高亮度InGaN基白光LED特性研究
- 格式:pdf
- 大小:188.35 KB
- 文档页数:3
第40卷㊀第12期2019年12月发㊀光㊀学㊀报CHINESEJOURNALOFLUMINESCENCEVol 40No 12Dec.ꎬ2019㊀㊀收稿日期:2019 ̄07 ̄10ꎻ修订日期:2019 ̄08 ̄04㊀㊀基金项目:国家自然科学基金(61975072)ꎻ福建省自然科学基金(2018J05110ꎬ2018J01551ꎬ2017J01772)ꎻ福建省高校创新团队培育计划(光电材料与器件应用)ꎻ福建省教育厅科技项目(JZ160452ꎬJAT160293ꎬJT180296ꎬJAT160457/B201606ꎬJA14207)ꎻ福建省重大教学改革项目(FBJG20180015)ꎻ漳州市自然科学基金(ZZ2019J01ꎬZZ2016J40)资助项目SupportedbyNationalNaturalScienceFoundationofChina(61975072)ꎻNaturalScienceFoundationofFujianProvince(2018J05110ꎬ2018J01551ꎬ2017J01772)ꎻProgramforInnovativeResearchTeaminScienceandTechnologyinFujianProvinceUniversity(OptoelectronicMaterialsandDeviceApplication)ꎻNaturalScienceFoundationofFujianHigherEducationInstitutions(JZ160452ꎬJAT160293ꎬJT180296ꎬJAT160457/B201606ꎬJA14207)ꎻFoundationofFujianProvinceGreatTeachingReform(FBJG20180015)ꎻNaturalScienceFoundationofZhangzhou(ZZ2019J01ꎬZZ2016J40)文章编号:1000 ̄7032(2019)12 ̄1514 ̄09白光LED光谱特性及司辰节律因子沈雪华1ꎬ2ꎬ陈焕庭1ꎬ2∗ꎬ陈赐海1ꎬ2ꎬ林惠川1ꎬ2ꎬ李㊀燕1ꎬ2ꎬ陈福昌1ꎬ2(1.闽南师范大学物理与信息工程学院ꎬ福建漳州㊀363000ꎻ2.福建省光电材料与器件应用行业技术开发基地ꎬ福建漳州㊀363000)摘要:为分析白光LED的光 ̄电 ̄热特性及其变化ꎬ在热沉温度和驱动电流可控的条件下ꎬ测试了温度㊁电流对白光LED光谱分布的影响ꎬ建立了白光LED光功率和光谱蓝白比(蓝光光谱光功率与白光光谱光功率的比值)预测模型ꎮ相关性分析显示光谱蓝白比㊁色温及司辰节律因子之间高度相关ꎬ光谱蓝白比与色温㊁光谱蓝白比与司辰节律因子均存在线性关系ꎬ表明由光谱分布变化预测光谱色温漂移及其非视觉生物效应的可能性ꎮ实验结果表明ꎬ白光LED光功率㊁蓝白比㊁色温及司辰节律因子的预测值与实测值吻合较好ꎬ最大预测误差分别不超过4.22%㊁1.54%㊁1.31%和2.15%ꎻ同时ꎬ白光LED光谱蓝白比可作为一种有效手段ꎬ用于预测光谱色温及司辰节律因子ꎬ进而评估其光学特性和非视觉生物效应ꎮ关㊀键㊀词:白光LEDꎻ功率预测ꎻ色温漂移ꎻ司辰节律因子ꎻ非视觉生物效应中图分类号:TN312.8㊀㊀㊀文献标识码:A㊀㊀㊀DOI:10.3788/fgxb20194012.1514SpectralCharacteristicsandCircadianActionFactorofWhiteLEDsSHENXue ̄hua1ꎬ2ꎬCHENHuan ̄ting1ꎬ2∗ꎬCHENCi ̄hai1ꎬ2ꎬLINHui ̄chuang1ꎬ2ꎬLIYan1ꎬ2ꎬCHENFu ̄chang1ꎬ2(1.DepartmentofPhysicsandInformationEngineeringꎬMinnanNormalUniversityꎬZhangzhou363000ꎬChinaꎻ2.OptoelectronicMaterialsandDeviceApplicationIndustryTechnologicalDevelopmentBaseofFujianProvinceꎬZhangzhou363000ꎬChina)∗CorrespondingAuthorꎬE ̄mail:htchen23@qq.comAbstract:Toanalyzetheoptical ̄electrical ̄thermalcharacteristicsofwhiteLEDsꎬeffectsoftempera ̄tureandcurrentonthespectralpowerdistributionofthewhiteLEDweretestedunderthecontrolla ̄bleheatsinktemperatureandcurrent.Onthebasisꎬpredictionmodelsforspectralopticalpowerandblue ̄whiteratio(theratiobetweenblueopticalpowerandwhiteopticalpower)ofthewhiteLEDwereproposed.Correlationanalysisprovedthattheblue ̄whiteratiowashighlycorrelatedwiththecorrelatedcolortemperature(CCT)aswellascircadianactionfactor(CAF).Moreoverꎬlinearre ̄lationshipsbothexistbetweenblue ̄whiteratioandCCTꎬandbetweenblue ̄whiteratioandCAF.Itindicatesthepossibilitywhichqualitativelypredictingcolortemperaturedriftandnon ̄visualbiologi ̄caleffectsofthewhitespectrumfromchangingspectralpowerdistribution.Experimentalresultsshowthatꎬthemaximumpredictionerrorsofspectralopticalpowerꎬblue ̄whiteratioꎬCCTandCAFofthewhiteLEDwerewithin4.22%ꎬ1.54%ꎬ1.31%and2.15%ꎬrespectively.Meanwhileꎬthespectralblue ̄whiteratiocanbeusedasaneffectivemethodtopredictCCTandCAFofthespectrumꎬ. All Rights Reserved.㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1515㊀andthustoevaluatethespectralopticalpropertiesandnon ̄visualbiologicaleffects.Keywords:whiteLEDsꎻopticalpowerpredictionꎻcolortemperaturedriftꎻcircadianactionfactorꎻnon ̄visualbio ̄logicaleffects1㊀引㊀㊀言发光二极管(Light ̄emittingdiodeꎬLED)因具有低功耗㊁长寿命和环境友好等优点ꎬ近年逐渐向通用照明领域普及[1 ̄3]ꎮ在白光LED制造中ꎬ以蓝光GaN基LED芯片与YAGʒCe荧光粉结合的方式最为普遍ꎮ通用照明中ꎬLED器件通常集成了多个LED芯片ꎬ且输入功率随着应用需求的提高不断增大ꎬ导致器件内部热量聚集[4]ꎮ而蓝光LED芯片和荧光粉均具有温度敏感特性ꎬ高温环境下蓝光GaN基LED芯片和荧光粉的光学特性会有不同程度的下降ꎬ引起光谱功率㊁光通量㊁色温等光学参数的变化ꎬ最终影响照明质量[5 ̄6]ꎮ因此ꎬ大功率白光LED器件的热效应和热管理成为当前LED研究和制造领域备受关注的问题[7]ꎮ光照除了提供视觉信息ꎬ还参与生物节律㊁大脑认知等生理功能的调节ꎬ即所谓 非视觉生物效应 ꎮ作为新一代照明光源ꎬLED的非视觉生物效应更为明显ꎬ相关研究不断深入ꎮ司辰节律因子(CircadianactionfactorꎬCAF)是由Berman提出的用以表征光的非视觉生物效应强度的因子ꎬ在多数研究中被采用[8]ꎮ郑莉莉等[9]通过计算三基色白光LED光源在不同电流下的司辰节律因子ꎬ对可调色温的三基色白光LED光源进行非视觉效应研究ꎮ宋丽妍等着重探讨了以LED为背光源的平板显示屏对人体非视觉生物效应的影响[10]ꎮ鲁玉红等针对人体在不同波长蓝光LED照射下的反应进行了研究[11]ꎮ陈仲林等将光的非视觉生物效应用于指导住宅㊁隧道和教室等场所的照明工程建设[12 ̄13]ꎮ本文通过测试研究了白光LED的光 ̄电 ̄热特性及其变化ꎬ建立了白光LED光功率及光谱蓝白比预测模型ꎬ分析了光谱蓝白比与色温㊁司辰节律因子的相关性ꎮ研究发现驱动电流和温度改变时ꎬ白光LED辐射光谱中的蓝光发射光谱和荧光粉发射光谱会有不同程度的变化ꎬ进而引起光功率改变㊁色温漂移和司辰节律因子变化ꎮ实验结果验证了本文提出的白光LED光功率和光谱蓝白比预测模型及其建立过程的正确性ꎬ表明了根据光谱蓝白比预测其色温漂移和非视觉生物效应强弱的合理性ꎬ可用于对特定白光LED光学性能的预测㊁分析和改进ꎮ2㊀白光LED光谱的光 ̄电 ̄热特性2.1㊀白光LED光谱的光 ̄热特性分析白光LED器件中ꎬ蓝光LED芯片发出的初始蓝光一部分被荧光粉吸收并转化为黄光ꎬ透射的蓝光和转换的黄光混合形成白光ꎮ蓝光LED芯片辐射蓝光以及荧光粉层辐射黄光的过程都伴随着热量的产生ꎮ因实际散热条件有限ꎬ白光LED器件内部热量无法及时传导ꎬ芯片结温和荧光粉层温度随着热量积累逐渐升高ꎬ导致芯片和荧光粉层光学性能下降ꎮ为探讨温度对LED芯片及荧光粉层的作用ꎬ本文在一定电流驱动下ꎬ通过改变热沉温度测试了白光LED的光谱分布变化ꎬ如图1ꎮ其中ꎬ驱动电流为350mAꎬ温度范围为25~85ħꎬ测试间隔为15ħꎮ3450750姿/nmIntensity/(mW·nm-1)42150040085℃25℃25℃40℃55℃70℃85℃700650600550图1㊀350mA电流驱动下白光LED的光谱功率分布Fig.1㊀SpectralpowerdistributionofwhiteLEDwithinjec ̄tioncurrentof350mA图1中ꎬ以虚线为界ꎬ左边为蓝光光谱分布ꎬ右边为荧光光谱分布ꎮ由图1可见ꎬ蓝光LED芯片发射峰强度明显随温度升高而降低ꎬ并且由于能带随着温度升高而收缩ꎬ其光谱整体红移ꎮ对于荧光光谱而言ꎬ因蓝光LED芯片激发波长受温度影响发生偏移ꎬ与荧光粉发射光谱匹配度降低ꎬ转换的黄光减少ꎬ导致荧光光谱强度整体呈下降. All Rights Reserved.1516㊀发㊀㊀光㊀㊀学㊀㊀报第40卷趋势ꎮ蓝光光谱光功率和荧光光谱光功率随温度的变化趋势如图2所示ꎮ3003080T /℃O p t i c a l p o w e r /m W40020015050402070605025035010090P opt,b(w)P opt,b(w)图2㊀350mA电流驱动下蓝光光谱光功率和荧光光谱光功率Fig.2㊀Opticalpowerofbluespectrumandphosphorspec ̄trumwithinjectioncurrentof350mA图2中ꎬPoptꎬb(w)表示蓝光光谱光功率ꎬPoptꎬp(w)表示荧光光谱光功率ꎮ保持驱动电流为350mAꎬ当热沉温度控制为25ħ时ꎬ蓝光光谱光功率为114.09mWꎬ荧光光谱光功率为289.04mWꎻ当热沉温度升高到85ħ时ꎬ蓝光光谱光功率降至110.57mWꎬ荧光光谱光功率降至258.65mWꎬ二者下降幅度分别为3.09%和10.51%ꎮ观察图2可见ꎬ蓝光光谱光功率和荧光光谱光功率均与热沉温度近似呈线性关系ꎬ则可设Poptꎬb(w)(IFꎬ0ꎬT)=a1T+a2ꎬ(1)Poptꎬp(w)(IFꎬ0ꎬT)=b1T+b2ꎬ(2)其中ꎬa1㊁a2㊁b1㊁b2均为常数ꎬ可通过对测量数据进行曲线拟合而获得ꎮa1㊁b1分别表示蓝光光谱光功率㊁荧光光谱光功率随热沉温度的变化系数ꎬ由两曲线倾斜程度可知a1<b1<0ꎮ从图2及二者功率下降幅度可见ꎬ荧光粉层受温度的影响较大ꎬ原因主要体现在3个方面:(1)温度升高ꎬGaN基蓝光芯片晶格振动加强ꎬ缺陷周围的载流子非辐射复合加剧ꎬ内量子效率下降ꎬ产生的初始蓝光能量减少[2]ꎻ(2)蓝光峰值波长因热效应发生红移ꎬ使得与荧光粉的匹配度下降[14]ꎻ(3)温度升高ꎬYAG荧光粉Ce3+4f基态与5d激发态之间的能量差减小ꎬ光转换效率下降[15]ꎮ蓝光光谱功率在温度升高时变化不大ꎬ原因在于:虽然蓝光芯片辐射的初始蓝光随温度升高而减少ꎬ但荧光粉层因热效应致使吸收的蓝光能量也减少ꎬ因而透射的蓝光辐射通量减少不明显ꎮ2.2㊀白光LED光谱的光 ̄电特性分析白光LED器件中ꎬGaN基蓝光LED芯片会将注入电能转化为初始蓝光并射入荧光粉层ꎬ驱动电流的大小决定了初始蓝光光谱的光功率ꎮ此外ꎬ驱动电流不同意味着加载功率不同ꎬ则其他条件相同的情况下封装器件内部聚集热量亦不同ꎬ引起GaN基芯片和荧光粉的热猝灭效应也存在差异ꎮ载流子密度在量子阱区域的速率方程[16]如下:dndt=Jqd-An-Bn2-Cn3-JLqd1ꎬ(3)在稳态条件下ꎬdndt=0ꎬ则Jqd=An+Bn2+Cn3+JLqd1ꎬ(4)其中ꎬJ为电流密度ꎬq为单位电荷量ꎬd为有源区厚度ꎬAn为非辐射复合率ꎬBn2为辐射复合率ꎬCn3为俄歇复合率ꎬJL为漏电流密度ꎬd1为在P型束缚层少数载流子扩散长度ꎮ俄歇复合率Cn3取决于材料能带结构ꎬ且Cn3ʈexp-3Eg2kTæèçöø÷ꎮ对于窄能带结构LED(如InGaAsP ̄LED)ꎬ其n3较大ꎬ俄歇复合率较强ꎮ对于宽禁带结构LED(如AlGaInP ̄LEDꎬGaN ̄LED)ꎬ因其n3较小ꎬ俄歇复合率很低ꎬ在老化过程中ꎬ认为基本不变ꎬ故可不予考虑ꎮ一般在双异质结和多量子阱结构中JL≪Jꎬd1ʈdꎮ非辐射复合速率An取决于缺陷密度NT:Anʈn(τp+τn)ʈnσυNT2ꎬ(5)其中ꎬτn=1σnυnNTꎬτp=1σpυpNTꎬτp和τn分别为电子和空穴寿命ꎬσ为俘获截面ꎬυ为热速率ꎮ在低电流密度范围ꎬn很小ꎬAn>Bn2ꎬ该范围内光功率与电流密度关系如下式所示:LʈBn2ʈBA2Jqd()2ꎬ(6)在大电流密度范围ꎬBn2>Anꎬ则光功率与电流密度的关系为:L=Bn2ʈJedꎬ(7)在大电流区域ꎬ理想情况下LED光功率将与输入电流近似成线性比例ꎮ但在实际情况下ꎬ随着电. All Rights Reserved.㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1517㊀流增大ꎬLED有源区产生的热量将在器件内部急剧累积ꎬ造成内量子以及外量子效率下降[17]ꎬ因此光功率与输入电流不能成理想线性比例ꎮ从以上讨论可知ꎬLED光功率 ̄电流特性曲线可分为非线性和线性两个区域ꎮ非线性区域内ꎬ有源区缺陷密度将直接影响光功率大小ꎬ导致光功率非线性变化ꎮ而线性区域由于非辐射复合通道趋于饱和状态ꎬ非辐射复合变化对光功率影响不明显[18]ꎮ由于本文研究采用控温热沉控制LED芯片温度ꎬLED芯片有源区的热量可及时传导至外界ꎬ即LED输出光功率和负载电流为线性关系:Poptꎬb(w)(IFꎬT0)=c1IF+c2ꎬ(8)Poptꎬp(w)(IFꎬT0)=d1IF+d2ꎬ(9)其中ꎬc1㊁c2㊁d1㊁d2均为常数ꎬ可利用曲线拟合由测量数据获得ꎮc1㊁d1分别表示蓝光光谱光功率㊁荧光光谱光功率随驱动电流的变化系数ꎮ通过改变驱动电流测试白光LED的光谱分布变化ꎬ如图3所示ꎬ其中ꎬ热沉温度控制为55ħꎬ电流范围为200~450mAꎬ测试间隔为50mAꎮ3450750姿/nmI n t e n s i t y /(m W ·n m -1)4210500400450mA200mA 250mA 300mA 350mA 400mA 450mA700650600550200mA图3㊀恒温55ħ下白光LED的光谱功率分布Fig.3㊀SpectralpowerdistributionofwhiteLEDwithheatsinktemperatureof55ħ图3表明ꎬ当热沉温度一定时ꎬ白光LED发出的蓝光光谱和荧光光谱均随驱动电流发生较大变化ꎬ电流对二者影响作用明显ꎮ蓝光光谱光功率与荧光光谱光功率随电流的变化趋势如图4ꎮ图4中ꎬ保持热沉温度为55ħꎬ当驱动电流为200mA时ꎬ蓝光光谱光功率为66.14mWꎬ荧光光谱光功率为166.97mWꎻ当驱动电流增加到450mA时ꎬ蓝光光谱光功率为142.78mWꎬ荧光光谱光功率为342.56mWꎬ二者增加幅度分别为115.88%和105.16%ꎮ300200450Input current /mAO p t i c a l p o w e r /m W40020015050250150400350300250350100500P opt,b(w)P opt,p(w)图4㊀恒温55ħ下的蓝光光谱光功率和荧光光谱光功率Fig.4㊀Opticalpowerofbluespectrumandphosphorspec ̄trumwithheatsinktemperatureof55ħ2.3㊀白光LED光谱功率预测白光LED输出的白光由蓝光光谱和荧光光谱构成ꎬ假设Poptꎬw为白光LED输出光功率ꎬ则有Poptꎬw=Poptꎬb(w)+Poptꎬp(w)ꎬ(10)同时考虑驱动电流和热沉温度对光谱的影响[19]ꎬ当热沉温度为恒定值时ꎬLED输出光功率与负载电流呈线性函数ꎻ当负载电流为恒定值时ꎬLED输出光功率与热沉温度呈线性函数ꎻ进而可构建蓝光光谱光功率值和荧光光谱光功率值分别与负载电流和热沉温度之间的二维函数:Poptꎬb(w)(IFꎬT)=(a1T+a2)(c1IF+c2)eꎬ(11)Poptꎬp(w)(IFꎬT)=(b1T+b2)(d1IF+d2)fꎬ(12)其中e㊁f分别为白光LED在工作点(IFꎬ0㊁T0)的蓝光光谱光功率值和荧光光谱光功率值ꎮ因此ꎬ白光LED总输出光功率为:Poptꎬw(IFꎬT)=(a1T+a2)(c1IF+c2)e+(b1T+b2)(d1IF+d2)fꎬ(13)由于a1㊁a2㊁b1㊁b2㊁c1㊁c2㊁d1㊁d2㊁e㊁f均为常数ꎬ公式(13)表明ꎬ白光LED光功率是关于驱动电流和热沉温度的函数ꎮ若已知驱动电流和热沉温度ꎬ可根据公式(13)预测白光LED的光功率ꎮ3㊀色温漂移及非视觉生物效应分析3.1㊀光谱色温漂移分析相对色温(CorrelatedcolortemperatureꎬCCT). All Rights Reserved.1518㊀发㊀㊀光㊀㊀学㊀㊀报第40卷是评价白光品质的一个重要光学指标ꎬ其值主要取决于白光光谱中蓝光成分的比例(本文简称蓝白比)ꎮ当光谱蓝白比增大时ꎬ色温值将增大ꎬ白光向冷白方向漂移ꎻ反之色温减小ꎬ白光向暖白方向漂移[6ꎬ20 ̄21]ꎮ从前文分析可知ꎬ热沉温度和驱动电流会影响白光光谱中蓝光光谱和荧光光谱ꎬ因而可能改变光谱中的蓝光比例ꎬ引起色温漂移ꎮ设光谱蓝白比为kꎬ则有k(IFꎬT)=Poptꎬb(w)Poptꎬw=f(a1T+a2)(c1IF+c2)f(a1T+a2)(c1IF+c2)+e(b1T+b2)(d1IF+d2)ꎬ(14)可见ꎬ光谱蓝白比k亦是关于驱动电流和热沉温度的函数ꎮ驱动电流或热沉温度的改变ꎬ不仅会引起白光LED光功率的变化ꎬ也会导致色温漂移ꎮ若已知白光LED的驱动电流和热沉温度变化情况ꎬ则可由公式(14)评价光谱色温漂移趋势ꎮ将热沉温度55ħ㊁电流200~450mA及驱动电流350mA㊁热沉温度25~85ħ对应各工作点的光谱蓝白比k与色温CCT作相关性分析ꎬ如图5所示ꎮkC C T /K58500.2850.2800.2950.2905750570056000.300565058005900图5㊀测试白光LED光谱蓝白比k与色温CCT之间的关系Fig.5㊀RelationshipbetweenmeasuredresultsofkandCCTforwhiteLED可见ꎬ光谱蓝白比k与光谱色温KCCT之间存在较高的线性相关度ꎬ设二者关系如下:KCCT=g1k+g2ꎬ(15)其中g1㊁g2均为常数ꎮ显然ꎬ光谱蓝白比k的变化可以反映其色温漂移情况ꎮ3.2㊀光谱司辰节律因子变化分析光的非视觉生物效应主要通过本征感光视网膜神经节细胞(IntrinsicallyphotosensitiveretinalganglioncellꎬipRGC)控制人体褪黑激素的分泌ꎬ进而参与人体生理节律的调节[22]ꎮ司辰节律因子能反映光源对人体非视觉生物效应的影响ꎬ数值越大影响越大ꎬ其定义如下[23 ̄24]:acv=ʏ780380P(λ)C(λ)dλʏ780380P(λ)V(λ)dλꎬ(16)其中ꎬacv为司辰节律因子(CAF)ꎻP(λ)为光源的光谱功率分布ꎻC(λ)是由Gall等提出的光谱生理响应曲线[25]ꎬ峰值波长在450nm附近ꎻV(λ)为明视觉下的光谱光视效率函数ꎬ峰值波长为555nmꎮC(λ)及V(λ)曲线如图6所示ꎬC(λ)主要覆盖蓝光波段ꎬ说明人体在该波段的生物敏感度较高ꎬ而V(λ)主要覆盖黄光波段ꎬ说明人体在该波段的视觉敏感度较高ꎮ白光光谱中的蓝光成分增加时ꎬ意味着白光光谱与生理响应曲线的重叠部分增加ꎬ光谱的司辰节律因子必然增大ꎬ此时光谱对人体的非视觉生物效应作用增强ꎮ很显然ꎬ光谱的蓝白比k变化将导致司辰节律因子(CAF)的变化ꎬk增大时ꎬCAF增大ꎬk减小时ꎬCAF也减小ꎮ姿/nmR e l a t i v e i n t e n s i t y0.85007006000.60.400.24001.0C (姿)V (姿)图6㊀光谱生理响应曲线C(λ)和明视觉光视效率曲线V(λ)Fig.6㊀Spectralphysiologicalresponsecurveandspectrallu ̄minousefficiencycurve对热沉温度55ħ㊁电流200~450mA及驱动电流350mA㊁热沉温度25~85ħ各工作点的光谱蓝白比k与司辰节律因子(CAF)进行相关性分析ꎬ如图7所示ꎮ显然ꎬ光谱蓝白比k与司辰节律因子(CAF)之间同样存在较高的线性相关度ꎬ设二者关系如下:acv=h1k+h2ꎬ(17)其中h1㊁h2均为常数ꎮ光谱蓝白比k的变化反映. All Rights Reserved.㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1519㊀kCAF0.570.2850.2800.2950.2900.580.560.550.540.530.300图7㊀测试白光LED光谱蓝白比k与司辰节律因子CAF之间的关系Fig.7㊀RelationshipbetweenmeasuredresultsofkandCAFforwhiteLED了司辰节律因子的变化ꎬ因而可用于评价光谱产生的非视觉生物效应ꎮ由图5㊁图7及其分析表明ꎬ光谱蓝白比k与色温CCT及司辰节律因子(CAF)均高度线性相关ꎮ因此ꎬ光谱色温CCT和CAF跟随温度及驱动电流的变化规律应与蓝白比k的变化趋于一致ꎮ当驱动电流不变㊁温度升高时ꎬ色温值和司辰节律因子应增大ꎬ白光向冷白方向漂移ꎬ光谱的非视觉生物效应影响增强ꎮ当温度恒定㊁驱动电流增加时ꎬ色温值和司辰节律因子也应增大ꎬ白光向冷白方向漂移ꎬ光谱的非视觉生物效应影响亦增强ꎮ4㊀实验结果与分析本文通过HAAS ̄2000高精度快速光谱仪及专用积分球对YAGʒCe荧光材料封装的白光LED进行光学测量ꎬ完成实验验证ꎮ其中恒流驱动由上位机控制软件控制ꎬ而LED恒温设置和调整则由CL ̄200温控装置实现ꎮ图8㊁9分别为白光LED在不同温度及不同电流驱动下对应光功率㊁蓝白比k预测值和实测值对比情况ꎮ温度测试范围为25~85ħꎬ测试间隔为5ħꎻ电流测试范围为150~500mAꎬ测试间隔为50mAꎮ在图8(a)光功率预测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为190.91mWꎬ若热沉温度升高到85ħꎬ光功率降至174.36mWꎬ降低8.67%ꎬ下降速率为0.2758mW/ħꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为558.56mWꎻ若热沉温度升高到85ħꎬ光功率降至510.83mWꎬ降低8.55%ꎬ下降速率为0.7955mW/ħꎮ在图8(b)光功率实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为183.19mWꎻ若热沉温度升高到85ħꎬ光功率降至169.30mWꎬ降低7.58%ꎬ下降速率为0.2315mW/ħꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ光功率为553.69mWꎻ若热沉温度升高到85ħꎬ光功率600500400300200100030253540455055606570758085150250350450T /℃O p t i c l p o w e r /m W(a )600500400300200100030253540455055606570758085150250350450I /mAT /℃O p t i c l p o w e r /m W(b )I /mA图8㊀白光LED光功率输出ꎮ(a)预测值ꎻ(b)实测值ꎮFig.8㊀OpticalpowerofwhiteLED.(a)Predictions.(b)Measurements.0.320.290.280.270.2630253540455055606570758085150250350450I /mAT /℃k(a )0.300.290.280.270.2630253540455055606575708085150250350450I /mAT /℃k (b )0.250.300.310.250.310.32图9㊀白光光谱蓝白比kꎮ(a)预测值ꎻ(b)实测值ꎮFig.9㊀Blue ̄whiteratiok.(a)Predictions.(b)Measure ̄ments.. All Rights Reserved.1520㊀发㊀㊀光㊀㊀学㊀㊀报第40卷降至502.91mWꎬ降低9.17%ꎬ下降速率为0.8463mW/ħꎮ㊀经计算ꎬ光功率预测值与实测值之间最大相对误差为4.22%ꎬ平均相对误差为1.05%ꎬ误差值较小ꎮ白光LED光功率对比图和数据分析均表明ꎬ白光功率预测值与实测值之间吻合度较高ꎬ由此验证了光功率预测模型的正确性ꎮ在图9(a)光谱蓝白比k预测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2707ꎻ若热沉温度升高到85ħꎬ则增大至0.2872ꎬ增幅为6.10%ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2870ꎻ若热沉温度升高到85ħꎬ则增大至0.3041ꎬ增幅为5.96%ꎮ在图9(b)光谱蓝白比k实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2723ꎻ若热沉温度升高到85ħꎬ则增大至0.2916ꎬ增幅为7.08%ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ蓝白比k为0.2891ꎻ若热沉温度升高到85ħꎬ则增大至0.3040ꎬ增幅为5.15%ꎮ经计算ꎬ蓝白比k预测值与实测值之间最大绝对误差为0.0038ꎬ平均绝对误差为0.0011ꎬ最大相对误差为1.54%ꎬ平均相对误差为0.39%ꎮ图9和分析数据显示ꎬ光谱蓝白比预测值与实测值之间吻合度较高ꎬ验证了光谱蓝白比预测模型的正确性ꎮ根据光谱蓝白比k的预测值及公式(15)㊁(17)ꎬ可进一步预测光谱色温CCT和司辰节律因子的变化情况ꎬ分别如图10㊁11所示ꎮ在图10(a)的光谱色温CCT预测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5492Kꎻ若热沉温度升高到85ħꎬ则色温升高至5711Kꎬ光谱向冷白方向漂移ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5710Kꎻ若热沉温度升高到85ħꎬ色温升高至5936Kꎬ光谱亦向冷白方向漂移ꎮ在图10(b)的光谱色温CCT实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5538Kꎻ若热沉温度升高到85ħꎬ则色温升高至5787Kꎬ光谱向冷白方向漂移ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬ色温为5730Kꎻ若热沉温度升高到85ħꎬ色温升高至5944Kꎬ光谱亦向冷白方向漂移ꎮ在图11(a)司辰节律因子(CAF)预测数据中ꎬ60005900580057005600540030253540455055606570758085150250350450I/mAT/℃CCT/K(a)550060005900580057005600540030253540455055606570758085150250350450I/mAT/℃CCT/K(b)5500图10㊀白光光谱色温CCTꎮ(a)预测值ꎻ(b)实测值ꎮFig.10㊀CCTofwhitespectrum.(a)Predictions.(b)Measurements.0.580.560.540.5030253540455055606570758085150250350450I/mAT/℃CAF(a)0.520.600.580.560.540.5030253540455055606570758085150250350450I/mAT/℃CAF(b)0.520.60图11㊀白光光谱司辰节律因子(CAF).(a)预测值ꎻ(b)实测值ꎮFig.11㊀CAFofwhitespectrum.(a)Predictions.(b)Measurements.150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5078ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5463ꎬ光谱对人体的非视觉生物效应的影响增强ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5461ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5860ꎬ光谱对人体的非视觉生物效. All Rights Reserved.㊀第12期沈雪华ꎬ等:白光LED光谱特性及司辰节律因子1521㊀应的影响亦增强ꎮ在图11(b)司辰节律因子(CAF)实测数据中ꎬ150mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5131ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5584ꎬ光谱对人体的非视觉生物效应的影响增强ꎮ在500mA恒流驱动下ꎬ热沉温度为25ħ时ꎬCAF为0.5486ꎻ若热沉温度升高到85ħꎬ则CAF增大为0.5853ꎬ光谱对人体的非视觉生物效应的影响亦增强ꎮ经计算ꎬ色温CCT预测值与实测值之间最大绝对误差为75.64Kꎬ平均绝对误差为15.10Kꎬ最大相对误差为1.31%ꎬ平均相对误差为0.26%ꎻ司辰节律因子预测值与实测值之间最大绝对误差为0.0120ꎬ平均绝对误差为0.0027ꎬ最大相对误差为2.15%ꎬ平均相对误差为0.49%ꎮ图10㊁11及数据分析证明了光谱蓝白比k㊁色温CCT和司辰节律因子(CAF)三者之间的高度相关性ꎬ同时验证了公式(15)和(17)的正确性ꎮ5㊀结㊀㊀论本文结合理论分析和实验测试ꎬ研究了白光LED的光 ̄电 ̄热特性ꎮ通过控制热沉温度和驱动电流ꎬ讨论了温度和电流对白光中的蓝光光谱和荧光光谱的影响ꎬ建立了白光LED光功率预测模型ꎮ通过白光光谱成分变化ꎬ讨论了光谱蓝白比(蓝光光谱光功率与白光光谱光功率的比值)与温度㊁电流的关系ꎬ并建立光谱蓝白比k预测模型ꎮ相关性分析显示了光谱蓝白比k与色温CCT及司辰节律因子(CAF)高度相关ꎬ光谱色温漂移及非视觉生物效应与蓝白比k的变化趋于一致ꎮ实验结果显示ꎬ白光LED光功率预测值的最大相对误差为4.22%ꎬ平均相对误差为1.05%ꎻ蓝白比k预测值的最大相对误差为1.54%ꎬ平均相对误差为0.39%ꎻ色温CCT预测值的最大相对误差为1.31%ꎬ平均相对误差为0.26%ꎻ司辰节律因子CAF预测值的最大相对误差为2.15%ꎬ平均相对误差为0.49%ꎮ验证了所提出的预测模型及其建立过程的正确性ꎮ同时ꎬ实际光谱中蓝白比k㊁色温CCT和司辰节律因子(CAF)分布及变化规律一致ꎬ表明了由光谱蓝白比评价光谱色温漂移和非视觉生物效应的合理性ꎮ参㊀考㊀文㊀献:[1]NIANLXꎬPEIXMꎬZHAOZLꎬetal..Reviewofopticaldesignsforlight ̄emittingdiodepackaging[J].IEEETrans.Compon.Packag.Manuf.Technol.ꎬ2019ꎬ9(4):642 ̄648.[2]LUOXBꎬHURꎬLIUSꎬetal..Heatandfluidflowinhigh ̄powerLEDpackagingandapplications[J].Prog.EnergyCombust.Sci.ꎬ2016ꎬ56:1 ̄32.[3]MAYPꎬSUNJꎬLUOXB.Multi ̄wavelengthphosphormodelbasedonfluorescentradiativetransferequationconsideringre ̄absorptioneffect[J].J.Lumin.ꎬ2019ꎬ209:109 ̄115.[4]KWONSBꎬJEONGSGꎬCHOISHꎬetal..Designofbinder ̄freephosphorpasteforwarmwhiteLEDs[J].Opt.Mater.ꎬ2018ꎬ84:184 ̄188.[5]钟文姣ꎬ魏爱香ꎬ招瑜.结温对GaN基白光LED光学特性的影响[J].发光学报ꎬ2013ꎬ34(9):1203 ̄1207.ZHONGWJꎬWEIAXꎬZHAOY.DependenceofGaN ̄basedwhiteLEDcolorimetricparametersonjunctiontemperature[J].Chin.J.Lumin.ꎬ2013ꎬ34(9):1203 ̄1207.(inChinese)[6]CHENHTꎬHUISY.Dynamicpredictionofcorrelatedcolortemperatureandcolorrenderingindexofphosphor ̄coatedwhitelight ̄emittingdiodes[J].IEEETrans.Ind.Electron.ꎬ2014ꎬ61(2):784 ̄797.[7]WANGXXꎬJINGLꎬWANGYꎬetal..TheinfluenceofjunctiontemperaturevariationofLEDonthelifetimeestimationduringacceleratedagingtest[J].IEEEAccessꎬ2019ꎬ7:4773 ̄4781.[8]BERMANSM.Anewretinalphotoreceptorshouldaffectlightingpractice[J].Light.Res.Technol.ꎬ2008ꎬ40(4):373 ̄376.[9]郑莉莉ꎬ郭自泉ꎬ严威ꎬ等.三基色白光LED的司辰节律因子研究[J].发光学报ꎬ2016ꎬ37(11):1384 ̄1389.ZHENGLLꎬGUOZQꎬYANWꎬetal..InvestigationonthecircadianactionfactorofRGBwhiteLEDs[J].Chin.J.Lu ̄min.ꎬ2016ꎬ37(11):1384 ̄1389.(inChinese)[10]宋丽妍ꎬ李俊凯ꎬ牟同升.以发光二极管为背光源的平板显示对人体非视觉的影响[J].光子学报ꎬ2013ꎬ42(7): . All Rights Reserved.1522㊀发㊀㊀光㊀㊀学㊀㊀报第40卷768 ̄771.SONGLYꎬLIJKꎬMOUTS.Non ̄visualeffectsofflatpaneldisplaywithlightemittingdiodebacklightonhuman[J].ActaPhoton.Sinicaꎬ2013ꎬ42(7):768 ̄771.(inChinese)[11]鲁玉红ꎬ王毓蓉ꎬ金尚忠ꎬ等.不同波长蓝光LED对人体光生物节律效应的影响[J].发光学报ꎬ2013ꎬ34(8):1061 ̄1065.LUYHꎬWANGYRꎬJINSZꎬetal..InfluenceofdifferentwavelengthblueLEDonhumanopticalbiorhythmeffect[J].Chin.J.Lumin.ꎬ2013ꎬ34(8):1061 ̄1065.(inChinese)[12]陈仲林ꎬ李毅ꎬ杨春宇ꎬ等.道路照明中的光生物效应研究[J].照明工程学报ꎬ2007ꎬ18(3):1 ̄5.CHENZLꎬLIYꎬYANGCYꎬetal..Studyonphotobiomodulationofroadlighting[J].Chin.Illumin.Eng.J.ꎬ2007ꎬ18(3):1 ̄5.(inChinese)[13]陈仲林ꎬ胡英奎ꎬ翁季.用司辰视觉研究道路照明安全[J].照明工程学报ꎬ2007ꎬ18(1):31 ̄34.CHENZLꎬHUYKꎬWENGJ.Studyonroadlightingsafetywithcitopic[J].Chin.Illumin.Eng.J.ꎬ2007ꎬ18(1):31 ̄34.(inChinese)[14]肖华ꎬ吕毅军ꎬ徐云鑫ꎬ等.传统白光LED与远程荧光粉白光LED的发光性能比较[J].发光学报ꎬ2014ꎬ35(1):66 ̄72.XIAOHꎬLYUYJꎬXUYXꎬetal..ThedifferenceofluminousperformancebetweentraditionalphosphorpackagingLEDandremotephosphorLED[J].Chin.J.Lumin.ꎬ2014ꎬ35(1):66 ̄72.(inChinese)[15]LINCCꎬZHENGYSꎬCHENCHꎬetal..ImprovingopticalpropertiesofwhiteLEDfabricatedbyablueLEDchipwithyellow/redphosphors[J].J.Electrochem.Soc.ꎬ2010ꎬ157(9):H900 ̄H903.[16]GRILLOTPNꎬKRAMESMRꎬZHAOHMꎬetal..SixtythousandhourlightoutputreliabilityofAlGaInPlightemittingdi ̄odes[J].IEEETrans.DeviceMater.Reliab.ꎬ2006ꎬ6(4):564 ̄574.[17]LIJSꎬTANGYꎬLIZTꎬetal..Effectofquantumdotscatteringandabsorptionontheopticalperformanceofwhitelight ̄emittingdiodes[J].IEEETrans.ElectronDev.ꎬ2018ꎬ65(7):2877 ̄2884.[18]PURSIAINENOꎬLINDERNꎬJAEGERAꎬetal..Identificationofagingmechanismsintheopticalandelectricalcharacter ̄isticsoflight ̄emittingdiodes[J].Appl.Phys.Lett.ꎬ2001ꎬ79(18):2895 ̄2897.[19]CHENHTꎬLEEATLꎬTANSCꎬetal..Dynamicopticalpowermeasurementsandmodelingoflight ̄emittingdiodesbasedonaphotodetectorsystemandphoto ̄electro ̄thermaltheory[J].IEEETrans.PowerElectron.ꎬ2019ꎬ34(10):10058 ̄10068.[20]周锦荣ꎬ陈焕庭ꎬ周小方.白光LED色温的非线性动态预测模型[J].发光学报ꎬ2016ꎬ37(1):106 ̄111.ZHOUJRꎬCHENHTꎬZHOUXF.Nonlineardynamicpredictionmodelofwhiteledcolortemperature[J].Chin.J.Lu ̄min.ꎬ2016ꎬ37(1):106 ̄111.(inChinese)[21]YEHYꎬKOHSWꎬYUANCꎬetal..Electrical ̄thermal ̄luminous ̄chromaticmodelofphosphor ̄convertedwhitelight ̄emit ̄tingdiodes[J].Appl.Therm.Eng.ꎬ2014ꎬ63(2):588 ̄597.[22]GUOZQꎬLIUKꎬZHENGLLꎬetal..Investigationonthree ̄humpphosphor ̄coatedwhitelight ̄emittingdiodesforhealthylightingbygeneticalgorithm[J].IEEEPhoton.J.ꎬ2019ꎬ11(1):8200110.[23]GALLDꎬLAPUENTEV.Beleuchtungsrelevanteaspektebeiderauswahleinesförderlichenlampenspektrums[J].Lichtꎬ2002ꎬ54(7 ̄8):860 ̄871.[24]BELLIALꎬSERACENIM.Aproposalforasimplifiedmodeltoevaluatethecircadianeffectsoflightsources[J].Light.Res.Technol.ꎬ2014ꎬ46(5):493 ̄505.[25]GALLD.Themeasurementofcircadianradiationquantities[C].ProceedingsofLichtandGesundheitꎬBerlinꎬ2004.沈雪华(1989-)ꎬ女ꎬ福建漳州人ꎬ博士ꎬ讲师ꎬ2016年于重庆大学获得博士学位ꎬ主要从事智能检测与控制㊁半导体照明技术等方面的研究ꎮE ̄mail:fj_sxh39@163.com陈焕庭(1982-)ꎬ男ꎬ福建漳州人ꎬ博士ꎬ教授ꎬ2010年于厦门大学获得博士学位ꎬ主要从事半导体照明技术等方面的研究ꎮE ̄mail:htchen23@qq.com. All Rights Reserved.。
gan基发光二极管研究gan基发光二极管(Gallium-Insulated-gate BipolarTransistor,Galinel-Insulated-gate Bipolar Transistor,简称GIBJT)是一种新型的半导体器件,具有高亮度、高颜色饱和度、低功耗等优点,因此在显示技术、半导体传感器、LED照明等领域得到了广泛的应用。
本文将介绍GAN基发光二极管的原理、结构、性能及应用,并对GAN基发光二极管的研究现状、未来发展方向进行探讨。
一、GAN基发光二极管的原理GAN基发光二极管是一种基于GIBJT的改进型器件,它通过将GIBJT的基极和发射极分开,并在基极上添加一个正反馈回路,使得GIBJT的发射极能够更加积极地发射光线。
与传统的GIBJT相比,GAN基发光二极管具有更高的发射效率和更好的发光稳定性。
具体来说,GAN基发光二极管的工作原理如下:1. 将GIBJT的基极和发射极分别连接到两个电源电压上。
2. 通过一定的电路设计,将基极电流转换为发射极电流,使得发射极能够积极地发射光线。
3. 发射极发射的光线经过一系列光学器件的放大和处理,最终到达显示器或传感器等接收端。
二、GAN基发光二极管的结构GAN基发光二极管的结构主要包括基板、驱动电路和封装三个部分。
1. 基板基板是GAN基发光二极管的主要组成部分,主要由Galinel晶体、硅材料、金属等构成。
Galinel晶体是GAN基发光二极管的核心部分,具有高透明度、高折射率等特点,能够反射和吸收光线。
2. 驱动电路驱动电路是GAN基发光二极管的控制电路,用于控制基极电流和发射极电流的流动,从而实现GAN基发光二极管的发光功能。
驱动电路主要包括电源、开关、反馈电路等部分。
3. 封装封装是GAN基发光二极管的保护电路,用于保护基板和驱动电路免受外界干扰和损坏。
常见的封装材料包括陶瓷封装、金属封装等。
三、GAN基发光二极管的性能1. 亮度GAN基发光二极管的亮度比传统的GIBJT更高,可以满足夜间显示和室内照明的需求。
EXCHANGE OF EXPERIENCE 经验交流摘要:通过介绍LED外延生长工艺,对比外延材料和蓝宝石衬底材料的特性,总结蓝宝石衬底的优缺点,得出蓝宝石衬底具有晶格匹配性较好,工艺成熟、产品质量优,透光性极高,出光效率高等优点。
同时存在热导率较低,电导性差, 折射率高导致内部光损达,LED整体出光效率低等缺点。
通过阐述图形化衬底的原理,很好的论述了图形化蓝宝石最大的优点,通过图形的光学原理降低在蓝宝石衬底中的光损耗,大大提高了芯片的光有效利用率。
针对普通蓝宝石衬底、图形化蓝宝石衬底、碳化硅衬底、硅衬底的光电特性、工艺成熟情况、成本等,对比得出蓝宝石衬底以及图形化蓝宝石衬底工艺最为成熟,应用最广,因图形化蓝宝石衬底解决了常规蓝宝石衬底内部光损大的问题,大大提高了普通蓝宝石衬底的发光效率,是业界应用最广的晶片衬底材料。
碳化硅衬底,作为行业巨头科锐采用的主导衬底,导热及导电性能远远高于蓝宝石衬底,更适合做大面积芯片,但是碳化硅衬底的制造成本高,实现大批量生产还需要大大降低其制作成本,应用市场存在局限性。
硅衬底同样具有极高的导热、导电性,因其硅物质充足,其材料成本是四种衬底中最低的。
由于制作硅衬底的技术并不成熟,制作成本昂贵,量产可行性小。
关键词:衬底;蓝宝石;芯片一、前言LED(Light Emitting Diode)即发光二极管,是一种将电能转化成光能的固态半导体器件[1]。
作为新型的发光元器件,LED具有高光效、节能、使用寿命长、响应时间短、环保等优点,因此被称为最具潜力的新一代光源,在照明领域应用领域极为常见。
LED芯片作为LED的核心部件,主要由4个部件组成衬底、n-GaN、p-GaN和InGaN/GaN多量子阱结构。
简单描述LED芯片的制作也就是在一个特定的基板材料上生长GaN薄膜以及发光材料的一个过程,而此特定的基板材料就是所说的衬底。
目前LED的主要衬底材料有四大类:蓝宝石(Al2O3)、图形化蓝宝石、硅(Si)、碳化硅(SiC)称底。
文献综述白光LED研究进展白光LED(White Light Emitting Diodes)是一种新型的半导体发光器件,具有高亮度、高颜色还原度和低功耗等优点。
自20世纪90年代以来,白光LED研究得到了广泛的关注和深入的研究。
本文将对白光LED的研究进展进行综述。
首先,白光LED的发展历程是我们了解该研究的基础。
20世纪60年代初,应用无机发光物质的荧光粉将蓝光发光二极管和黄光荧光体组合构成白光源,实现了最早的白光LED。
之后,半导体发光材料的研究和发展推动了白光LED技术的进一步突破。
20世纪90年代,新型的宽禁带半导体材料氮化镓(GaN)和蓝光LED发光二极管的成功制备,为白光LED的发展奠定了基础。
其次,白光LED的研究主要集中在发光材料的选择和光谱调控。
现有的白光LED技术主要包括基于蓝光LED的荧光粉转换、基于磷化镓和氮化铟的LED和基于量子点的LED等。
荧光粉转换技术是最早被广泛应用的方法,通过将蓝光LED的紫外辐射转化为可见光辐射来产生白光。
磷化镓和氮化铟的LED具有较高的光电转换效率,可实现高亮度的白光发光。
而量子点的LED由于其在带宽调节方面的优势,成为白光LED领域的研究热点。
在白光LED的光谱调控方面,主要包括发光材料的配方和结构设计技术。
发光材料的配方要求能够提供较宽的光谱范围,以实现良好的颜色还原度。
结构设计技术则包括辐射结构和超晶格结构等,用于调控发光材料中载流子的复合和辐射,提高发光效率和光谱性能。
此外,白光LED的研究还包括光学设计和封装技术。
光学设计技术主要用于提高白光LED的光效和颜色均匀性。
通过调整发光材料的位置、尺寸和形状等参数,使其产生更加均匀的光强分布和色温。
封装技术则是将LED芯片和其他器件封装在一起,以提高白光LED的亮度和稳定性。
最后,白光LED技术的应用前景也是白光LED研究的重点之一、目前,白光LED已广泛应用于室内照明、背光源、汽车照明、显示屏等领域。
相关⾊温8000-4000K的⽩光LED的发射光谱和⾊品质特性相关⾊温8000-4000K的⽩光LED的发射光谱和⾊品质特性摘要:⽂章报告和分析了8000K、6400K、5000K和4000K四种⾊温的⽩光LED的发射光谱、⾊品质和显⾊性等特性,它们与⼯作条件密切相关。
随着正向电流IF的增加,⾊品坐标x 和y值逐渐减⼩,⾊温增⼤,发⽣⾊漂移,⽽光通量呈亚线性增加,光效逐渐下降。
由于在⽩光LED中发⽣光转换过程,产⽣光吸收的辐射传递,致使⽩光中InGaN芯⽚的蓝⾊EL光谱的形状和发射峰发⽣变化。
⽩光LED的特性在很⼤程度上受InGaN蓝光LED芯⽚性能的制约。
⼈们可以实现8000-4000K四种⾊温⽩光LED,显⾊指数⾼,且制作的⽩光LED的⾊容差可以达到很⼩,实现优质的⽩光照明光源。
从上世纪90年代末到现在,⽩光发光⼆极管的出现和快速发展,引起⼈们极⼤的热情,⽩光LED具有低压、低功耗、⾼可靠,长寿命及固体化等优点。
其量⼤的吸引⼒和期望是作为继⽩炽灯泡、荧光灯及⾼强度⽓体放电灯(HID)后的第四代照明新光源——具有庞⼤的照明市场和显著的节能前景的光源,是符合环保、节能要求的绿⾊照明光源。
因此,受到⽇美和欧洲各国政府和商家的重视,他们制定发展规划和⽬标,且⼤集团公司在技术和资⾦上进⾏联合和重组。
2003年6⽉我国政府也推出“半导体照明⼯程”,以期⼤⼒推动我国⽩光LED的发展。
尽管短短的⼏年来,⽩光LED的研发和应⽤取得举世瞩⽬的成绩,但⽬前还存在诸多问题,只能⽤于⼀些特殊的领域中。
我们注意到,⽬前普通的⽩光LED与⽤作照明光源⽩光LED的概念是有质的差异,并不是越“⽩”越好。
⼈们对⽤作照明的⽩光光源有着严格的要求,国际和我国早已制定标准。
照明光源有六个严格的标准⾊温区:6400K、5000K、4000K、3450K、2900K 及2700K及其相应的⾊域,照明光源的⾊品质参数是相互关联的。
必须同时得到满中,⽅可称为合格的照明光源。
《三维阵列及V形坑提升GaN基LED光电性能的研究》篇一摘要:本文研究了三维阵列与V形坑结构在提升GaN基LED光电性能方面的应用。
通过实验设计、制作和性能测试,探讨了不同结构参数对LED光电性能的影响。
实验结果表明,三维阵列及V 形坑结构能够显著提高GaN基LED的光提取效率、发光强度和色纯度。
本文不仅详细阐述了实验方法和结果,还对研究过程中的创新点进行了深入探讨。
一、引言随着科技的飞速发展,LED(发光二极管)因其高效、节能、长寿命等优点,在照明、显示等领域得到了广泛应用。
GaN基LED作为新一代照明技术,其光电性能的优化一直是研究的热点。
其中,提高光提取效率、发光强度和色纯度是提升GaN基LED 性能的关键。
近年来,三维阵列及V形坑结构被广泛应用于LED 芯片的表面微结构中,以改善其光电性能。
二、研究方法本研究采用先进的MOCVD(金属有机化学气相沉积)技术制备GaN基LED芯片。
通过改变芯片表面的结构,引入三维阵列及V形坑结构,并对不同结构参数的芯片进行性能测试。
通过对比实验,分析各结构参数对LED光电性能的影响。
三、实验设计与制作1. 样品制备:首先,在洁净的蓝宝石基底上生长GaN基LED外延片。
随后,通过刻蚀工艺制作出具有不同结构参数的三维阵列及V形坑结构的LED芯片。
2. 性能测试:对所制备的LED芯片进行电学和光学性能测试,包括光通量、发光强度、光提取效率、色纯度等指标。
四、结果与讨论1. 三维阵列结构的影响:实验结果表明,引入三维阵列结构能够有效提高GaN基LED的光提取效率。
这主要是因为三维阵列结构能够增加光在芯片表面的散射次数,减少光在芯片内部的全反射损失。
此外,适当的三维阵列结构还能提高LED的发光强度和色纯度。
2. V形坑结构的影响:V形坑结构通过增加芯片表面的粗糙度,进一步提高了光提取效率。
此外,V形坑结构还能有效地防止表面漏电现象的发生,从而降低器件的能耗。
通过优化V形坑的尺寸和深度等参数,可以进一步提高GaN基LED的光电性能。
GaN基材料的质量和LED光电性能的研究中期报告
在GaN基材料的质量和LED光电性能的研究中期报告中,研究人员可以针对以下方面进行报告:
1. GaN基材料的制备和表征:报告中可以介绍GaN基材料的制备方法以及制备过程中遇到的问题及解决方案,并对制备的GaN基材料进行表征,包括表面形貌、晶体结构、光学和电学性质等方面的测量和分析结果。
2. GaN LED器件制备和性能测试:报告中可以介绍GaN LED器件的制备方法和工艺步骤,包括外延生长、光刻、金属沉积等。
同时,对制备的GaN LED器件进行光电性能测试,包括电学测试、光学测试、发光波长及亮度等性能测量结果并与已有文献进行对比和分析。
3. 材料和器件的优化:根据对GaN基材料和LED器件性能测试的结果和分析,研究人员可以针对其不足之处进行优化。
例如对外延生长条件以及制备工艺进行优化,进一步提高晶体质量和器件性能。
4. 未来工作计划:根据目前的研究进展和研究结果的分析,报告中应该提出下一步的研究计划和目标。
例如,进一步优化材料和器件的性能,探究更多的制备和测试方法,拓展GaN材料在其他领域的应用等。
总之,中期报告应该对目前的研究进展进行系统和详细的说明,提出具体和切实可行的研究计划和目标,有利于研究整个过程的管理和顺利推进研究工作。
GaN基LED芯片发光效率提升研究摘要:科技在不断的发展,社会在不断的进步,本研究的GaN基LED外延生长方法中通过通入大量的NH3进行裂解,将N原子附着在生长的P型GaN上,在NH3进行裂解处理的同时,对生长好的P型GaN进行短暂的退火处理,让其晶格在热作用下,得到新的规则排列,获得整齐的表面。
并在低H元素浓度环境下,再次通入TEGa裂解Ga元素,使得可电离的Mg元素浓度增加。
本研究方法能够减少外延层P结构的N空位,减少Mg-H键,提高P结构Mg的电离率,提高P结构的空穴,提高LED芯片发光效率。
关键词:GaN基;LED;P结构;裂解引言随着当今世界不断进步,人们己经不再满足于温饱和生存的基本条件,人们需要用越来越丰富的商品来满足物质需求,用越来越丰富的精神条件来满足日益增长的精神需求。
但是随着世界人口的快速增长和生产工业的大发展,人们对自然资源的需求越来越多,对环境的破坏也越来越严重。
随着科学技术的进步和人们环保意识的不断增强,在当今社会发展中,人们迫切需要着手新能源新技术的研究和开发。
全球每年13%的电能用于照明,经济越发达的区域对照明的需求越大,所以寻找更高效节能的照明方式是很多人追求的目标。
1LED的发光原理发光二极管简称LED (Light Emitting Diode ),是一种半导体发光器件。
它由一个PN结组成,将电能转化为光能。
和所有半导体器件一样,也具有单向导电特性,它的核心是由P型半导体和N型半导体两部分组成。
在P型半导体和N型半导体之间的过渡层,称为PN结。
其发光原理可以用PN结的能带结构来做解释。
用于制作发光二极管的半导体材料是重掺杂的,在热平衡状态下,N型区具有很多高迁移率的电子,P型区有很多具有低迁移率的空穴。
在正常状态下,由于PN结势垒层的限制,电子和空穴不能发生自然复合。
当向发光二极管施加正向电压后,来自P型区的空穴被注入到N型区,而来自N型区的电子被注入到P型区中,当P型区的空穴进入中间区域后,由于空穴势垒的阻挡会被限制在量子阱内;同理N型区的电子进入中间区域后,由于电子势垒的阻挡也会被限制在量子阱内。
*国家“863”计划招标项目(批准号2001A A313140))
稿件收到日期2002-02-21,修改稿收到日期2002-06-17*T h e p r o j e c t S u p p o r t e d b y N a t i o n a l H i g hT e c h n o l o g y863R e s e a r c h& D e v e l o p m e n t P r o g r a mo f C h i n a U n d e r C o n t r a c t(N o.2001A A313140)R e c e i v e d2002-02-21,r e v i s e d2002-06-17
高亮度I n G a N基白光L E D特性研究
李忠辉丁晓民杨志坚于彤军张国义
(北京大学物理学院介观物理国家重点实验室,北京,1000871;
北京大学宽禁带半导体研究中心,北京,100871)
摘要利用自行研制的I n G a N/G a NS Q W蓝光L E D芯片和Y A G:G e3+荧光粉制作了高亮度白光L E D(Φ3),并对其发光强度、色度坐标、I-V、色温及显色性等特性进行了研究.实验结果表明:室温下,正向电流为20m A时,白光L E D的轴向发光强度为1.1~2.3c d,正向电压小于3.5V,色度坐标为(0.28,0.34),显色指数约为70.
关键词光源、I n G a N、Y A G、白光L E D.
C H A R A C T E R I S T I C SO FH I G HB R I G H T N E S S I n G a N-B A S E D
WH I T EL I G H TE M I T T I N GD I O D E S L I Z h o n g-H u i1,2)D I N GX i a o-M i n1)Y A N GZ h i-J i a n1)Y UT o n g-J u n1)Z H A N GG u o-Y i1)
(1)S t a t eK e y L a b f o rM e s o s c o p i c P h y s i c s,S c h o o l o f P h y s i c s o f P e k i n g U n i v e r s i t y,B e i j i n g100871,C h i n a;
2)R e s e a r c hC e n t e r f o rW i d e B a n d-g a p S e m i c o n d u c t o r o f P e k i n g U n i v e r s i t y,B e i j i n g100871,C h i n a)
A b s t r a c t H i g h b r i g h t n e s sw h i t e l i g h t e m i t t i n g d i o d e s(Φ3)w e r e f a b r i c a t e d b y u s i n g t h e s e l f-p r o d u c e d I n G a N/G a Nb l u e L E D c h i p a n dY A G:C e3+f l u o r e s c e n c e.T h e l u m i n o u s i n t e n s i t y,c h r o m a t i c i t y c o o r d i n a t e,I-V,c o l o r t e m p e r a t u r e a n d c o l o r r e n d e r i n g i n d e xw e r e s t u d i e d.T h e e x p e r i m e n t r e s u l t s h o w s t h a t i n r o o m t e m p e r a t u r e,a t f o r w a r d c u r r e n t20m A,l u-m i n o u s i n t e n s i t y o f t h e w h i t e L E D i s f r o m1.1c d t o2.3c d,w h e n f o r w a r d c u r r e n t i s u n d e r3.5V,t h e c h r o m a t i c i t y c o o r d i-n a t e i s(0.28,0.34),a n d t h e c o l o r r e n d e r i n g i n d e x i s a b o u t70.
K e y w o r d s l i g h t s o u r c e,I n G a N,Y A G,w h i t e-L E D s.
引言
随着超高亮度I n G a N/G a NS Q W蓝色L E D的商业化[1,2],新一代绿色固体光源—I n G a N基白光L E D已经成为研究和开发的热点[3].
I n G a N基白光L E D利用低压直流电驱动,无频闪,节能明显;在可见光区发光,发热量低,无辐射,属于冷光源;无铅、汞污染;固体化抗冲击,安全性高;寿命长、响应快、逐步失效,加之结构紧凑、易于实现大面积阵列[4]等诸多优点,广泛应用于室内外照明,显示屏和仪表的背光源,大屏幕及交通信号显示等领域,尤其是替代传统照明光源(如白炽灯和荧光灯)及L C D背光源的首选,它的应用将导致照明领域犹如从烛光到白炽灯的巨大变革[5].
I n G a N基白光L E D的制作是在I n G a N/G a N蓝色L E D芯片表面涂覆Y A G:C e3+荧光粉层,从L E D
发出的蓝光被荧光粉层吸收后产生互补的黄光,利用透明树脂封装后形成的微透镜聚焦,使蓝光和黄光混合形成的白光出射到L E D外面.
目前,日本N i c h i a公司的白光L E D产品达到7.5l m,色坐标(0.31,0.32),色温6000K,显色指数为85.3.美国L u m i l e d sL i g h t i n g公司的单个白色L E D已达到17l m(3.2V/350m A).国内的白光L E D 研究者采用进口的蓝光L E D芯片,荧光粉则少数是自制[6],多数为进口.本文利用自行研制的I n G a N/ G a NS Q W蓝光L E D芯片和Y A G:G e3+荧光粉,以及特殊的荧光粉涂敷技术研制了高亮度白光L E D,并对其特性进行了探讨,为拥有自主知识产权的白光L E D制造技术进行了有益的尝试.
1荧光粉及白光L E D制备
将按比例混合的Y
2
O3、A l2O3、G d2O3、G a2O3和
第21卷第5期2002年10月红外与毫米波学报
J.I n f r a r e dM i l l i m.W a v e s
V o l.21,N o.5
O c t o b e r,2002
的轴向发光强度逐渐增大;当正向电流为90m
特性研究
标(x ,y )
的改变
.红外与毫米波学报。