB为直径的圆恒过这个点,则即.∵,===.∴求得m=﹣1.因此,在y轴上存在定点Q(0,﹣1),使以AB为直径的圆恒过这个点.21.已知函数h(x)=(x﹣a)e x+a.(1)若x∈,求函数h(x)的最小值;(2)当a=3时,若对∀x1∈,∃x2∈,使得h(x1)≥x22﹣2bx2﹣ae+e+成立,求b的范围.【考点】6E:利用导数求闭区间上函数的最值;6K:导数在最大值、最小值问题中的应用.【分析】(1)求出极值点x=a﹣1.通过当a≤0时,当0<a<2时,当a≥2时,利用函数的单调性求解函数的最小值.(2)令,“对∀x1∈,∃x2∈,使得成立”等价于“f(x)在上的最小值不大于h(x)在上的最小值”.推出h(x)min≥f(x)min.通过①当b≤1时,②当1<b<2时,③当b≥2时,分别利用极值与最值求解b的取值范围.【解答】解:(1)h'(x)=(x﹣a+1)e x,令h'(x)=0得x=a﹣1.当a﹣1≤﹣1即a≤0时,在上h'(x)≥0,函数h(x)=(x﹣a)e x+a递增,h(x)的最小值为.当﹣1<a﹣1<1即0<a<2时,在x∈上h'(x)≤0,h(x)为减函数,在x∈上h'(x)≥0,h(x)为增函数.∴h(x)的最小值为h(a﹣1)=﹣e a﹣1+a.当a﹣1≥1即a≥2时,在上h'(x)≤0,h(x)递减,h(x)的最小值为h(1)=(1﹣a)e+a.综上所述,当a≤0时h(x)的最小值为,当a≥2时h(x)的最小值为(1﹣a)e+a,当0<a<2时,h(x)最小值为﹣e a﹣1+a.(2)令,由题可知“对∀x1∈,∃x2∈,使得成立”等价于“f(x)在上的最小值不大于h(x)在上的最小值”.即h(x)min≥f(x)min.由(1)可知,当a=3时,h(x)min=h(1)=(1﹣a)e+a=﹣2e+3.当a=3时,,x∈,①当b≤1时,,由得,与b≤1矛盾,舍去.②当1<b<2时,,由得,与1<b<2矛盾,舍去.③当b≥2时,,由得.综上,b的取值范围是.22.以直角坐标系的原点O为极点,x轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l的参数方程为,(t为参数,0<θ<π),曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)求曲线C的直角坐标方程;(2)设直线l与曲线C相交于A,B两点,当θ变化时,求|AB|的最小值.【考点】QH:参数方程化成普通方程;Q4:简单曲线的极坐标方程.【分析】(1)利用极坐标与直角坐标的转化方法,求曲线C的直角坐标方程;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0,利用参数的几何意义,求|AB|的最小值.【解答】解:(1)由ρsin2θ﹣2cosθ=0,得ρ2sin2θ=2ρcosθ.∴曲线C的直角坐标方程为y2=2x;(2)将直线l的参数方程代入y2=2x,得t2sin2θ﹣2tcosθ﹣1=0.设A,B两点对应的参数分别为t1,t2,则,,==.当时,|AB|的最小值为2.23.已知函数f(x)=|x﹣5|﹣|x﹣2|.(1)若∃x∈R,使得f(x)≤m成立,求m的范围;(2)求不等式x2﹣8x+15+f(x)≤0的解集.【考点】R5:绝对值不等式的解法.【分析】(1)通过讨论x的范围,求出f(x)的分段函数的形式,求出m的范围即可;(2)通过讨论x的范围,求出不等式的解集即可.【解答】解:(1),当2<x<5时,﹣3<7﹣2x<3,所以﹣3≤f(x)≤3,∴m≥﹣3;(2)不等式x2﹣8x+15+f(x)≤0,即﹣f(x)≥x2﹣8x+15由(1)可知,当x≤2时,﹣f(x)≥x2﹣8x+15的解集为空集;当2<x<5时,﹣f(x)≥x2﹣8x+15,即x2﹣10x+22≤0,∴;当x≥5时,﹣f(x)≥x2﹣8x+15,即x2﹣8x+12≤0,∴5≤x≤6;综上,原不等式的解集为.2018年5月23日。
郑州市2018年高中毕业年级第三次质量预测文科数学试题卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考试时间120分钟,满分150分.考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效.交卷时只交答题卡.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中。
只有一个是符合题目要求的. 1.设复数21i i-+=a +bi (a ,b ∈R ),则a +b = A .1 B .2 C .-1 D .-2 2.命题“存在0x ∈R ,02x≤0”的否定是A .不存在0x ∈R ,02x>0 B .存在0x ∈R ,02x≥0 C .对任意的0x ∈R ,02x≤0 D .对任意的0x ∈R ,02x>0 3.已知集合M ={x |y =1lgx x-},N ={y |y =22x x + +3},则(C R M )∩N = A .(0,1) B .[1,+∞) C .[2,+∞) D .(-∞,0]∪[1,+∞) 4.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为A .710 B .310 C .35 D .255.一空间几何体的三视图如图所示,则该几何体的体积 为A .2π+B .4π+C .2πD .4π6.已知抛物线y =2ax (a >0)的焦点恰好为双曲线222y x -=的一个焦点,则a 的值为A .4B .14 C .8 D .187.某程序框图如图所示,该程序运行后输出的S 的值是A .1007B .2018C .2018D .30248.在数列{n a }中,a 1=2,1n a +=n a +ln (1+1n), 则n a =A .2+lnnB .2+(n -1)lnnC .2+nlnnD .1+n +lnn9.若不等式组10,10,102x y x y y ⎧⎪⎪⎨⎪⎪⎩+-≤-+≥+≥表示的区域Q ,不等式2211()24x y -+≤表示的区域为Γ,向 Ω区域均匀随机撤360颗芝麻,则落在区域Γ中芝麻数约为A .114B .10C .150D .5010.已知球的直径CS =4,A ,B 在球面上,AB =2,∠CSA =∠CSB =45°,则棱锥S —ABC 的体积为 ABCD11.若将函数y =2sin (3x +ϕ)的图象向右平移4π个单位后得到的图象关于点(3π,0)对 称,则|ϕ|的最小值是 A .4π B .3π C .2π D .34π12.已知函数f (x )=2(0)(2)1,()x x f x x ⎧⎨⎩-1, ≤-+>0,把函数g (x )=f (x )-12x 的偶数零点按从小到大的顺序排列成一个数列,该数列的前10项的和S 10等于A .45B .55C .90D .110第Ⅱ卷本卷包含必考题和选考题两部分.第13—21题为必考题。
2018高三文科数学第三次联考试题(河南十所名校附答案)
5 c 2018年河南省十所名校高三第三次联考试题
数学(科)
本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷选择题
一、选择题本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.设全集U是实数集R,集合={x|≥2x},N={x|≤0},则∩N=
A.{1,2} B.{ 2 } c.{1} D.[1,2]
2.i为虚数单位,若复数=,则|z|=
A.1 B.2 c. D.2
3.双曲线的离心率为
A. B. c. D.
4.某学生在一门功的22次考试中,所得分数如下茎叶图所示,则此学生该门功考试分数的极差与中位数之和为
A.117 B.118 c.118.5 D.119.5
5.在△ABc中,是AB边所在直线上任意一点,若=-2 +λ,则λ=
A.1 B.2 c.3 D.4
6.“=-1”是“函数f(x)=ln(x)在(-∞,0)上单调递减”的
A.充分不必要条 B.必要不充分条
c.充要条 D.既不充分也不必要条
7.差不为0的等差数列{ }的前21项的和等于前8项的和.若,则=。
2017-2018学年河南省郑州市高考数学三模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中.只有一个是符合题目要求的.1.设复数,则a+b=( )A .1B .2C .﹣1D .﹣22.“存在x 0∈R ,2X0≤0”的否定是( )A .对任意的x 0∈R ,2X0>0B .存在x 0∈R ,2X0>0C .对任意的x 0∈R ,2X0≤0D .不存在x 0∈R ,2X0>03.已知集合M={x|y=lg},N={y|y=x 2+2x+3},则(∁R M )∩N=( )A .(0,1)B .[1,+∞)C .[2,+∞)D .(﹣∞,0]∪[1,+∞)4.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m 和n ,则m >n 的概率为( )A .B .C .D .5.一空间几何体的三视图如图所示,则该几何体的体积为( )A .2π+2B .4π+2C .2π+D .4π+6.已知抛物线y=ax 2(a >0)的焦点恰好为双曲线y 2﹣x 2=2的一个焦点,则a 的值为( )A .4B .C .8D .7.某程序框图如图所示.该程序运行后输出的S 的值是( )A.1007 B.2015 C.2016 D.30248.在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn9.若不等式组表示的区域Ω,不等式(x﹣)2+y2表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为()A.114 B.10 C.150 D.5010.己知球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC的体积为()A.B.C.D.11.若将函数y=2sin(3x+φ)的图象向右平移个单位后得到的图象关于点()对称,则|φ|的最小值是()A.B.C.D.12.已知函数f(x)=,把函数g(x)=f(x)﹣x的偶数零点按从小到大的顺序排列成一个数列,该数列的前n项的和S n,则S10=()A.45 B.55 C.90 D.110二、填空题(本大题共4小题,每小题5分,共20分)13.如图是甲、乙两名篮球运动员某赛季一些场次得分的茎叶图,茎表示得分的十位数,据图可知甲运动员得分的中位数和乙运动员得分的众数之和为.14.已知cos(α﹣)+sinα=,则sin(α+)的值为.15.若关于x的不等式x2+x﹣()n≥0,当x∈(﹣∞,λ]时对任意n∈N*恒成立,则实数λ的取值范围是.16.函数f(x)=xlnx﹣x2﹣x+1有两个极值点,则a的取值范围为.三、解答题(解答应写出文字说明、证明过程或演算步骤)17.设函数f(x)=2sinxcos2+cosxsinφ﹣sinx(0<φ<π)在x=π处取最小值.(I)求ϕ的值,并化简f(x);(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f (A)=,求角C.18.有甲乙两个班进行数学考试,按照大于等于85分为优秀,85分以下为非已知在全部105人中随机抽取1人为优秀的概率为.(1)请完成上面的联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班10优秀的学生按2到11进行编号,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号.试求抽到6号或10号的概率.参考公式:K2=,其中n=a+b+c+d.111,∠BAC=90°,且AB=AA1,E、F分别为BC、CC1的中点.(1)求证:B1E⊥平面AEF;(2)当AB=2时,求点E到平面B1AF的距离.20.已知F1、F2分别为椭圆C1:+=1(a>b>0)的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=.(Ⅰ)求椭圆的方程;(Ⅱ)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB取一点Q,满足:=﹣λ,=λ(λ≠0且λ≠±1),探究是否存在一条直线使得点Q总在该直线上,若存在求出该直线方程.21.设函数f(x)=x﹣﹣2mlnx(m∈R).(1)讨论函数f(x)的单调性;(2)若f(x)有两个极值点是x1,x2,过点A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k,问是否存在m使得k=2﹣2m?若存在,求出m的值,若不存在,说明理由.请考生在第22、23、24三题中任选一题作答.如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-1:几何证明选讲]22.如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.[选修4-4:坐标系与参数方程]23.在平面直角坐标系中,坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(,).圆C的参数方程为,(θ为参数).(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;(Ⅱ)判断直线l与圆C的位置关系.[选修4-5:不等式选讲]24.设函数f(x)=|3x﹣1|+ax+3(Ⅰ)若a=1,解不等式f(x)≤4;(Ⅱ)若函数f(x)有最小值,求a的取值范围.2016年河南省郑州市高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中.只有一个是符合题目要求的.1.设复数,则a+b=()A.1 B.2 C.﹣1 D.﹣2【考点】复数相等的充要条件.【分析】利用两个复数相等的充要条件,先利用复数的除法化简,得到a、b 的值,从而可求a+b.【解答】解:,∴,∴a+b=1,故选A.2.“存在x0∈R,2X0≤0”的否定是()A.对任意的x0∈R,2X0>0 B.存在x0∈R,2X0>0C.对任意的x0∈R,2X0≤0 D.不存在x0∈R,2X0>0【考点】的否定.【分析】直接利用特称的否定是全称写出结果即可.【解答】解:因为称的否定是全称,所以“存在x0∈R,2X0≤0”的否定是:对任意的x0∈R,2X0>0.故选:A.3.已知集合M={x|y=lg},N={y|y=x2+2x+3},则(∁R M)∩N=()A.(0,1)B.[1,+∞)C.[2,+∞)D.(﹣∞,0]∪[1,+∞)【考点】交、并、补集的混合运算.【分析】化简集合M、N,利用集合的基本运算即求出结论.【解答】解:M={x丨y=lg}={x丨>0}={x|0<x<1}=(0,1),N={y|y=x2+2x+3}={y|y=(x+1)2+2≥2}=[2,+∞),∴∁R M=(﹣∞,0]∪[1,+∞),∴(∁R M)∩N=[2,+∞).故选:C.4.分别在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则m>n的概率为()A.B.C.D.【考点】几何概型.【分析】本题考查的知识点是几何概型的意义,关键是要找出满足条件m>n的图形面积,及在区间[1,6]和[1,4]内的点对应的面积,再代入几何概型计算公式求解.【解答】解:如图,则在区间[1,6]和[1,4]内任取一个实数,依次记为m和n,则(m,n)表示的图形面积为3×5=15其中满足m>n,即在直线m=n右侧的点表示的图形面积为:,故m>n的概率P=,故选A.5.一空间几何体的三视图如图所示,则该几何体的体积为()A.2π+2B.4π+2C.2π+D.4π+【考点】由三视图求面积、体积.【分析】由三视图及题设条件知,此几何体为一个上部是四棱锥,下部是圆柱其高已知,底面是半径为1的圆,故分别求出两个几何体的体积,再相加即得组合体的体积.【解答】解:此几何体为一个上部是正四棱锥,下部是圆柱 由于圆柱的底面半径为1,其高为2,故其体积为π×12×2=2π棱锥底面是对角线为2的正方形,故其边长为,其底面积为2,又母线长为2,故其高为由此知其体积为=故组合体的体积为2π+故选C6.已知抛物线y=ax 2(a >0)的焦点恰好为双曲线y 2﹣x 2=2的一个焦点,则a 的值为( )A .4B .C .8D .【考点】抛物线的简单性质.【分析】利用抛物线的方程及双曲线的方程求出抛物线的焦点坐标和双曲线的焦点坐标,列出方程求出a .【解答】解:抛物线y=ax 2(a >0)的焦点为(0,),双曲线y 2﹣x 2=2的焦点为(0,±2), ∵a >0,∴=2,∴a=,故选:D .7.某程序框图如图所示.该程序运行后输出的S 的值是( )A.1007 B.2015 C.2016 D.3024【考点】程序框图.【分析】模拟程序框图的运行过程,得出该程序运行后输出的算式S是求数列的和,且数列的每4项的和是定值,由此求出S的值.【解答】解:模拟程序框图的运行过程,得出该程序运行后输出的算式:S=a1+a2+a3+a4+…+a2013+a2014+a2015+a2016=(0+1)+(﹣2+1)+(0+1)+(4+1)+…+(0+1)+(﹣2014+1)+(0+1)+=6+…+6=6×=3024;所以该程序运行后输出的S值是3024.故选:D.8.在数列{a n}中,a1=2,a n+1=a n+ln(1+),则a n=()A.2+lnn B.2+(n﹣1)lnn C.2+nlnn D.1+n+lnn【考点】数列的概念及简单表示法.【分析】把递推式整理,先整理对数的真数,通分变成,用迭代法整理出结果,约分后选出正确选项.【解答】解:∵,,…∴=故选:A.9.若不等式组表示的区域Ω,不等式(x﹣)2+y2表示的区域为Γ,向Ω区域均匀随机撒360颗芝麻,则落在区域Γ中芝麻数约为()A.114 B.10 C.150 D.50【考点】几何概型;简单线性规划.【分析】作出两平面区域,计算两区域的公共面积,得出芝麻落在区域Γ内的概率.【解答】解:作出平面区域Ω如图:则区域Ω的面积为S△AB C==.区域Γ表示以D()为圆心,以为半径的圆,则区域Ω和Γ的公共面积为S′=+=.∴芝麻落入区域Γ的概率为=.∴落在区域Γ中芝麻数约为360×=30π+20≈114.故选A.10.己知球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,则棱锥S﹣ABC的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积;球内接多面体.【分析】由题意求出SA=AC=SB=BC=2,∠SAC=∠SBC=90°,说明球心O与AB的平面与SC垂直,求出OAB的面积,即可求出棱锥S﹣ABC的体积.【解答】解:如图:由题意球的直径SC=4,A,B是该球球面上的两点.AB=2,∠ASC=∠BSC=45°,求出SA=AC=SB=BC=2,∠SAC=∠SBC=90°,所以平面ABO与SC垂直,则进而可得:V S﹣AB C =V C﹣AOB+V S﹣AOB,所以棱锥S﹣ABC的体积为:=.故选C.11.若将函数y=2sin(3x+φ)的图象向右平移个单位后得到的图象关于点()对称,则|φ|的最小值是()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;函数y=Asin(ωx+φ)的图象变换.【分析】先利用图象变换的法则求出平移后函数的解析式,再利用正弦函数的图象和性质,求出所得函数的对称中心,进而求得|φ|的最小值【解答】解:将函数y=2sin(3x+φ)的图象向右平移个单位后得到的函数解析式为y=2sin(3x﹣+φ)∵y=2sin(3x﹣+φ)的图象关于点()对称,∴3×﹣+φ=kπ,(k∈Z)∴φ=kπ﹣∴|φ|的最小值是故选A12.已知函数f(x)=,把函数g(x)=f(x)﹣x的偶数零点按从小到大的顺序排列成一个数列,该数列的前n项的和S n,则S10=()A.45 B.55 C.90 D.110【考点】数列的求和;分段函数的应用.【分析】由分段函数解析式得到函数f(x)在x>0时的分段解析式,首先求得函数g(x)=f(x)﹣x在(﹣2,0]上的零点,然后根据函数的图象平移得到函数g(x)=f(x)﹣x在(0,2],(2,4],(4,6],…,(2n,2n+2]上的零点,得到偶数零点按从小到大的顺序排列的数列,利用等差数列的前n项和得答案.【解答】解:当0<x≤2时,有﹣2<x﹣2≤0,则f(x)=f(x﹣2)+1=2x﹣2,当2<x≤4时,有0<x﹣2≤2,则f(x)=f(x﹣2)+1=2x﹣4+1,当4<x≤6时,有2<x﹣2≤4,则f(x)=f(x﹣2)+1=2x﹣6+2,当6<x≤8时,有4<x﹣1≤6,则f(x)=f(x﹣2)+1=2x﹣8+3,以此类推,当2n<x≤2n+2(其中n∈N)时,则f(x)=f(x﹣2)+1=2x﹣2n﹣2+n,∴函数f(x)=2x的图象与直线y=x+1的交点为:(0,1)和(﹣1,),由于指数函数f(x)=2x为增函数且图象下凸,故它们只有这两个交点.将函数f(x)=2x和y=x+1的图象同时向下平移一个单位,即得到函数f(x)=2x﹣1和y=x的图象,取x≤0的部分,可见它们有两个交点(0,0),(﹣1,).即当x≤0时,方程f(x)﹣x=0有两个根x=﹣1,x=0;当0<x≤2时,由函数图象平移可得g(x)=f(x)﹣x的零点为1,2;以此类推,函数y=f(x)与y=x在(2,4],(4,6],…,(2n,2n+2]上的零点分别为:3,4;5,6;…;2n+1,2n+2;综上所述函数g(x)=f(x)﹣x的偶数零点按从小到大的顺序排列所得数列为:0,2,4,…,其通项公式为:a n=2(n﹣1),前10项的和为S10=.故选:C.二、填空题(本大题共4小题,每小题5分,共20分)13.如图是甲、乙两名篮球运动员某赛季一些场次得分的茎叶图,茎表示得分的十位数,据图可知甲运动员得分的中位数和乙运动员得分的众数之和为64.【考点】茎叶图.【分析】根据中位数与众数的定义,进行计算即可.【解答】解:根据茎叶图中的数据,得;甲运动员得分的中位数是=35,乙运动员得分的众数是29,所以甲得分的中位数与乙得分的众数之和为35+29=64.故答案为:64.14.已知cos(α﹣)+sinα=,则sin(α+)的值为﹣.【考点】两角和与差的正弦函数;运用诱导公式化简求值;两角和与差的余弦函数.【分析】利用两角和公式展开后求得cosα+sinα的值,进而利用诱导公式可知sin(α+)=﹣sin(α+),把cosα+sinα的值代入求得答案.【解答】解:∵cos(α﹣)+sinα=cosα+sinα=,∴cosα+sinα=,∴sin(α+)=﹣sin(α+)=﹣(sinα+cosα)=﹣.故答案为:﹣15.若关于x的不等式x2+x﹣()n≥0,当x∈(﹣∞,λ]时对任意n∈N*恒成立,则实数λ的取值范围是(﹣∞,﹣1].【考点】一元二次不等式的解法.【分析】关于x的不等式x2+x﹣()n≥0对任意n∈N*在x∈(﹣∞,λ]恒成立,等价于x2+x≥()n ma x对任意n∈N*在x∈(﹣∞,λ]恒成立,由此求出λ的取值范围.【解答】解:关于x的不等式x2+x﹣()n≥0对任意n∈N*在x∈(﹣∞,λ]上恒成立,等价于x2+x≥()n ma x对任意n∈N*在x∈(﹣∞,λ]恒成立,即x2+x≥对x∈(﹣∞,λ]恒成立;设y=x2+x,它的图象是开口向上,对称轴为x=﹣的抛物线,所以当x≤﹣时,左边是单调减函数,所以要使不等式恒成立,则λ2+λ≥,解得λ≤﹣1,或λ≥(舍);当x>﹣时,左边的最小值就是在x=﹣时取到,达到最小值时,x2+x=﹣,不满足不等式.因此λ的范围就是λ≤﹣1.故答案为:(﹣∞,﹣1].16.函数f(x)=xlnx﹣x2﹣x+1有两个极值点,则a的取值范围为(0,).【考点】利用导数研究函数的极值.【分析】求出函数的导数,二阶导数,得到一阶导函数有极大值点,根据f′(x)的单调性,只要,解出即可.【解答】解:∵f(x)=xlnx﹣x2﹣x+1,(x>0),∴f′(x)=lnx﹣ax,,得一阶导函数有极大值点x=,由于f′(0)→﹣∞,x→+∞时,f′(x)→﹣∞,因此原函数要有两个极值点,只要解得,故答案为:(0,).三、解答题(解答应写出文字说明、证明过程或演算步骤)17.设函数f(x)=2sinxcos2+cosxsinφ﹣sinx(0<φ<π)在x=π处取最小值.(I)求ϕ的值,并化简f(x);(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,已知a=1,b=,f (A)=,求角C.【考点】三角函数的最值;三角函数中的恒等变换应用;正弦定理.【分析】(I)由条件利用三角恒等变换,化简函数的解析式,再利用诱导公式求得φ的值,可得函数的解析式.(II)由条件求得A,再利用正弦定理求得sinB的值,可得B,再利用三角形内角和公式求得C的值.【解答】解:(I)∵=sinx+sinxcosφ+cosxsinφ﹣sinx=sinxcosφ+cosxsinφ=sin(x+φ),因为函数f (x)在x=π处取最小值,所以sin(π+φ)=﹣1,由诱导公式知sinφ=1,因为0<φ<π,所以,所以.(II)因为,所以,因为角A为△ABC的内角,所以.又因为,所以由正弦定理,得,也就是,因为b>a,所以或.当时,;当时,.18.有甲乙两个班进行数学考试,按照大于等于85分为优秀,85分以下为非已知在全部105人中随机抽取1人为优秀的概率为.(1)请完成上面的联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;(3)若按下面的方法从甲班优秀的学生抽取一人:把甲班10优秀的学生按2到11进行编号,先后两次抛掷一枚骰子,出现的点数之和为被抽取的序号.试求抽到6号或10号的概率.参考公式:K2=,其中n=a+b+c+d.【分析】(Ⅰ)由全部105人中抽到随机抽取1人为优秀的概率为,我们可以计算出优秀人数为30,我们易得到表中各项数据的值.(2)我们可以根据列联表中的数据,代入公式K2=计算出k值,然后代入离散系数表,比较即可得到答案(3)本小题考查的知识点是古典概型,关键是要找出满足条件抽到6或10号的基本事件个数,及总的基本事件的个数,再代入古典概型公式进行计算求解.1(2)根据列联表中的数据,得到k2=≈6.109>3.841因此有95%的把握认为“成绩与班级有关系”.(3)设“抽到6或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y).所有的基本事件有(1,1)、(1,2)、(1,3)、(6,6),共36个.事件A包含的基本事件有:(1,5)、(2,4)、(3,3)、(4,2)、(5,1)(4,6)、(5,5)、(6、4),共8个∴P(A)==.19.如图,在直三棱柱ABC﹣A1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,E、F分别为BC、CC1的中点.(1)求证:B1E⊥平面AEF;(2)当AB=2时,求点E到平面B1AF的距离.【考点】点、线、面间的距离计算;直线与平面垂直的判定.【分析】(1)利用勾股定理可证明B1E⊥EF,再由题意可得BB1⊥AE,从而证明B1E⊥平面AEF;(2)由条件知,,,从而可求得,再解△AFB1,从而可得,从而解得.【解答】解:(1)证明:在直三棱柱ABC﹣A1B1C1中,不妨设|AB|=|AA1|=a,∵△ABC为等腰直角三角形,∠BAC=90°,∴,∵E、F分别为BC、CC1的中点,∴,,,∴,∴B1E⊥EF,又∵AE⊥BC,B1B⊥平面ABC,∴BB1⊥AE,∴AE⊥面BCC1B1∴B1E⊥AE,AE∩EF=E,∴B1E⊥平面AEF.(2)解:由条件知,,,∵AE⊥EF,∴,在△AFB1中,,∴,设点E到平面B1AF的距离为d,则,∴,即点E到平面B1AF的距离为1.20.已知F1、F2分别为椭圆C1:+=1(a>b>0)的上、下焦点,其中F1也是抛物线C2:x2=4y的焦点,点M是C1与C2在第二象限的交点,且|MF1|=.(Ⅰ)求椭圆的方程;(Ⅱ)已知点P(1,3)和圆O:x2+y2=b2,过点P的动直线l与圆O相交于不同的两点A,B,在线段AB取一点Q,满足:=﹣λ,=λ(λ≠0且λ≠±1),探究是否存在一条直线使得点Q总在该直线上,若存在求出该直线方程.【考点】椭圆的简单性质.【分析】(Ⅰ)求得抛物线的焦点和准线方程,设M(x0,y0)(x0<0),运用抛物线的定义求得M的坐标,由椭圆的定义可得2a=|MF1|+|MF2|=4,即a=2,c=1,求得b,进而得到椭圆方程;(II)设A(x1,y1),B(x2,y2),Q(x,y),运用向量共线的坐标表示,化简整理,运用平方差公式和点满足圆方程,代入即可得到所求定直线.【解答】解:(I)由C2:x2=4y知F1(0,1),准线为y=﹣1,设M(x0,y0)(x0<0),因M在抛物线C2上,故,又,由抛物线的定义可得,解得,椭圆C1的两个焦点F1(0,1),F2(0,﹣1),点M在椭圆上,由椭圆定义可得2a=|MF1|+|MF2|==4,可得a=2,又c=1,则b2=a2﹣c2=3,椭圆C1的方程为:;(II)设A(x1,y1),B(x2,y2),Q(x,y),由=λ,可得,即为;由=﹣λ,可得,即为,①×③得:,⑤②×④得:,⑥又点A,B在圆x2+y2=3上,且λ≠±1,所以,,⑤+⑥可得,3﹣3λ2=(x+3y)(1﹣λ2),由λ≠0且λ≠±1,可得x+3y=3,所以点Q总在定直线x+3y=3上.21.设函数f(x)=x﹣﹣2mlnx(m∈R).(1)讨论函数f(x)的单调性;(2)若f(x)有两个极值点是x1,x2,过点A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k,问是否存在m使得k=2﹣2m?若存在,求出m的值,若不存在,说明理由.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)求出函数的导数,结合二次函数的性质判断导函数的符号,从而求出函数的单调区间;(2)假设存在,根据x1+x2=2m,x1x2=1,得到消元得,根据f(x)的单调性判断函数无零点,得出结论即可.【解答】解:(1)函数f(x)的定义域(0,+∞),,令h(x)=x2﹣2mx+1,△=4m2﹣4=4(m2﹣1),当△>0即m>1或m<﹣1时,方程h(x)=0有两个根,设方程x2﹣2mx+1=0的两根是:x1,x2,且x1<x2,解得:x1=m﹣,x2=m+,∴x1+x2=m,x1•x2=1,当△≤0时,即m∈[﹣1,1]时,f′(x)≥0,原函数在定义域上单调递增,当m<﹣1时,△>0,两根均为负,f(x)在定义域上单调递增,当m>1时,△>0,两根均为正,故f(x)在区间(0,m﹣),(m+,+∞)递增,在(m﹣,m+)递减;(2)由(1)知函数有两个极值点时m>1且x1+x2=2m,x1x2=1AB斜率,若k=2﹣2m,则,两根均为正且x1x2=1,若x1<x2,则x1<1,x2>1,消元得,整理得x2﹣﹣2lnx2=0,由(1)知在区间(1,+∞)上单调递增,因此f(x)>f(1)=0,函数没有零点,故这样的m值不存在.请考生在第22、23、24三题中任选一题作答.如果多做,则按所做的第一题记分.作答时,用2B铅笔在答题卡上把所选题目对应的题号涂黑.[选修4-1:几何证明选讲]22.如图,D,E分别为△ABC边AB,AC的中点,直线DE交△ABC的外接圆于F,G两点,若CF∥AB,证明:(1)CD=BC;(2)△BCD∽△GBD.【考点】相似三角形的判定.【分析】(1)根据D,E分别为△ABC边AB,AC的中点,可得DE∥BC,证明四边形ADCF是平行四边形,即可得到结论;(2)证明两组对应角相等,即可证得△BCD~△GBD.【解答】证明:(1)∵D,E分别为△ABC边AB,AC的中点∴DF∥BC,AD=DB∵AB∥CF,∴四边形BDFC是平行四边形∴CF∥BD,CF=BD∴CF∥AD,CF=AD∴四边形ADCF是平行四边形∴AF=CD∵,∴BC=AF,∴CD=BC.(2)由(1)知,所以.所以∠BGD=∠DBC.因为GF∥BC,所以∠BDG=∠ADF=∠DBC=∠BDC.所以△BCD~△GBD.[选修4-4:坐标系与参数方程]23.在平面直角坐标系中,坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(,).圆C的参数方程为,(θ为参数).(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;(Ⅱ)判断直线l与圆C的位置关系.【考点】点的极坐标和直角坐标的互化;参数方程化成普通方程.【分析】(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;(Ⅱ)求出圆的圆心与半径,判断圆心与直线的距离与半径的关系,即可判断直线l与圆C的位置关系.【解答】解:(Ⅰ)M,N的极坐标分别为(2,0),(,),所以M、N的直角坐标分别为:M(2,0),N(0,),P为线段MN的中点(1,),直线OP的平面直角坐标方程y=x;(Ⅱ)圆C的参数方程(θ为参数).它的直角坐标方程为:(x﹣2)2+(y+3)2=4,圆的圆心坐标为(2,﹣3),半径为2,直线l上两点M,N的直角坐标分别为M(2,0),N(0,),方程为x+y ﹣2=0,圆心到直线的距离为:=>2,所以,直线l与圆C相离.[选修4-5:不等式选讲]24.设函数f(x)=|3x﹣1|+ax+3(Ⅰ)若a=1,解不等式f(x)≤4;(Ⅱ)若函数f(x)有最小值,求a的取值范围.【考点】绝对值不等式的解法.【分析】(Ⅰ)需要去掉绝对值,得到不等式解得即可,(Ⅱ)把含所有绝对值的函数,化为分段函数,再根据函数f(x)有最小值的充要条件,即可求得.【解答】解:(Ⅰ)当a=1时,f(x)=|3x﹣1|+x+3,当x时,f(x)≤4可化为3x﹣1+x+3≤4,解得;当x时,f(x)≤4可化为﹣3x+1+x+3≤4,解得.综上可得,原不等式的解集为{x|},(Ⅱ)f(x)=|3x﹣1|+ax+3=函数f(x)有最小值的充要条件为,即﹣3≤a≤3.2016年7月6日。