福建省宁德市2019届九年级初中学业质量检查数学测试题及答案
- 格式:pdf
- 大小:322.13 KB
- 文档页数:13
福建省2019年初中毕业会考、高级中等学校招生考试数学答案解析1.【答案】A2.【答案】B3.【答案】D4.【答案】C5.【答案】B6.【答案】D7.【答案】D8.【答案】A9.【答案】B10.【答案】D11.【答案】()(33)x x ①①12.【答案】1①13.【答案】1 20014.【答案】(1)2①15.【答案】1π①16.【答案】6+17.【答案】解:5,24,x y x y -=⎧⎨+=⎩①①①+②,得,()24)5(x y x y ①①①①①即,39x ①解得,3x ①把代入②,得,3x ①234y ⨯①①解得.2y ①①所以原方程组的解为32x y =⎧⎨=-⎩【考点】二元一次方程组的解法【考查能力】运算能力18.【答案】证明:∵四边形ABCD 是矩形,∴,90D B ∠∠︒==,AD CB =在和中,ADF △CBE △AD CB D B DF BE =⎧⎪∠=∠⎨⎪=⎩①①①∴,ADF CBE △≌△∴.AF CE=【考点】矩形的性质,全等三角形的判定与性质,勾股定理,平行四边形的判定与性质【考查能力】推理能力19.【答案】解:原式2(21)(1)x x x x--=-- 221(1)x x x x-+=-- 2(1)(1)x x x-=-- 2(1)(1)xx x =-⋅- (1)xx =-当时,原式.1x =1===+【考点】分式的混合运算,因式分解,二次根式的运算【考查能力】运算能力20.【答案】解:(1)即为所求作的三角形.A B C '''△(2)证明∵D ,E ,F 分别是三边AB ,BC ,CA 的中点,ABC △∴,111222DE AC EF AB FD BC =,=,=同理,.111''''''''''''222D E A C E F A B F D B C =,=,=∵,ABC A B C '''△∽△=''''AC AB BC A C A B B C =‘’,即111222=111''''222AC AB BC A C A B B C =‘’''''''DE EF FD D E E F F D ==∴DEF D E F '''△∽△【考点】尺规作图,相似三角形的性质与判定,三角形中位线定理【考查能力】推理能力21.【答案】解:(1)在中,,,ABC △90ABC ∠︒=30ACB ∠︒=∴.60BAC ∠︒=由旋转性质得,,.DC AC =30DCE ACB ∠∠︒==∴,1180752()DAC ADC DCE ∠∠︒-∠︒===又,60EDC BAC ∠∠︒==∴.15ADE ADC EDC ∠∠-∠︒==(2)在中,,,ABC △90ABC ∠︒=30ACB ∠︒=∴,12AB AC =∵F 是AC 的中点,∴,12BF FC AC ==∴.由旋转性质得,30FBC ACB ∠∠︒==,90AB DE DEC ABC ∠∠︒=,==,60BCE ACD ∠∠︒==∴,DE BF =延长BF 交EC 于点G ,则,90BGE GBC GCB ∠∠∠︒=+=∴,BGE DEC ∠∠=∴,DE BF A ∴四边形 BEDF 是平行四边形.【考点】图形的旋转,直角三角形,等腰三角形,等边三角形,三角形的内角和,平行四边形的判定【考查能力】运算能力,推理能力22.【答案】解:(1)因为工厂产生工业废水35吨,共花费废水处理费370元,又,所以37030688357-=>35m <依题意得,,308123)3(570m m -++=解得20m =故该车间的日废水处理量为20吨.(2)设该厂一天产生的工业废水量为吨.x ①当时,依题意得,,解得,所以.020x <≤83010x x +≤15x ≥1520x ≤≤②当时,依题意得,,解得,所以.20x >12202083010()x x ⨯-++≤25x ≤2025x <≤综上所述,,1525x ≤≤故该厂一天产生的工业废水量的范围在15吨到25吨之间.【考点】一元一次方程,一元一次不等式,反比例函数的性质,平均数的概念【考查能力】运算能力,推理能力23.【答案】解:(1)因为100台机器在三年使用期内维修的次数不大于100的台数为10+20+30=60,所以“100台机器在三年使用期内维修的次数不大于10”的频率为,60=0.6100故可估计“1台机器在三年使用期内维修的次数不大于10”的概率为0.6.(2)若每台都购买10次维修服务,则有下表:某台机器使用期内维修次数89101112该台机器的维修费用2400024500250003000035000此时这100台机器维修费用的平均数124000102450020250003030000303500010100100y ⨯⨯⨯⨯⨯++++=,=27300若每台都购买 11 次维修服务,则有下表:某台机器使用期内维修次数89101112该台机器的维修费用2600026500270002750032500此时这100台机器维修费用的平均数226000102650020270003027500303250010=100y ⨯⨯⨯⨯⨯++++,=27500因为,所以购买1台该机器的同时应一次性额外购买10次维修服务.12y y <【考点】概率,加权平均数,统计表【考查能力】运算能力,推理能力24.【答案】证明:(1)∵,AC BD ⊥∴,90AED ∠︒=在中,.Rt AED △90ADE CAD ∠︒∠=-∵,AB AC =∴A A AB AC=∴.90ACB ABC ADE CAD ∠∠∠︒∠===-在中,,ABC △180BAC ABC ACB ∠∠∠︒++=∴,即.()(180180290)BAC ABC ACB CAD ∠︒∠∠︒︒∠=-+=--2BAC CAD ∠=∠(2)∵,DF DC =∴,FCD CF ∠∠=∴,BDC FCD CFD ∠∠∠=+∴2BDC CFD∠∠=∵,且由(1)知,BDC BAC ∠∠=2BAC CAD ∠∠=∴,CFD CAD ∠∠=∵,CAD CBD ∠∠=∴,CFD CBD ∠∠=∴,CF CB =∵,AC BF ⊥∴,故垂直平分,BE EF =CA BF ∴,10AC AB AF ===设,则,在和中,,AE x =10CE x =-Rt ABE △Rt BCE △²²²²²AB AE BE BC CE -==-又∵,BC =∴,解得,(()22221010x x -=--6x =∴64AE CE =,=,∴,8BE ∵,,DAE CBE ∠∠=ADE BCE ∠∠=∴.ADE BCE △∽△∴AE DE AD BE CE BC==∴3,DE AD ==过点D 作,垂足为H .DH AB ⊥∵,11,1122ABD S AB DH BD AE BD BE DE =⋅=⋅=+=△∴故10116,DH =⨯335DH =在中,Rt ADH △6²²5AH AD DH -==∴112DH tan BAD AH ∠==【考点】圆的有关性质,等腰三角形的判定与性质,线段垂直平分线的判定与性质,解直角三角形,相似三角形的判定与性质,三角形面积等基础知识【考查能力】运算能力,推理能力25.【答案】解:(1)依题意,,,240b ac △=-=22b a-=所以,2440()a ac --=因为,所以,即满足的关系式为.0a ≠4c a =a c ,4c a =(2)①当时,直线为,它与轴的交点为.0k =l 1y =y (0)1,∵直线与轴平行,1y =x ∴等腰直角的直角顶点只能是,且是抛物线的顶点.过作,垂足为,则ABC △A A A AM BC ⊥M ,1AM =∴,故点坐标为,1BM MC AM ===A (1)0,∴抛物线的解析式可改写为【考点】一次函数和二次函数的图形与性质,等腰直角三角形的性质与判定,图形的对称【考查能力】运算能力,推理能力∴抛物线的解析式可改写为,2(1)y a x =-∵抛物线过点,所以,解得.()0,121(01)a =-1a =所以抛物线的解析式为,即.2(1)y a x =-221y x x =-+②设,则.()()1122,,,B x y C x y ()1,1D x -由得,2121y kx k y x x =+-⎧⎨=-+⎩2(2)0x k x k -++=因为22(2)440k k k =+-=+△>由抛物线的对称性,不妨设,则,12x x <1x =2x =所以,121x x <<设直线的解析式为,则有,解得AD y mx n =+101m n mx n =+⎧⎨-=+⎩111111m x n x ⎧=-⎪-⎪⎨⎪=⎪-⎩所以直线的解析式为.AD 111111y x x x =-+--因为()222221111111111x y x x x x x ⎛⎫---+=-+ ⎪---⎝⎭()()()212111111x x x x -⎡--+⎤⎣⎦=-()21111x x ⎫-+⎪⎪⎝⎭=-0=即,所以点在直线上.22111111y x x x =-+--()22,C x y AD 故对于每个给定的实数,都有三点共线.k ,,A C D。
福建省宁德市2019-2020学年中考第四次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若分式11x - 有意义,则x 的取值范围是 A .x >1 B .x <1 C .x≠1 D .x≠02.轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时,若船速为26千米/时,水速为2千米/时,求A 港和B 港相距多少千米. 设A 港和B 港相距x 千米. 根据题意,可列出的方程是( ).A .32824x x =- B .32824x x =+ C .2232626x x +-=+ D .2232626x x +-=- 3.如图,点ABC 在⊙O 上,OA ∥BC ,∠OAC=19°,则∠AOB 的大小为( )A .19°B .29°C .38°D .52°4.随着“中国诗词大会”节目的热播,《唐诗宋词精选》一书也随之热销.如果一次性购买10本以上,超过10本的那部分书的价格将打折,并依此得到付款金额y (单位:元)与一次性购买该书的数量x (单位:本)之间的函数关系如图所示,则下列结论错误的是( )A .一次性购买数量不超过10本时,销售价格为20元/本B .a =520C .一次性购买10本以上时,超过10本的那部分书的价格打八折D .一次性购买20本比分两次购买且每次购买10本少花80元5.下列计算正确的是( )A .a 3•a 2=a 6B .(a 3)2=a 5C .(ab 2)3=ab 6D .a+2a =3a6.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是( )1 2 3 4 5 成绩(m ) 8.2 8.0 8.2 7.5 7.8A .8.2,8.2B .8.0,8.2C .8.2,7.8D .8.2,8.07.如果解关于x 的分式方程2122m x x x -=--时出现增根,那么m 的值为 A .-2 B .2 C .4 D .-48.方程x (x -2)+x -2=0的两个根为( )A .10x =,22x =B .10x =,22x =-C .11x =- ,22x =D .11x =-, 22x =-9.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )A .30,28B .26,26C .31,30D .26,2210.如图,将函数y =12(x ﹣2)2+1的图象沿y 轴向上平移得到一条新函数的图象,其中点A (1,m ),B (4,n )平移后的对应点分别为点A'、B'.若曲线段AB 扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A .y =12(x ﹣2)2-2 B .y =12(x ﹣2)2+7 C .y =12(x ﹣2)2-5 D .y =12(x ﹣2)2+4 11.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C 的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2018的坐标是( )A.(1,4)B.(4,3)C.(2,4)D.(4,1)12.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B. C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.从5张上面分别写着“加”“油”“向”“未”“来”这5个字的卡片(大小、形状完全相同)中随机抽取一张,则这张卡片上面恰好写着“加”字的概率是__________.14.如图,在Y ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=42cm,则EF+CF的长为cm.15.已知关于x的方程x2﹣2x+n=1没有实数根,那么|2﹣n|﹣|1﹣n|的化简结果是_____.16.如图1,在平面直角坐标系中,将▱ABCD放置在第一象限,且AB∥x轴,直线y=﹣x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2,那么ABCD面积为_____.17.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(32,0),B(0,2),则点B2018的坐标为_____.18.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,△ABC中AB=AC,请你利用尺规在BC边上求一点P,使△ABC~△PAC不写画法,(保留作图痕迹).20.(6分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.21.(6分)如图,△ABC是等边三角形,AO⊥BC,垂足为点O,⊙O与AC相切于点D,BE⊥AB交AC的延长线于点E,与⊙O相交于G、F两点.(1)求证:AB与⊙O相切;(2)若等边三角形ABC的边长是4,求线段BF的长?22.(8分)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C 点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1)求抛物线的表达式;(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3)如图2,连接BC,PB,PC,设△PBC的面积为S.①求S关于t的函数表达式;②求P点到直线BC的距离的最大值,并求出此时点P的坐标.23.(8分)解不等式组:12231 xx x-⎧⎨+≥-⎩<.24.(10分)如图,已知∠AOB=45°,AB⊥OB,OB=1.(1)利用尺规作图:过点M作直线MN∥OB交AB于点N(不写作法,保留作图痕迹);(1)若M为AO的中点,求AM的长.25.(10分)如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD ,过点D 作BC 的平行线与AC 的延长线相交于点P .求证:PD 是⊙O 的切线;求证:△ABD ∽△DCP ;当AB=5cm ,AC=12cm 时,求线段PC 的长.26.(12分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.(1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;(2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?27.(12分)如图,一座钢结构桥梁的框架是△ABC ,水平横梁BC 长18米,中柱AD 高6米,其中D 是BC 的中点,且AD ⊥BC .(1)求sinB 的值;(2)现需要加装支架DE 、EF ,其中点E 在AB 上,BE =2AE ,且EF ⊥BC ,垂足为点F ,求支架DE 的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】【详解】分式分母不为0,所以10x -≠,解得1x ≠.故选:C.2.A【解析】【分析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时.根据“轮船沿江从A 港顺流行驶到B 港,比从B 港返回A 港少用3小时”,得出等量关系,据此列出方程即可.【详解】解:设A 港和B 港相距x 千米,可得方程:32824x x =- 故选:A .【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度.3.C【解析】【分析】由AO ∥BC ,得到∠ACB=∠OAC=19°,根据圆周角定理得到∠AOB=2∠ACB=38°. 【详解】∵AO ∥BC ,∴∠ACB=∠OAC ,而∠OAC=19°,∴∠ACB=19°,∴∠AOB=2∠ACB=38°.故选:C .【点睛】本题考查了圆周角定理与平行线的性质.解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用是解此题的关键.4.D【解析】【分析】A 、根据单价=总价÷数量,即可求出一次性购买数量不超过10本时,销售单价,A 选项正确;C 、根据单价=总价÷数量结合前10本花费200元即可求出超过10本的那部分书的单价,用其÷前十本的单价即可得出C 正确;B 、根据总价=200+超过10本的那部分书的数量×16即可求出a 值,B 正确;D ,求出一次性购买20本书的总价,将其与400相减即可得出D 错误.此题得解.【详解】解:A、∵200÷10=20(元/本),∴一次性购买数量不超过10本时,销售价格为20元/本,A选项正确;C、∵(840﹣200)÷(50﹣10)=16(元/本),16÷20=0.8,∴一次性购买10本以上时,超过10本的那部分书的价格打八折,C选项正确;B、∵200+16×(30﹣10)=520(元),∴a=520,B选项正确;D、∵200×2﹣200﹣16×(20﹣10)=40(元),∴一次性购买20本比分两次购买且每次购买10本少花40元,D选项错误.故选D.【点睛】考查了一次函数的应用,根据一次函数图象结合数量关系逐一分析四个选项的正误是解题的关键.5.D【解析】【分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【详解】解:A.x4•x4=x4+4=x8≠x16,故该选项错误;B.(a3)2=a3×2=a6≠a5,故该选项错误;C.(ab2)3=a3b6≠ab6,故该选项错误;D.a+2a=(1+2)a=3a,故该选项正确;故选D.考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.6.D【解析】【分析】【详解】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.7.D【解析】【详解】2122m x x x-=--,去分母,方程两边同时乘以(x ﹣1),得: m+1x=x ﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D .8.C【解析】【分析】根据因式分解法,可得答案.【详解】解:因式分解,得(x-2)(x+1)=0,于是,得x-2=0或x+1=0,解得x 1=-1,x 2=2,故选:C .【点睛】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.9.B .【解析】试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B . 考点:中位数;加权平均数.10.D【解析】【详解】 ∵函数()21212y x =-+的图象过点A (1,m ),B (4,n ), ∴m=()211212-+=32,n=()214212-+=3, ∴A (1,32),B (4,3), 过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,32), ∴AC=4﹣1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数()21212y x =-+的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是()21242y x =-+. 故选D .11.D【解析】【分析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、1(2,0)p 、)(24,1p 、)(30,3p 、()42,4p 、)(54,3p 、)(60,1p 等,故该坐标的循环周期为7则有则有2018128837+L =,故是第2018次碰到正方形的点的坐标为(4,1). 【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.12.A【解析】【分析】根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,故选:A .【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】。
2019年宁德市初中毕业班质量检测数 学 试 题(满分150分 考试时间:120分钟) 注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色签字笔描黑. 4.考试结束,考生必须将试题卷和答题卡一并上交.第 Ⅰ 卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2019的绝对值是A .12019B .2019C .12019-D .2019-2.下列几何体中,主视图与俯视图相同的是ABCD3.下列运算正确的是A .326a a a ⋅=B .623a a a ÷=C.00=D .2139-=4.若三角形的三边长分别为3,x ,5,则x 的值可以是A .2B .5C .8D .115.如图,在44⨯的正方形网格中,点A ,B ,M ,N 都在格点上.从点M ,N 中任取一点,与点A ,B 顺次连接组成一个三角形,则下列事件是必然事件的是 A .所得三角形是锐角三角形 B .所得三角形是直角三角形 C .所得三角形是钝角三角形 D.所得三角形是等腰三角形第5题图6.一元二次方程x 2﹣2x ﹣1=0根的情况是A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根7.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来谷米1534石,验得其中夹有谷粒.现从中抽取谷米一把,共数得254粒,其中夹有谷粒28粒,则这批谷米内夹有谷粒约是 A .134石B .169石C .338石D .1365石8.小卖部从批发市场购进一批杨梅,在销售了部分杨梅之后,余下的每千克降价3元,直至全部售完.销售金额y 元与杨梅销售量x 千克之间的关系如图所示.若销售这批杨梅一共赢利220元,那么这批杨梅的进价是 A .10元/千克 B .12元/千克 C .12.5元/千克D .14.4元/千克9.如图,AB 是⊙O 的直径,AB =AC ,AC 交⊙O 于点E ,BC 交⊙O 于点D ,F 是CE 的中点,连接DF .则下列结论错误的是 A .∠A=∠ABE B .BD ⌒=DE ⌒ C .BD =DCD .DF 是⊙O 的切线10.点 A (2,m ),B (2,m -5)在平面直角坐标系中,点O 为坐标原点.若△ABO 是直角三角形,则m 的值不可能是 A .4B .2C .1D .0第 Ⅱ 卷注意事项:1.用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效. 2.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色签字笔描黑. 二、填空题:本题共6小题,每小题4分,共24分. 11.2018年国庆假期宁德市接待游客2 940 000人次.将数据2 940 000用科学记数法表示为 .12.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D = °.13.学校组织户外研学活动,安排给九年级三辆车,小明与小慧都可以从三辆车中任选一辆搭乘,则小明和小慧搭乘同一辆车的概率是 .第8题图第9题图第12题图CEADB114.关于x 的一元一次不等式组2152x x m - ⎧⎪⎨+⎪⎩>,≤中两个不等式的解集在同一数轴上的表示如图所示,则该不等式组解集是 .15. 小宇计算分式的过程如图所示,他开始出现计算错误的是在第 步.(填序号)16. 如图,已知正方形ABCD 中,点E 是BC 上的一个动点,EF ⊥AE 交CD 于点F ,以AE ,EF 为边作矩形AEFG ,若AB=4,则点G 到AD 距离的最大值是________. 三、解答题:本题共9小题,共86分.17.(本题满分8分)先化简,再求值:9)2()3(2-++-x x x ,其中3-=x .18.(本题满分8分)如图,F ,C 是AD 上两点,且AF=CD ;点E ,F ,G 在同一直线上,且F ,G 分别是AC ,AB 中点,BC =EF . 求证:△ABC ≌△DEF .19.(本题满分8分)春晓中学为开展“校园科技节”活动,计划购买A 型、B 型两种型号的航模.若购买8个A 型航模和5个B 型航模需用2200元;若购买4个A 型航模和6个B 型航模需用1520元.求A ,B 两种型号航模的单价分别是多少元.第16题图A B C D E FG 第14题图EABCDGF20.(本题满分8分)某校九年级共有80名同学参与数学科托底训练.其中(1)班30人,(2)班25人,(3)班25人,吕老师在托底训练后对这些同学进行测试,并对测试成绩进行整理,得到下面统计图表.(1)表格中的m 落在________组;(填序号)①40≤x <50, ②50≤x <60, ③60≤x <70, ④70≤x <80, ⑤80≤x <90, ⑥90≤x ≤100.(2)求这80名同学的平均成绩;(3)在本次测试中,(2)班小颖同学的成绩是70分,(3)班小榕同学的成绩是74分,这两位同学成绩在自己所在班级托底同学中的排名,谁更靠前?请简要说明理由.21.(本题满分8分)如图,点O 是菱形ABCD 对角线的交点,点E 在BO 上,EF 垂直平分AB ,垂足为F .(1)求证:△BEF ∽△DCO ;(2)若AB =10,AC =12,求线段EF 的长.22.(本题满分8分)已知反比例函数图象上两点A (2,3),B ()122x y -+,的位置如图所示.(1)求x 的取值范围;(2)若点C ()2x y -,也在该反比例函数的图像上,试比较1y ,2y 的大小.DACBOFE 九年级托底成绩统计表 成绩/分23.(本题满分12分)定义:平面内,如果一个四边形的四个顶点到某一点的距离都相等,则称这一点为该四边形的外心.(1)下列四边形:平行四边形、矩形、菱形中,一定有外心的是 ; (2)已知四边形ABCD 有外心O ,且A ,B ,C 三点的位置如图1所示,请用尺规确定该四边形的外心,并画出一个满足条件的四边形ABCD ; (3)如图2,已知四边形ABCD 有外心O ,且BC =8,sin ∠BDC =45,求OC 的长.24.(本题满分13分)如图,在矩形ABCD 中,AB =4,AD =6,E 是AD 边上的一个动点,将四边形BCDE 沿直线BE 折叠,得到四边形BC ′D ′E ,连接AC ′,AD ′. (1)若直线DA 交BC ′于点F ,求证:EF=BF ;(2)当AE =334时,求证:△AC ′D ′是等腰三角形; (3)在点E 的运动过程中,求△AC ′D ′面积的最小值.图1图2BA CCB DED ′AFC ′ AB25.(本题满分13分)如图1,已知水龙头喷水的初始速度v 0可以分解为横向初始速度v x 和纵向初始速度v y ,θ是水龙头的仰角,且2220y x v v v +=.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A 在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA 为15米,山坡的坡比为13.离开水龙头后的水(看成点)获得初始速度v 0米/秒后的运动路径可以看作是抛物线,点M 是运动过程中的某一位置.忽略空气阻力,实验表明:M 与A 的高度之差d (米)与喷出时间t (秒)的关系为25y d v t t =-;M 与A 的水平距离为t v x 米.已知该水流的初始速度0v 为15米/秒,水龙头的仰角θ为53︒.(1)求水流的横向初始速度v x 和纵向初始速度v y ;(2)用含t 的代数式表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x的取值范围);(3)水流在山坡上的落点C 离喷射点A 的水平距离是多少米?若要使水流恰好喷射到坡脚B 处的小树,在相同仰角下,则需要把喷射点A 沿坡面AB 方向移动多少米?(参考数据:4sin535︒≈,3cos535︒≈,4tan533︒≈)图1图2v2019年宁德市初中毕业班质量检测数学试题参考答案及评分标准⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分.⑶解答右端所注分数表示考生正确作完该步应得的累加分数.⑷评分只给整数分,选择题和填空题均不给中间分.一、选择题:(本大题有10小题,每小题4分,满分40分)1.B 2.C 3.D 4.B 5.D 6.C 7.B 8.A 9.A 10.B二、填空题:(本大题有6小题,每小题4分,满分24分)11.62.9410⨯12.60 13.1314.1x-≤15.②16.1三、解答题(本大题共9小题,共86分.请在答题卡...的相应位置作答)17.(本题满分8分)解:原式= 226929x x x x-+++- ···························································4分=224x x-.···································································5分当x=原式=(( 224⨯-⨯ ····························································6分=6+··········································································8分18.(本题满分8分)证明:∵AF=CD,∴AF+FC =FC+CD.∴AC=FD. ·············································2分∵点F,G分别是AC,AB的中点,∴GF∥BC.································4分∴∠BCA =∠EFD. ·······························5分∵BC=EF,∴△ABC≌△DEF. ·······························8分EABC DGF19.(本题满分8分)解:设A 型号航模单价为x 元, B 型号航模单价为y 元,根据题意,得 ·········1分 852*********x y x y += ⎧⎨+= ⎩,. ·················································································5分 解得 200120.x y = ⎧⎨= ⎩, ···················································································7分答:A 型号航模的单价为200元, B 型号航模的单价为120元. ···················8分 20.(本题满分8分)解:(1)④; ················································································2分 (2)75.23071.22572.82580x ⨯+⨯+⨯==73.2(分). ··········································································5分答:这80名同学的平均成绩为73.2分;(3)小颖同学在自己班级的托底同学中排名更靠前. ································· 6分 理由:因为7068>,所以小颖同学成绩处于自己班级托底同学的中上水平;因为7475<,所以小榕同学成绩处于自己班级托底同学的中下水平,且这两个班的参加托底训练的人数相同,所以小颖在自己班级的排名更靠前. ·····8分21.(本题满分8分)解:(1)证明:∵四边形ABCD 是菱形, ∴AC BD ⊥,AB ∥CD .∴∠FBE =∠ODC . ··············· 2分 又∵EF 垂直平分AB , ∴∠BFE =∠DOC =90°.∴△BEF ∽△DCO . ·············· 4分 (2)∵四边形ABCD 是菱形,∴1112622OC AC ==⨯=,10CD AB ==.在Rt △DCO 中,根据勾股定理得8OD =.又∵EF 垂直平分AB ,∴1110522BF AB ==⨯=. ·································································6分 由(1)可知△BEF ∽△DCO , ∴EF BF OC OD =,即568EF =.DACBOFE∴154EF =. ·································································8分22.(本题满分8分)解:(1)根据图象上A ,B 两点的位置可知:2B x >.∴222x -+>. ··········································································· 3分 ∴x <0. ·············································································4分 (2)解法一:∵x <0, ∴0C x x =->.∴点C 在第一象限内. ···························································5分 由B C x x -,得 ()22x x -+--=2x -+. ∵0x ->, ∴220x -+>>. ∴B C x x >.∴C B x x 0<<. ········································································· 7分 ∵反比例函数在第一象限内,y 随x 的增大而减小,∴21y y >. ········································································· 8分 解法二:∵x <0, ∴0x ->. ∴0C x >.∴点C 在第一象限内. ···························································5分 ①若C B x x =,即22x x -=-+, 得2x =,这与x <0矛盾. ∴点C 不与点B 重合. ②若C B x x >,即22x x ->-+, 得2x >,这与x <0矛盾. ∴点C 不在点B 右侧. ③若C B x x <,即22x x -<-+, 得2x <.∵x <0满足2x <,∴点C 在点B 左侧.(也可由①②直接判断点C 在点B 左侧) ··················· 7分 ∵反比例函数在第一象限内,y 随x 的增大而减小,∴21y y >. ········································································· 8分23.(本题满分12分)解:(1)矩形. ·············································· 2分(2)如图1,作图正确.··································· 5分(作出圆心得2分,确定点D得1分)∴所作的点O是四边形ABCD的外心,四边形ABCD的就是所求作的四边形.······················· 6分(3)解法一:如图2,∵点O是四边形ABCD的外心,∴OA=OC=OB=OD,∴点A,B,C,D都在以OC为半径的⊙O上. ····· 8分连接OB,BC,作OM⊥BC于点M.则∠OMB=90°,∠BOC=2∠BDC.∵OC=OB,∴∠COM=12∠BOC=∠BDC,CM=12BC=4.········ 11分∴OC=445sin5CMCOM=÷=∠.··························· 12分解法二:如图3,∵点O是四边形ABCD的外心,∴OA=OC=OB=OD,∴点A,B,C,D都在以OC为半径的⊙O上. ····· 8分延长CO交⊙O于点E,连结EB,则∠EBC=90°,∠BEC=∠BDC.∴CE=4810sin5BCBEC=÷=∠.···························· 11分∴OC=12CE=5 .············································ 12分24.(本题满分13分)解:(1)证明:∵四边形ABCD是矩形,∴AD∥BC.∴∠FEB=∠EBC. (2)分CBDED′FC′A图1图3图2根据对称可得∠FBE =∠EBC , ∴∠FEB =∠FBE .∴BF =EF . ················································ 4分(2)解法一:(如图2) 分别过点A 作AG ⊥BC ′于 点 G ,AH ⊥ C ′ D ′于 点 H ,∵四边形ABCD 是矩形, ∴∠BAD =90°. ∴tan ∠ABE=34AE AB == ∴∠ABE =30°. ········································· 5分 ∴∠FEB =90°-∠ABE =60°. ∴∠FBE =∠FEB =60°. ································ 6分 ∴∠AB G =∠FBE -∠ABE =30°.∴AG =12AB =2. ········································· 7分根据对称可得∠B C ′D ′=∠C =90°, C ′D ′= C D . ∴∠B C ′D ′=∠C ′GA =∠C ′HA = 90°. ∴四边形AGC ′H 是矩形. ∴ A G=C ′H =2. ∴AH 是 C ′D ′′的 垂 直 平 分 线 . ························· 8分 ∴AC ′= A D ′. ∴△AC ′D ′是等腰三角形. ·························· 9分 解法二:(如图3) 延长D ′A 交BF 于点G .同解法一得∠FBE =∠FEB =60°. ···················· 6分 证得AF =EA , ············································ 7分 再证△D ′AE ≌△GAF . ······························· 8分 得A D ′= A G ,从而得A C ′= A D ′=12G D ′. ····· 9分解法三:(如图4) 过点A 作MN ∥C ′D ′分 别 交BF ,D ′E 于点M ,N , 同解法一得∠FBE =∠FEB =60°. ···················· 6分 证得AF =EA , ············································ 7分 证△AFM ≌△AEN 得到AM =AN . ·················· 8分 再证△AMC ′≌△AND ′.得到A C ′= A D ′. ···· 9分 解法四:(如图2-4)由勾股定理得BE =设BF =x ,由(1)得AF x =.CBDED ′AFC ′MN 图4图3CBDED ′ A FC ′ GH图2CBDE D ′ A FC ′GH由勾股定理解得BF,AF =.∴AF =EA ,∠ABF =30°. ······························ 7分 以下同各解法.(3)解法一:(如图5)根据对称可得点C ′与点D ′的 对 称 点分 别 为 点C ,D . 作点A 关于BE 的 对 称 点点A ′.由对称性得 △A ′CD ≌△AC ′D ′,BA ′=BA .∴S △A′ CD =S △AC′ D′ ,点A ′落 在 以 点 B 为 圆 心 以 A B 为半径的弧AM 上. ············ 11分 设弧AM 交BC 于点M ,过点A ′作A ′N ⊥CD 于N . 由垂线段最短知 BA ′+ A ′N ≥BM +MC . ∵BA ′=BM ,∴ A ′N ≥MC .∴当点A ′落 在 点M 处时△A ′CD 的面积最小. 即△AC ′D ′的面积最小. 此时 MC=BC - BM=2. S △AC′ D′ =S △A′ CD =142MC DC ⋅=.∴△AC ′D ′面积的最小值为4. ···················· 13分 解法二:(如图6)作矩形B C ′D ′J ,过点A 作AH ⊥ C ′D ′于点H , 延长HA 交B J 于点I . ∴AH +AI=HI=BC ′=6. ∴AH=6-AI . ∴AH 随的AI 增大而减小. ························· 11分∵AI ≤AB ,∴AI=AB 时,AI 取得最大值4. 此时,AH 取得最小值2.∴S △AC′ D′ =142C D AH ''⋅=.∴△AC ′D ′面积的最小值为4. ···················· 13分 25.(本题满分13分)解:(1)如图1,∵2220y x v v v +=,θ=53︒.∴03cos 1595x v v θ==⨯=, ··························· 2分04sin 15125y v v θ==⨯=. ····································································· 3分 (2)由(1)得9x v =,12y v =.根据题意,得 225125y d v t t t t =-=-,M A y y d -=. ∴点M 的横坐标为:9x x v t t ==,①图1 v 图5 CBD ED ′AFC ′A ′MNCBDED ′AFC ′H IJ 图6纵坐标为:21551215y d t t =+=-++.② ··········································6分由①得9t x =,代入②得 25415813y x x =-++. ··········································8分 (3)∵坡顶的铅直高度为15米,山坡的坡比为13,∴115453OB =÷=(米).∴A 点的坐标为(0,15),B 点的坐标为(45,0).设线段AB 的函数关系式为:y kx b =+.将 A ,B 两点坐标代入上式,得 15045b k b =⎧⎨=+⎩,. 解得 1513b k =⎧⎪⎨=-⎪⎩,.∴线段AB 的关系式为:1153y x =-+. ·······由254158131153y x x y x ⎧=-++⎪⎪⎨⎪=-+⎪⎩,.解得 276x y =⎧⎨=⎩,.∴水流在山坡上的落点C 离喷射点A 的水平距离是27米. ························· 11分 过C 点作CD x ⊥轴,垂足为D ,得CD =6,BD =18. 在Rt △DCO 中,根据勾股定理,得BC ==由平移的性质可得,需要把喷射点沿坡面AB 方向移动 ················· 13分图2。
福建省宁德市2019-2020学年中考数学第三次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A .πB .32πC .6﹣πD .23﹣π 2.若关于x 的分式方程2122x a x -=-的解为非负数,则a 的取值范围是( ) A .a≥1 B .a >1 C .a≥1且a≠4 D .a >1且a≠43.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2018的值为( )A .20151()2 B .20162() C .20152() D .20161()24.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是( )A .国B .厉C .害D .了5.如图,在网格中,小正方形的边长均为1,点A,B,C 都在格点上,则∠ABC 的正切值是( )A .12B .2C 5D 25 6.下列实数中,最小的数是( )A 3B .π-C .0D .2-180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-8.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有()A.4 个B.3 个C.2 个D.1 个9.2016的相反数是()A.12016-B.12016C.2016-D.201610.在以下三个图形中,根据尺规作图的痕迹,能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图311.已知反比例函数y=8kx-的图象位于第一、第三象限,则k的取值范围是()A.k>8 B.k≥8C.k≤8D.k<812.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为()A.c•sin2αB.c•cos2αC.c•sinα•tanαD.c•sinα•cosα二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,点A在双曲线kyx=上,AB⊥x轴于B,且△AOB的面积S△AOB=2,则k=______.14.Rt △ABC 的边AB=5,AC=4,BC=3,矩形DEFG 的四个顶点都在Rt △ABC 的边上,当矩形DEFG 的面积最大时,其对角线的长为_______.15.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.16.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=5.下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为2;③EB ⊥ED ;④S △APD +S △APB =1+6;⑤S 正方形ABCD =4+6.其中正确结论的序号是 .17.计算:()235y y ÷=____________18.如图,点A 、B 、C 是⊙O 上的三点,且△AOB 是正三角形,则∠ACB 的度数是 。
福建省宁德市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,某计算机中有、、三个按键,以下是这三个按键的功能.(1).:将荧幕显示的数变成它的正平方根,例如:荧幕显示的数为49时,按下后会变成1.(2).:将荧幕显示的数变成它的倒数,例如:荧幕显示的数为25时,按下后会变成0.2.(3).:将荧幕显示的数变成它的平方,例如:荧幕显示的数为6时,按下后会变成3.若荧幕显示的数为100时,小刘第一下按,第二下按,第三下按,之后以、、的顺序轮流按,则当他按了第100下后荧幕显示的数是多少()A.0.01 B.0.1 C.10 D.1002.如图是由若干个小正方体组成的几何体从上面看到的图形,小正方形中的数字表示该位置小正方体的个数,这个几何体从正面看到的图形是()A.B.C.D.3.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N两点.若AM=2,则线段ON的长为( )A 2B.32C.1 D.624.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( ) A .1颗 B .2颗 C .3颗 D .4颗5.如图,在△ABC 中,AC=BC ,∠ACB=90°,点D 在BC 上,BD=3,DC=1,点P 是AB 上的动点,则PC+PD 的最小值为( )A .4B .5C .6D .76.若※是新规定的某种运算符号,设a ※b=b 2 -a ,则-2※x=6中x 的值()A .4B .8C . 2D .-27.等腰三角形的两边长分别为5和11,则它的周长为( )A .21B .21或27C .27D .258.关于x 的不等式21x a --…的解集如图所示,则a 的取值是( )A .0B .3-C .2-D .1-9.正方形ABCD 在直角坐标系中的位置如图所示,将正方形ABCD 绕点A 按顺时针方向旋转180°后,C 点的坐标是( )A .(2,0)B .(3,0)C .(2,-1)D .(2,1)10.已知一次函数y =﹣12x+2的图象,绕x 轴上一点P (m ,1)旋转181°,所得的图象经过(1.﹣1),则m 的值为( )A .﹣2B .﹣1C .1D .211.如图,已知在△ABC ,AB =AC .若以点B 为圆心,BC 长为半径画弧,交腰AC 于点E ,则下列结论一定正确的是( )A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE12.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=1,则下列结论:①∠CAD=30°②BD=7③S平行四边形ABCD=AB•AC④OE=14AD⑤S△APO=312,正确的个数是()A.2 B.3 C.4 D.5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.将两块全等的含30°角的三角尺如图1摆放在一起,设较短直角边为1,如图2,将Rt△BCD沿射线BD方向平移,在平移的过程中,当点B的移动距离为时,四边ABC1D1为矩形;当点B的移动距离为时,四边形ABC1D1为菱形.14.分解因式:2x2﹣8=_____________15.如图,在△ABC中,AB=AC=10cm,F为AB上一点,AF=2,点E从点A出发,沿AC方向以2cm/s的速度匀速运动,同时点D由点B出发,沿BA方向以lcm/s的速度运动,设运动时间为t(s)(0<t<5),连D交CF于点G.若CG=2FG,则t的值为_____.16.方程1x______.17.327﹣|﹣1|=______.18.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM 的周长为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一根电线杆PQ直立在山坡上,从地面的点A看,测得杆顶端点P的仰角为45°,向前走6m到达点B,又测得杆顶端点P和杆底端点Q的仰角分别为60°和30°,求电线杆PQ的高度.(结果保留根号).20.(6分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B,与y轴交于C(0,3),直线y=12x+m经过点C,与抛物线的另一交点为点D,点P是直线CD上方抛物线上的一个动点,过点P作PF⊥x轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线解析式并求出点D的坐标;(2)连接PD,△CDP的面积是否存在最大值?若存在,请求出面积的最大值;若不存在,请说明理由;(3)当△CPE是等腰三角形时,请直接写出m的值.21.(6分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.22.(8分)先化简,再求值:22(1)x y x y x y -÷--,其中x=32-,y=11()2-. 23.(8分)观察下列各个等式的规律:第一个等式:222112--=1,第二个等式:223212-- =2,第三个等式:224312--=3… 请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n 个等式(用n 的代数式表示),并证明你猜想的等式是正确的.24.(10分)如图,矩形ABCD 中,AB =4,BC =6,E 是BC 边的中点,点P 在线段AD 上,过P 作PF ⊥AE 于F ,设PA =x .(1)求证:△PFA ∽△ABE ;(2)当点P 在线段AD 上运动时,设PA =x ,是否存在实数x ,使得以点P ,F ,E 为顶点的三角形也与△ABE 相似?若存在,请求出x 的值;若不存在,请说明理由;(3)探究:当以D 为圆心,DP 为半径的⊙D 与线段AE 只有一个公共点时,请直接写出x 满足的条件: .25.(10分)如图,已知抛物线2y x bx c =++经过(1,0)A ,(0,2)B 两点,顶点为D .(1)求抛物线的解析式;(2)将OAB ∆绕点A 顺时针旋转90︒后,点B 落在点C 的位置,将抛物线沿y 轴平移后经过点C ,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与y 轴的交点为1B ,顶点为1D ,若点N 在平移后的抛物线上,且满足1NBB ∆的面积是1NDD ∆面积的2倍,求点N 的坐标.26.(12分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m =________,n =________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.27.(12分)综合与探究:如图,已知在△ABC 中,AB=AC ,∠BAC=90°,点 A 在 x 轴上,点 B 在 y 轴上,点()3,1C -在二次函数21332y x bx =-++的图像上. (1)求二次函数的表达式;(2)求点 A ,B 的坐标;(3)把△ABC 沿 x 轴正方向平移, 当点 B 落在抛物线上时, 求△ABC 扫过区域的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据题中的按键顺序确定出显示的数即可.【详解】100=40,1=0.4,100.42=0.04,0.01=0.4,1=40,0.1402=400,400÷6=46…4,则第400次为0.4.故选B.【点睛】此题考查了计算器﹣数的平方,弄清按键顺序是解本题的关键.2.C【解析】【分析】先根据俯视图判断出几何体的形状,再根据主视图是从正面看画出图形即可.【详解】解:由俯视图可知,几何体共有两排,前面一排从左到右分别是1个和2个小正方体搭成两个长方体,后面一排分别有2个、3个、1个小正方体搭成三个长方体,并且这两排右齐,故从正面看到的视图为:.故选:C.【点睛】本题考查几何体三视图,熟记三视图的概念并判断出物体的排列方式是解题的关键.3.C【解析】【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=22AM=2,再根据角平分线性质得BM=MH=2,则AB=2+2,于是利用正方形的性质得到AC=2AB=22+2,OC=12AC=2+1,所以CH=AC-AH=2+2,然后证明△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴222,∵CM平分∠ACB,∴2,∴2,∴AC=2AB=2(2+2)=22+2,∴OC=12AC=2+1,CH=AC﹣AH=22+2﹣2=2+2,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴ON OCMH CH=,即21222+=+,∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.4.B【解析】试题解析:由题意得25134xx yxx y⎧⎪+⎪⎨⎪⎪++⎩==,解得:23 xy⎧⎨⎩==.故选B.5.B【解析】试题解析:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC,连接DC′,交AB于P,连接CP.此时DP+CP=DP+PC′=DC′的值最小.∵DC=1,BC=4,∴BD=3,连接BC′,由对称性可知∠C′BE=∠CBE=41°,∴∠CBC′=90°,∴BC′⊥BC,∠BCC′=∠BC′C=41°,∴BC=BC′=4,根据勾股定理可得22'BC BD+2234+.故选B.6.C【解析】解:由题意得:226x +=,∴24x =,∴x=±1.故选C . 7.C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C .考点:等腰三角形的性质;三角形三边关系.8.D【解析】【分析】首先根据不等式的性质,解出x≤12a -,由数轴可知,x≤-1,所以12a -=-1,解出即可; 【详解】解:不等式21x a -≤-,解得x<12a -, 由数轴可知1x <-, 所以112a -=-, 解得1a =-;故选:D .【点睛】本题主要考查了不等式的解法和在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.9.B【解析】试题分析:正方形ABCD 绕点A 顺时针方向旋转180°后,C 点的对应点与C 一定关于A 对称,A 是对称点连线的中点,据此即可求解.试题解析:AC=2,则正方形ABCD 绕点A 顺时针方向旋转180°后C 的对应点设是C′,则AC′=AC=2,则OC′=3,。
福建省宁德市2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D .2.如图,在△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =24°,则∠BDC 的度数为( )A .42°B .66°C .69°D .77°3.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .14.如图,在平面直角坐标系中,直线y=k 1x+2(k 1≠0)与x 轴交于点A ,与y 轴交于点B ,与反比例函数y=2k x 在第二象限内的图象交于点C ,连接OC ,若S △OBC =1,tan ∠BOC=13,则k 2的值是( )A .3B .﹣12C .﹣3D .﹣65.如图,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB ,下列各式正确的是( )A .AB DC =u u u r u u u r B .DE DC =u u u v u u u v C .AB ED =u u u v u u u v D .AD BE =u u u v u u u v6.有6个相同的立方体搭成的几何体如图所示,则它的主视图是( )A .B .C .D .7.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O49.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置()A.随点C的运动而变化B.不变C.在使PA=OA的劣弧上D.无法确定10.如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED的面积的比为()A .1:2B .1:3C .1:4D .1:111.若关于x 的方程22(2)0x k x k +-+=的两根互为倒数,则k 的值为( )A .±1B .1C .-1D .012.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.14.如图,直线y =kx 与双曲线y =2x(x >0)交于点A(1,a),则k =_____.15.在△ABC 中,AB=13cm ,AC=10cm ,BC 边上的高为11cm ,则△ABC 的面积为______cm 1. 16.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC =5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长是_____.17.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .18.关于x 的一元二次方程2kx x+1=0-有两个不相等的实数根,则k 的取值范围是 ▲ .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在四边形ABCD 中,∠A =∠BCD =90°,210BC CD ==,CE ⊥AD 于点E .(1)求证:AE =CE ;(2)若tanD =3,求AB 的长.20.(6分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?21.(6分)计算:(3﹣2)0+(13)﹣1+4cos30°﹣|4﹣12| 22.(8分) (y ﹣z)1+(x ﹣y)1+(z ﹣x)1=(y+z ﹣1x)1+(z+x ﹣1y)1+(x+y ﹣1z)1.求222(1)(1)(1)(1)(1)(1)yz zx xy x y z ++++++的值. 23.(8分)如图,四边形ABCD 中,∠C =90°,AD ⊥DB ,点E 为AB 的中点,DE ∥BC.(1)求证:BD 平分∠ABC ;(2)连接EC ,若∠A =30°,DC =3,求EC 的长.24.(10分)如图,在65⨯的矩形方格纸中,每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为底边的等腰CAB ∆,其面积为5,点C 在小正方形的顶点上;在图中面出以线段AB 为一边的ABDE W ,其面积为16,点D 和点E 均在小正方形的顶点上;连接CE,并直接写出线段CE的长.25.(10分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.(1)求抛物线y=x2﹣2x的“孪生抛物线”的表达式;(2)若抛物线y=x2﹣2x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C′,请判断△DCC’的形状,并说明理由:(3)已知抛物线y=x2﹣2x﹣3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由.∠的平分线与边AB相交于点E.26.(12分)如图,在平行四边形ABCD中,ADC+=;(1)求证BE BC CD(2)若点E与点B重合,请直接写出四边形ABCD是哪种特殊的平行四边形.27.(12分)太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB的长度相同,均为300cm,AB的倾斜角为,BE=CA=50cm,支撑角钢CD,EF与底座地基台面接触点分别为D,F,CD垂直于地面,于点E.两个底座地基高度相同(即点D,F到地面的垂直距离相同),均为30cm,点A到地面的垂直距离为50cm,求支撑角钢CD和EF的长度各是多少cm(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据轴对称图形与中心对称图形的概念解答.【详解】A.不是轴对称图形,是中心对称图形;B.是轴对称图形,是中心对称图形;C.不是轴对称图形,也不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.C【解析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=12∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.3.D【解析】【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n 的值,代入计算可得.【详解】∵点A(1+m,1﹣n)与点B(﹣3,2)关于y轴对称,∴1+m=3、1﹣n=2,解得:m=2、n=﹣1,所以m+n=2﹣1=1,故选D.【点睛】本题考查了关于y轴对称的点,熟练掌握关于y轴对称的两点的横坐标互为相反数,纵坐标不变是解题的关键.4.C【解析】【分析】如图,作CH ⊥y 轴于H .通过解直角三角形求出点C 坐标即可解决问题.【详解】解:如图,作CH ⊥y 轴于H .由题意B (0,2), ∵112OB CH ⋅⋅=, ∴CH=1, ∵tan ∠BOC=1,3CH OH = ∴OH=3,∴C (﹣1,3),把点C (﹣1,3)代入2k y x =,得到k 2=﹣3, 故选C .【点睛】本题考查反比例函数于一次函数的交点问题,锐角三角函数等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.5.D【解析】∵AD//BC ,DE//AB ,∴四边形ABED 是平行四边形,∴AB DE =u u u v u u u v ,AD BE =u u u v u u u v,∴选项A 、C 错误,选项D 正确,选项B 错误,故选D.6.C【解析】试题分析:根据主视图是从正面看得到的图形,可得答案.解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选C.考点:简单组合体的三视图.7.C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数8.A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B 来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.9.B【解析】【分析】因为CP是∠OCD的平分线,所以∠DCP=∠OCP,所以∠DCP=∠OPC,则CD∥OP,所以弧AP等于弧BP,所以PA=PB.从而可得出答案.【详解】解:连接OP,∵CP 是∠OCD 的平分线,∴∠DCP=∠OCP ,又∵OC=OP ,∴∠OCP=∠OPC ,∴∠DCP=∠OPC ,∴CD ∥OP ,又∵CD ⊥AB ,∴OP ⊥AB ,∴¼¼AP BP, ∴PA=PB .∴点P 是线段AB 垂直平分线和圆的交点,∴当C 在⊙O 上运动时,点P 不动.故选:B .【点睛】本题考查了圆心角、弦、弧之间的关系,以及平行线的判定和性质,在同圆或等圆中,等弧对等弦. 10.B【解析】【分析】根据中位线定理得到DE ∥BC ,DE=12BC ,从而判定△ADE ∽△ABC ,然后利用相似三角形的性质求解. 【详解】解:∵D 、E 分别为△ABC 的边AB 、AC 上的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∴△ADE 的面积:△ABC 的面积=21()2=1:4,∴△ADE 的面积:四边形BCED 的面积=1:3;故选B .【点睛】本题考查三角形中位线定理及相似三角形的判定与性质.11.C【解析】【分析】 根据已知和根与系数的关系12c x x a =得出k 2=1,求出k 的值,再根据原方程有两个实数根,即可求出符合题意的k 的值.【详解】解:设1x 、2x 是22(2)0x k x k +-+=的两根,由题意得:121=x x ,由根与系数的关系得:212x x k =, ∴k 2=1,解得k=1或−1,∵方程有两个实数根,则222=(2)43440∆--=--+>k k k k ,当k=1时,34430∆=--+=-<,∴k=1不合题意,故舍去,当k=−1时,34450∆=-++=>,符合题意,∴k=−1,故答案为:−1.【点睛】本题考查的是一元二次方程根与系数的关系及相反数的定义,熟知根与系数的关系是解答此题的关键. 12.B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h 1=1,h 2=3(舍去);当2≤h≤5时,y=-(x-h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得:h 3=4(舍去),h 4=1.综上所述:h 的值为1或1.故选B .点睛:本题考查了二次函数的最值以及二次函数的性质,分h <2、2≤h≤5和h >5三种情况求出h 值是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②③【解析】【分析】①证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②由AD ∥BC ,推出△AEF ∽△CBF ,得到AE AF BC CF =,由AE=12AD=12BC ,得到12AF CF =,即CF=2AF ; ③作DM ∥EB 交BC 于M ,交AC 于N ,证明DM 垂直平分CF ,即可证明;④设AE=a ,AB=b ,则AD=2a ,根据△BAE ∽△ADC ,得到2b a a b =,即a ,可得tan ∠CAD=22b a =. 【详解】 如图,过D 作DM ∥BE 交AC 于N ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,AD=BC ,∵BE ⊥AC 于点F ,∴∠EAC=∠ACB ,∠ABC=∠AFE=90°,∴△AEF ∽△CAB ,故①正确;∵AD ∥BC ,∴△AEF ∽△CBF , ∴AE AF BC CF=, ∵AE=12AD=12BC , ∴12AF CF =,即CF=2AF , ∴CF=2AF ,故②正确;作DM ∥EB 交BC 于M ,交AC 于N ,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,∴2b aa b=,即2a,∴tan∠CAD=222ba=,故④错误;故答案为:①②③.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.14.1【解析】解:∵直线y=kx与双曲线y=2x(x>0)交于点A(1,a),∴a=1,k=1.故答案为1.15.2或2.【解析】试题分析:分两种情况讨论:锐角三角形和钝角三角形,根据勾股定理求得BD=16,CD=5,再由图形求出BC,在锐角三角形中,BC=BD+CD=2,在钝角三角形中,BC=CD-BD=2.故答案为2或2.考点:勾股定理16.71【解析】分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=1.∴这个风车的外围周长是:4(x+y)=4×19=71.故答案是:71.点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.17.21【解析】试题分析:这四个数中,奇数为1和3,则P(抽出的数字是奇数)=2÷4=12.考点:概率的计算.18.k<14且k≠1.【解析】根据一元二次方程kx2-x+1=1有两个不相等的实数根,知△=b2-4ac>1,然后据此列出关于k的方程,解方程,结合一元二次方程的定义即可求解:∵2kx x+1=0有两个不相等的实数根,∴△=1-4k>1,且k≠1,解得,k<14且k≠1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)AB=4【解析】【分析】(1)过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE 全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证;(2)由(1)可知:CF=DE,四边形AEFB是矩形,从而求得AB=EF,利用锐角三角函数的定义得出DE和CE的长,即可求得AB的长.【详解】(1)证明:过点B 作BH ⊥CE 于H ,如图1.∵CE ⊥AD ,∴∠BHC =∠CED =90°,∠1+∠D =90°.∵∠BCD =90°,∴∠1+∠2=90°,∴∠2=∠D .又BC =CD∴△BHC ≌△CED (AAS ).∴BH =CE .∵BH ⊥CE ,CE ⊥AD ,∠A =90°,∴四边形ABHE 是矩形,∴AE =BH .∴AE =CE .(2)∵四边形ABHE 是矩形,∴AB =HE .∵在Rt △CED 中,tan 3CE D DE ==, 设DE =x ,CE =3x ,∴10210CD x ==.∴x =2.∴DE =2,CE =3.∵CH =DE =2.∴AB =HE =3-2=4.【点睛】本题考查了全等三角形的判定与性质,矩形的判定与性质,锐角三角函数的定义,难度中等,作辅助线构造出全等三角形与矩形是解题的关键.20.()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】【分析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,解得a 20≥,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.21.4【解析】【分析】直接利用零指数幂的性质以及负指数幂的性质和特殊角的三角函数值、绝对值的性质分别化简进而得出答案.【详解】2)0+(13)﹣1+4cos30°﹣|4|4﹣【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.1【解析】【分析】通过已知等式化简得到未知量的关系,代入目标式子求值.【详解】∵(y﹣z)1+(x﹣y)1+(z﹣x)1=(y+z﹣1x)1+(z+x﹣1y)1+(x+y﹣1z)1.∴(y﹣z)1﹣(y+z﹣1x)1+(x﹣y)1﹣(x+y﹣1z)1+(z﹣x)1﹣(z+x﹣1y)1=2,∴(y﹣z+y+z﹣1x)(y﹣z﹣y﹣z+1x)+(x﹣y+x+y﹣1z)(x﹣y﹣x﹣y+1z)+(z﹣x+z+x﹣1y)(z﹣x﹣z ﹣x+1y)=2,∴1x1+1y1+1z1﹣1xy﹣1xz﹣1yz=2,∴(x﹣y)1+(x﹣z)1+(y﹣z)1=2.∵x,y,z均为实数,∴x=y=z.∴()() ()()() 2221)111.111yz zx xyx y z+++= +++(23.(1)见解析;(2)EC=【解析】【分析】(1)直接利用直角三角形的性质得出12DE BE AB==,再利用DE∥BC,得出∠2=∠3,进而得出答案;(2)利用已知得出在Rt△BCD中,∠3=60°,DC=DB的长,进而得出EC的长. 【详解】(1)证明:∵AD⊥DB,点E为AB的中点,∴12DE BE AB==.∴∠1=∠2.∵DE∥BC,∴∠2=∠3.∴∠1=∠3.∴BD平分∠ABC.(2)解:∵AD⊥DB,∠A=30°,∴∠1=60°.∴∠3=∠2=60°.∵∠BCD=90°,∴∠4=30°.∴∠CDE=∠2+∠4=90°.DC=,在Rt△BCD中,∠3=60°,3∴DB=2.∵DE=BE,∠1=60°,∴DE=DB=2.∴22437=+=+=.EC DE DC【点睛】此题主要考查了直角三角形斜边上的中线与斜边的关系,正确得出DB,DE的长是解题关键.CE=.24.(1)见解析;(2)见解析;(3)见解析,5【解析】【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合平行四边形的性质以及勾股定理得出符合题意的答案;(3)连接CE,根据勾股定理求出CE的长写出即可.【详解】解:(1)如图所示;(2)如图所示;(3)如图所示;CE=5.【点睛】本题主要考查了等腰三角形的性质、平行四边形的性质、勾股定理,正确应用勾股定理是解题的关键. 25.(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).【解析】【分析】(1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;(2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;(3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.【详解】(1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;(2)△DCC'是等腰直角三角形,理由如下:∵抛物线y=x2-2x+c=(x-1)2+c-1,∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),∴CC'=c-(c-2)=2,∵点D的横坐标为1,∴∠CDC'=90°,由对称性质可知DC=DC’,∴△DCC'是等腰直角三角形;(3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,∴C(0,-3),A(3,0),∵y=x2-2x-3=(x-1)2-4,∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,若A、C为平行四边形的对角线,∴其中点坐标为(32,−32),设P(a,-a2+2a-5),∵A、C、P、Q为顶点的四边形为平行四边形,∴Q(0,a-3),∴23252a a a--+-=−32,化简得,a2+3a+5=0,△<0,方程无实数解,∴此时满足条件的点P不存在,若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,∵点C和点Q在y轴上,∴点P的横坐标为3,把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,∴P1(3,-8),若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,∴点P的横坐标为-3,把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,∴P2(-3,-20)∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.【点睛】本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.26.(1)见解析;(2)菱形.【解析】【分析】(1)根据角平分线的性质可得∠ADE=∠CDE,再由平行线的性质可得AB∥CD,易得AD=AE,从而可证得结论;(2)若点E与点B重合,可证得AD=AB,根据邻边相等的平行四边形是菱形即可作出判断.【详解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵点E与B重合,∴AD=AB.∵四边形ABCD 是平行四边形∴平行四边形ABCD 为菱形.【点睛】本题考查了平行四边形的性质,平行线的性质,等腰三角形的性质,菱形的性质,熟练掌握各知识是解题的关键.27.2903cm 【解析】【分析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF.【详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG V 中,()1sin 3050252CG AC cm =︒=⨯=g , 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH V 中,()290sin 30CD CH CD cm ===︒, ∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH V 中,()32903tan 30290EF EH cm =︒=⨯=g . 答:支角钢CD 的长为45cm ,EF 的长为2903cm .考点:三角函数的应用。
2019年宁德市中考数学试题与答案(试卷满分150分,考试时间120分钟)一、选择题(每小题4分,共40分) 1. 计算22+(-1)°的结果是( ).A.5B.4C.3D.22. 北京故宫的占地面积约为720 000m 2,将720 000用科学记数法表示为( ). A.72×104B.7.2×105C.7.2×106D. 0.72×1063. 下列图形中,一定既是轴对称图形又是中心对称图形的是( ). A.等边三角形 B.直角三角形 C.平行四边形 D.正方形4. 右图是由一个长方体和一个球组成的几何体,它的主视图是( ).5. 已知正多边形的一个外角为36°,则该正多边形的边数为( ). A.12 B.10 C.8 D.66. 如图是某班甲、乙、丙三位同学最近5次数学成绩及其所在班级相应平均分的折线统计图,则下列判断错误的是( ).A.甲的数学成绩高于班级平均分,且成绩比较稳定B.乙的数学成绩在班级平均分附近波动,且比丙好C.丙的数学成绩低于班级平均分,但成绩逐次提高D.就甲、乙、丙三个人而言,乙的数学成绩最不稳 7. 下列运算正确的是( ).A.a ·a 3= a 3B.(2a )3=6a 3C. a 6÷a 3= a 2D.(a 2)3-(-a 3)2=08. 《增删算法统宗》记载:“有个学生资性好,一部孟子三日了,每日增添一倍多,问若每日读多少?”其大意是:有个学生天资聪慧,三天读完一部《孟子》,每天阅读的字数是前一天的两倍,问他每天各读多少个字?已知《孟子》一书共有34 685个字,设他第一天读x 个字,则下面所列方程正确的是( ).主视方向C. x +2x +2x =34 685D. x +21x +41x =34 685 9. 如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上, 且∠ACB =55°,则∠APB 等于( ). A.55° B.70° C.110° D.125°10.若二次函数y =|a |x 2+bx+c 的图象经过A(m ,n )、B(0,y 1)、C(3-m ,n )、D(2, y 2)、E(2,y 3),则y 1、y 2、y 3的大小关系是( ). A. y 1< y 2< y 3 B. y 1 < y 3< y 2 C. y 3< y 2< y 1 D. y 2< y 3< y 1 二、填空题(每小题4分,共24分)11.因式分解:x 2-9=__( x +3)( x -3)_____. 12.如图,数轴上A 、B 两点所表示的数分别是-4和2, 点C 是线段AB 的中点,则点C 所表示的数是__-1_____.13.某校征集校运会会徽,遴选出甲、乙、丙三种图案.为了解何种图案更受欢迎,随机调查了该校100名学生,其中60名同学喜欢甲图案,若该校共有2000人,根据所学的统计知识可以估计该校喜欢甲图案的学生有__1200_____人.14.中在平面直角坐标系xOy 中,□OABC 的三个顶点O (0,0)、A (3,0) 、B (4,2),则其第四个顶点是是__(1,2)_____.15.如图,边长为2的正方形ABCD 中心与半径为2的⊙O 的圆心重合, E 、F 分别是AD 、BA 的延长与⊙O 的交点,则图中阴影部分的面积 是__π-1_____.(结果保留π) 16.如图,菱形ABCD 顶点A 在例函数y =x3(x >0)的图象上,函数 y =xk(k >3,x >0)的图象关于直线AC 对称,且经过点B 、D两点,若AB =2,∠DAB =30°,则k 的值为_6+23______.三、解答题(共86分) 17. (本小题满分8分)解方程组:⎩⎨⎧=+=-425y x y x18. (本小题满分8分)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE .P(第9题)(第15题)DCEFABO FEDCBA2-4CB A (第12题)先化简,再求值:(x -1)÷(x -xx 12-),其中x =2+1 20. (本小题满分8分) 如图,已知△ABC 为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC ,S △A'B'C'=4S △ABC ; (尺规作图,保留作图痕迹,不写作法)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF ∽△D'E'F'.21. (本小题满分8分)在Rt △ABC 中,∠ABC =90°,∠BAC =30°,将△ABC 绕点A 顺时针旋转一定的角度α得到△AED ,点B 、C 的对应点分别是E 、D .(1)如图1,当点E 恰好在AC 上时,求∠CDE 的度数;(2)如图2,若α=60°时,点F 是边AC 中点,求证:四边形BFDE 是平行四边形.22.(本小题满分10分)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m 吨的废水处理车间,对该厂工业废水进行无害化处理. 但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理. 已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元. (1)求该车间的日废水处理量m ;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围. 23.(本小题满分10分)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,C A策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;10”的概率;(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?24. (本小题满分12分)如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠DAC;(2)若AF=10,BC=45,求tan∠BAD的值.25.已知抛物y=ax2+bx+c(b<0)与轴只有一个公共点.(1)若公共点坐标为(2,0),求a、c满足的关系式;(2)设A为抛物线上的一定点,直线l:y=kx+1-k与抛物线交于点B、C两点,直线BD垂直于直线y=-1,垂足为点D.当k=0时,直线l与抛物线的一个交点在y轴上,且△ABC为等腰直角三角形.①求点A的坐标和抛物线的解析式;②证明:对于每个给定的实数k,都有A、D、C三点共线. FEDCB A参考答案一、选择题:本题考查基础知识与基本技能.每小题 4分,满分 40分.11. (x +3)( x -3) 12. -1 13.120014. (1,2)15. π-19 小题,共 86 分.x-y =5,①17.解:2x +y =4,②.①+②,得(x -y )+( 2x +y )=5+4, 即 3x =9, 解得 x =3,把 x =3 代入②,得 2×3+y =4,解得 y =-2.所以原方程组的解为x =3 .y =-218.证明:∵四边形 ABCD 是矩形,∴∠D =∠B =90°,AD =CB ,在△ADF 和△CBE 中, =CB , D =∠B , DF =BE , ∴△ADF ≌△CBE ,∴AF =CE .19.解:原式=(x -1)x 2-(2x -1)÷=(x -1)x x 2-2x +1 ÷= (x -x (x -1)2(x -1)2x. (x -1) 当x= 2+1时,原式=1+ 2.2+1-1 2220.解:(1)△A ′B ′C ′即为所求作的三角形.(2)证明:∵D ,E ,F 分别是△ABC 三边 AB ,BC ,CA 的中点,∴DE =1AC ,EF =1AB ,FD =1BC ,2 2 2同理,D ′E ′=1A ′C ′,E ′F ′=1A ′B ′,F ′D ′=1B ′C ′.2 2 2∵△ABC ∽△A ′B ′C ′,∴△DEF ∽△D′E′F′=21.解:(1)在△ABC 中,∠ABC =90°,∠ACB =30°,∴∠BAC =60°.由旋转性质得,DC =AC ,∠DCE =∠ACB =30°. ∴∠DAC =∠ADC =1(180°-∠DCE )=75°,2又∠EDC =∠BAC =60°,∴∠ADE =∠ADC -∠EDC =15°.(2)在△ABC 中,∠ABC =90°,∠ACB =30°, ∴AB =1AC ,2∵F 是 AC 的中点, ∴BF =FC =1AC ,2∴∠FBC =∠ACB =30°. 由旋转性质得,AB =DE ,∠DEC =∠ABC =90°,∠BCE =∠ACD =60°, ∴DE =BF ,延长 BF 交 EC 于点 G ,则∠BGE =∠GBC +∠GCB =90°, ∴∠BGE =∠DEC , ∴DE ∥BF ,∴四边形 BEDF 是平行四边形.22.解:(1)∵处理废水35吨花费370,且3530370 =768>8,∴m <35, ∴30+8m +12(35-m )=370,m =20 (2)设一天生产废水x 吨,则当0< x ≤20时,8x +30≤10 x , 15≤x ≤20 当x >20时,12(x -20)+160+30≤10x , 20<x ≤25 综上所述,15≤x ≤20 23.解:(1)0.6(2)购买10次时,此时这100台机器维修费用的平均数 y 1=1001(24000×10+24500×20+25000×30+30000×30+35000×10)=27300 购买11次时,此时这100台机器维修费用的平均数 y 2=1001(26000×10+26500×20+27000×30+27500×30+32500×10)=27500 所以,选择购买10次维修服务. 24.解:(1)∵BD ⊥AC ,CD=CD , ∴∠BAC =2∠CBD =2∠CAD ; (2)∵DF =DC , ∴∠BFC =21∠BDC =21∠BAC =∠FBC , ∴CB=CF , 又BD ⊥AC ,∴AC 是线段BF 的中垂线,AB= AF =10, AC =10. 又BC =45, 设AE =x , CE =10-x ,AB 2-AE 2=BC 2-CE 2, 100-x 2=80-(10-x )2, x =6∴AE =6,BE =8,CE =4,("1,2,5";"3,4,5";Rt △组合) ∴DE =BE CE AE ⋅=846⨯=3, 作DH ⊥AB ,垂足为H ,则HFE DCBADH=BD ·sin ∠ABD =11×53=533, BH= BD ·cos ∠ABD =11×54=544∴AH =10-544=56∴tan ∠BAD =AH DH =633=21125.解:(1) y=a (x -2)2, c =4a ;(2) y=kx+1-k = k (x -1)+1过定点(1,1),且当k =0时,直线l 变为y =1平行x 轴,与轴的交点为(0,1) 又△ABC 为等腰直角三角形,∴点A 为抛物线的顶点 ①c =1,顶点A (1,0)抛物线的解析式: y = x 2-2x +1.②⎩⎨⎧-+=+-=kkx y x x y 1122 x 2-(2+k)x +k =0, x =21(2+k ±42+k ) x D =x B =21(2+k -42+k ), y D =-1; D ⎪⎪⎭⎫ ⎝⎛-+-+1,2412k k y C =21(2+k 2+k 42+k , C ⎪⎪⎭⎫ ⎝⎛++++++2)4(1,24122k k k k k , A (1,0) ∴直线AD 的斜率k AD =422+--k k =242++k k ,直线AC 的斜率k AC =242++k k∴k AD = k AC , 点A 、C 、D 三点共线.。
福建省宁德市2019-2020学年中考五诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知x 2-2x-3=0,则2x 2-4x 的值为( ) A .-6B .6C .-2或6D .-2或302.如图,点P 是以O 为圆心,AB 为直径的半圆上的动点,AB=2,设弦AP 的长为x ,△APO 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .3.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有( )A .4个B .5个C .6个D .7个4.如图,在ABC V 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A .AF DEDF BC= B .DF AFDB DF= C .EF DECD BC= D .AF ADBD AB= 5.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=o ,2a BC =,ACb =,再在斜边AB 上截取2aBD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长6.如图,在⊙O 中,点P 是弦AB 的中点,CD 是过点P 的直径,则下列结论:①AB ⊥CD ; ②∠AOB=4∠ACD ;③弧AD=弧BD ;④PO=PD ,其中正确的个数是( )A .4B .1C .2D .37.如图,在⊙O 中,O 为圆心,点A ,B ,C 在圆上,若OA=AB ,则∠ACB=( )A .15°B .30°C .45°D .60°8.计算232332x y x y xy ⋅÷的结果是( ). A .55xB .46xC .56xD .46x y9.函数22a y x--=(a 为常数)的图像上有三点17()2y -,,21()2y -,,33()2y ,,则函数值123,,y y y 的大小关系是( ) A .y 3<y 1<y 2B .y 3<y 2<y 1C .y 1<y 2<y 3D .y 2<y 3<y 110.小昱和阿帆均从同一本书的第1页开始,逐页依顺序在每一页上写一个数.小昱在第1页写1,且之后每一页写的数均为他在前一页写的数加2;阿帆在第1页写1,且之后每一页写的数均为他在前一页写的数加1.若小昱在某页写的数为101,则阿帆在该页写的数为何?( ) A .350B .351C .356D .35811.如图,在平面直角坐标系中,矩形ABOC 的两边在坐标轴上,OB =1,点A 在函数y =﹣2x(x <0)的图象上,将此矩形向右平移3个单位长度到A 1B 1O 1C 1的位置,此时点A 1在函数y =kx(x >0)的图象上,C 1O 1与此图象交于点P ,则点P 的纵坐标是( )A .53B .34C .43D .2312. “单词的记忆效率”是指复习一定量的单词,一周后能正确默写出的单词个数与复习的单词个数的比值.右图描述了某次单词复习中,,,M N S T 四位同学的单词记忆效率y 与复习的单词个数x 的情况,则这四位同学在这次单词复习中正确默写出的单词个数最多的是( )A .MB .NC .SD .T二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图△ABC 中,∠C=90°,AC=8cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若cos ∠BDC=35,则BC 的长为_____.14.如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,且AC=CD ,∠ACD=120°,CD 是⊙O 的切线:若⊙O 的半径为2,则图中阴影部分的面积为_____.15.如图,O e 的半径为1cm ,正六边形ABCDEF 内接于O e ,则图中阴影部分图形的面积和为________2cm (结果保留 ).16.同一个圆的内接正方形和正三角形的边心距的比为_____.17.若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是_____三角形.18.如图,PA,PB是⊙O是切线,A,B为切点,AC是⊙O的直径,若∠P=46°,则∠BAC= ▲ 度.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.写出图中小于平角的角.求出∠BOD的度数.小明发现OE平分∠BOC,请你通过计算说明道理.20.(6分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为1.(1)当m=1,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.21.(6分)已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.22.(8分)为了解黔东南州某县中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图.成绩分组组中值频数25≤x<30 27.5 430≤x<35 32.5 m35≤x<40 37.5 2440≤x<45 a 3645≤x<50 47.5 n50≤x<55 52.5 4(1)求a、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?23.(8分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6 a1.6≤x<2.0 122.0≤x<2.4 b2.4≤x<2.8 10请根据图表中所提供的信息,完成下列问题:表中a=,b=,样本成绩的中位数落在范围内;请把频数分布直方图补充完整;该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?24.(10分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC 的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=25,CE=2,求线段AE的长.25.(10分)尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)26.(12分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(1,1),B(4,1),C (3,3).(1)将△ABC向下平移5个单位后得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕原点O逆时针旋转90°后得到△A2B2C2,请画出△A2B2C2;(3)判断以O,A1,B为顶点的三角形的形状.(无须说明理由)∠=α,点E在对角线BD上. 将线段CE绕点C顺时针旋转27.(12分)如图,在菱形ABCD中,BADα,得到CF,连接DF.(1)求证:BE=DF;⊥.(2)连接AC,若EB=EC ,求证:AC CF参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】方程两边同时乘以2,再化出2x2-4x求值.解:x2-2x-3=02×(x2-2x-3)=02×(x2-2x)-6=02x2-4x=6故选B.2.A。
精品文档2019年宁德市初中毕业班质量检测数 学 试 题(满分150分 考试时间:120分钟) 注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色签字笔描黑. 4.考试结束,考生必须将试题卷和答题卡一并上交.第 Ⅰ 卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.2019的绝对值是A .12019B .2019C .12019-D .2019-2.下列几何体中,主视图与俯视图相同的是ABCD3.下列运算正确的是A .326a a a ⋅=B .623a a a ÷=C .020 =()D .2139-=4.若三角形的三边长分别为3,x ,5,则x 的值可以是A .2B .5C .8D .115.如图,在44⨯的正方形网格中,点A ,B ,M ,N 都在格点上.从点M ,N 中任取一点,与点A ,B 顺次连接组成一个三角形,则下列事件是必然事件的是 A .所得三角形是锐角三角形 B .所得三角形是直角三角形 C .所得三角形是钝角三角形NMABD.所得三角形是等腰三角形第5题图精品文档精品文档6.一元二次方程x 2﹣2x ﹣1=0根的情况是A .只有一个实数根B .有两个相等的实数根C .有两个不相等的实数根D .没有实数根7.我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来谷米1534石,验得其中夹有谷粒.现从中抽取谷米一把,共数得254粒,其中夹有谷粒28粒,则这批谷米内夹有谷粒约是 A .134石B .169石C .338石D .1365石8.小卖部从批发市场购进一批杨梅,在销售了部分杨梅之后,余下的每千克降价3元,直至全部售完.销售金额y 元与杨梅销售量x 千克之间的关系如图所示.若销售这批杨梅一共赢利220元,那么这批杨梅的进价是 A .10元/千克 B .12元/千克 C .12.5元/千克D .14.4元/千克9.如图,AB 是⊙O 的直径,AB =AC ,AC 交⊙O 于点E ,BC 交⊙O 于点D ,F 是CE 的中点,连接DF .则下列结论错误的是A .∠A=∠ABEB .BD ⌒=DE ⌒C .BD =DCD .DF 是⊙O 的切线10.点 A (2,m ),B (2,m -5)在平面直角坐标系中,点O 为坐标原点.若△ABO 是直角三角形,则m 的值不可能是 A .4B .2C .1D .0第 Ⅱ 卷注意事项:1.用0.5毫米黑色签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效. 2.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色签字笔描黑. 二、填空题:本题共6小题,每小题4分,共24分. 11.2018年国庆假期宁德市接待游客2 940 000人次.将数据2 940 000用科学记数法表示为 .12.如图,DA ⊥CE 于点A ,CD ∥AB ,∠1=30°,则∠D = °.13.学校组织户外研学活动,安排给九年级三辆车,小明与小慧都可以从三辆车中任选一辆搭乘,则小明和小慧搭乘同一辆车的概率是 .第8题图第9题图第12题图BCDy /元 x /千40600720 CEADB1 E OAF精品文档14.关于x 的一元一次不等式组2152x x m - ⎧⎪⎨+⎪⎩>,≤中两个不等式的解集在同一数轴上的表示如图所示,则该不等式组解集是 .15. 小宇计算分式的过程如图所示,他开始出现计算错误的是在第 步.(填序号)16. 如图,已知正方形ABCD 中,点E 是BC 上的一个动点,EF ⊥AE 交CD 于点F ,以AE ,EF 为边作矩形AEFG ,若AB=4,则点G 到AD 距离的最大值是________. 三、解答题:本题共9小题,共86分.17.(本题满分8分)先化简,再求值:9)2()3(2-++-x x x ,其中3-=x .18.(本题满分8分)如图,F ,C 是AD 上两点,且AF=CD ;点E ,F ,G 在同一直线上,且F ,G 分别是AC ,AB 中点,BC =EF . 求证:△ABC ≌△DEF .19.(本题满分8分)春晓中学为开展“校园科技节”活动,计划购买A 型、B 型两种型号的航模.若购买8个A 型航模和5个B 型航模需用2200元;若购买4个A 型航模和6个B 型航模需用1520元.求A ,B 两种型号航模的单价分别是多少元.第16题图计算:23311x x x ---- 解:原式33=(1)(1)1x x x x --+--…①33(1)=(1)(1)(1)(1)x x x x x x -+-+-+- …②=33(1)x x --+ …③ =26x -- …④ A B C D E FG 1 2 3-1 0-2 第14题图EABCDGF精品文档20.(本题满分8分)某校九年级共有80名同学参与数学科托底训练.其中(1)班30人,(2)班25人,(3)班25人,吕老师在托底训练后对这些同学进行测试,并对测试成绩进行整理,得到下面统计图表.(1)表格中的m 落在________组;(填序号)①40≤x <50, ②50≤x <60, ③60≤x <70, ④70≤x <80, ⑤80≤x <90, ⑥90≤x ≤100.(2)求这80名同学的平均成绩;(3)在本次测试中,(2)班小颖同学的成绩是70分,(3)班小榕同学的成绩是74分,这两位同学成绩在自己所在班级托底同学中的排名,谁更靠前?请简要说明理由.21.(本题满分8分)如图,点O 是菱形ABCD 对角线的交点,点E 在BO 上,EF 垂直平分AB ,垂足为F .(1)求证:△BEF ∽△DCO ;(2)若AB =10,AC =12,求线段EF 的长.22.(本题满分8分)已知反比例函数图象上两点A (2,3),B ()122x y -+,的位置如图所示.(1)求x 的取值范围;(2)若点C ()2x y -,也在该反比例函数的图像上,试比较1y ,2y 的大小. 班级 平均数 中位数 众数 (1)班 75.2 m 82 (2)班 71.2 68 79 (3)班72.87575DACBOFE 九年级托底成绩统计表 xy OAB (1)班成绩分布直方图成绩/分人数40 50 60 70 80 90 1001 2 3 4 5 6 7 8 9精品文档23.(本题满分12分)定义:平面内,如果一个四边形的四个顶点到某一点的距离都相等,则称这一点为该四边形的外心.(1)下列四边形:平行四边形、矩形、菱形中,一定有外心的是 ; (2)已知四边形ABCD 有外心O ,且A ,B ,C 三点的位置如图1所示,请用尺规确定该四边形的外心,并画出一个满足条件的四边形ABCD ; (3)如图2,已知四边形ABCD 有外心O ,且BC =8,sin ∠BDC =45,求OC 的长.24.(本题满分13分)如图,在矩形ABCD 中,AB =4,AD =6,E 是AD 边上的一个动点,将四边形BCDE 沿直线BE 折叠,得到四边形BC ′D ′E ,连接AC ′,AD ′. (1)若直线DA 交BC ′于点F ,求证:EF=BF ;(2)当AE =334时,求证:△AC ′D ′是等腰三角形; (3)在点E 的运动过程中,求△AC ′D ′面积的最小值.图1图2BA CCBDED ′AFC ′ ABCDO精品文档25.(本题满分13分)如图1,已知水龙头喷水的初始速度v 0可以分解为横向初始速度v x 和纵向初始速度v y ,θ是水龙头的仰角,且2220y x v v v +=.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A 在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA 为15米,山坡的坡比为13.离开水龙头后的水(看成点)获得初始速度v 0米/秒后的运动路径可以看作是抛物线,点M 是运动过程中的某一位置.忽略空气阻力,实验表明:M 与A 的高度之差d (米)与喷出时间t (秒)的关系为25y d v t t =-;M 与A 的水平距离为t v x 米.已知该水流的初始速度0v 为15米/秒,水龙头的仰角θ为53︒.(1)求水流的横向初始速度v x 和纵向初始速度v y ;(2)用含t 的代数式表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x的取值范围);(3)水流在山坡上的落点C 离喷射点A 的水平距离是多少米?若要使水流恰好喷射到坡脚B 处的小树,在相同仰角下,则需要把喷射点A 沿坡面AB 方向移动多少米?(参考数据:4sin535︒≈,3cos535︒≈,4tan533︒≈) 图1图2v 0v y v xθAxyOBCt v xM精品文档2019年厦门市初中毕业班教学质量检测数学参考答案说明:解答只列出试题的一种或几种解法.如果考生的解法与所列解法不同,可参照评分量表的要求相应评分.一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 选项BACDBCADCC二、填空题(本大题共6小题,每题4分,共24分)11. 2a . 12. x ≥32. 13. (8,3). 14. 18. 15. 13. 16.4-22.三、解答题(本大题有9小题,共86分) 17.(本题满分8分)⎩⎨⎧x +y =4,…………①x -2y =1. …………②解:①-②得(x+y )-(x -2y )=4-1, ………………2分 y +2y =3, ………………3分 3y =3, ………………4分y =1. ………………5分把y =1代入①得x +1=4,x =3. ………………7分 所以这个方程组的解是⎩⎨⎧x =3,y =1.………………8分18.(本题满分8分) 证明(方法一): ∵ AB ∥FC ,∴ ∠B =∠FCE . ……………………2分A BCD EF精品文档∵ BC =DE ,∴ BC +CD =DE +CD .即BD =CE . ……………………4分 又∵ AB =FC ,∴ △ABD ≌△FCE . ……………………6分 ∴ ∠ADB =∠E . ……………………7分 ∴ AD ∥FE . ……………………8分证明(方法二): 连接AF∵ AB ∥FC ,AB =FC ,∴ 四边形ABCF 是平行四边形. ……………………2分 ∴ AF ∥BC ,AF =BC . ……………………4分 ∵ BC =DE ,∴ AF =DE . ……………………5分 又∵ B ,C ,D ,E 在一条直线上, ∴ AF ∥DE .∴ 四边形ADEF 是平行四边形. ……………………7分 ∴ AD ∥FE . ……………………8分19.(本题满分8分) 解:(2a 2-4a 2-1) ÷a 2+2a a 2 =2a 2-4-a 2a 2·a 2a 2+2a ……………………………2分 =(a +2)(a -2)a 2·a 2a (a +2)=a -2a . ……………………………6分 当a =2时,原式=2-22……………………………7分=1- 2. ……………………………8分20.(本题满分8分)(1)(本小题满分3分)解:如图,点E即为所求.…………………3分精品文档(2)(本小题满分5分) 方法一:解:∵ 四边形ABCD 是正方形, ∴ ∠BCD =90°,BC =CD .∴ ∠DBC =∠CDB =45°. …………………5分 ∵ EF ⊥BD ,∴ ∠BFE =90°.由(1)得EF =EC ,BE =BE ,∴ Rt △BFE ≌Rt △BCE . …………………6分 ∴ BC =BF .∴ ∠BCF =∠BFC . …………………7分∴ ∠BCF =180°-∠FBC2=67.5°.…………………8分 方法二:解:∵ 四边形ABCD 是正方形, ∴ ∠BCD =90°,BC =CD .∴ ∠DBC =∠CDB =45°.…………………5分 由(1)得EF =EC ,∴ ∠EFC =∠ECF .…………………6分 ∵ EF ⊥BD ,∴ ∠BFE =90°.∵ ∠BFE =∠BCE =90°,∴ ∠BFE -∠EFC =∠BCE -∠ECF .∴ ∠BFC =∠BCF .…………………7分 ∵ ∠DBC =45°,∴ ∠BCF =180°-∠FBC2=67.5°.…………………8分21.(本题满分8分)解:(1)(本小题满分3分)答:该日停留时间为10s~12s 的车辆约有7辆,这些停留时间为10s~12s 的车辆的平均停留时间约为11s .……………………3分(2)(本小题满分5分)依题意,车辆在A 斑马线前停留时间约为:1×10+3×12+5×12+7×8+9×7+11×150=4.72(秒). 车辆在B 斑马线前停留时间为:1×3+3×2+5×10+7×13+9×1240=6.45(秒). ……………………7分精品文档由于4.72<6.45因此移动红绿灯放置B 处斑马线上较为合适. ……………………8分22.(本题满分10分)(1)(本小题满分5分) 解:∵ ∠C =90°,∴ AB 为△ABC 外接圆的直径. …………………1分 ∵ 该圆的半径为52,∴ AB =102. …………………2分 ∴ 在Rt △ABC 中,AC 2 +BC 2 =AB 2 . ∵ AC =10∴ 102 +BC 2 =(102)2 .∴ BC =10. …………………4分 ∴ AC =BC . ∴ ∠A =∠B .∴ ∠A =180°-∠C2=45°.…………………5分(2)(本小题满分5分)解:AB 与CD 互相垂直,理由如下:由(1)得,AB 为直径,取AB 中点O ,则点O 为圆心,连接OC ,OD . ∵ CE ⊥DB , ∴ ∠E =90°.∴ 在Rt △CBE 中,BE 2 +CE 2 =BC 2 . 即32 +42 =BC 2 .∴ BC =5. …………………6分 ∵ ︵BC =︵BC ,∴ ∠A =12∠BOC ,∠CDE =12∠BOC . ∴ ∠A =∠CDE . …………………7分 ∵ ∠ACB =90°,∴ 在Rt △ACB 中,tan A =BC AC =510=12.∴ tan ∠CDE =tan A =12. …………………8分 又∵ 在Rt △CED 中,tan ∠CDE =CEDE ,精品文档∴ CE DE =12. 即4DE =12.∴ DE =8.∴ BD =DE -BE =8-3=5.∴ BC =BD . …………………9分 ∴ ∠BOC =∠BOD . ∵ OC =OD , ∴ OM ⊥CD .即AB ⊥CD . …………………10分23.(本题满分10分)解:(1)(本小题满分4分)过点D 作DE ⊥BC , 则∠DEB =90°. ∵ AB ∥CD ,∴ ∠ABC =∠DCE =60°.…………………1分 ∴ 在Rt △CDE 中,∠CDE =30°.∴ CE =12CD =32 .∴ DE =CD 2-CE 2=332 . …………………3分∴ △BCD 的面积为 12BC ·DE =12×4×332=3 3 …………………4分(2)(本小题满分6分) 方法一:连接AN ,∵ 线段BM 绕点B 逆时针旋转60°得到线段BN , ∴ NB =MB ,∠NBM =60°. ∵ ∠MBC +∠MBA = ∠MBA +∠NBA . ∴ ∠MBC =∠NBA , ∵ AB =BC ,∴ △MBC ≌△NBA .…………………5分 ∴ ∠NAB =∠BCM =120°. 连接AC , ∵ ∠ABC =60°, AB =BC ,∴ △ABC 为等边三角形. …………………6分 ∴ ∠BAC =∠ACB =60°. ∴ ∠NAB +∠BAC =180°.∴ N ,A ,C 三点在一条直线上. ……………………7分 ABC DEQMNAB CD精品文档∵ NQ =n ,BQ =m , ∴ CQ =4-m . ∵ NQ ⊥BC ,∴ ∠NQC =90°.∴ 在Rt △NQC 中,NQ =CQ ·tan ∠NCQ .∴ n = 3 (4-m ) .即n =-3m +43. ……………………9分所以n 关于m 的函数解析式为:n =-3m +4 3 (12≤m ≤2).…………………10分方法二:∵ 线段BM 绕点B 逆时针旋转60°得到线段BN , ∴ NB =BM ,∠NBM =60°. ∵ ∠MBC +∠MBA = ∠MBA +∠NBA . ∴ ∠MBC =∠NBA , ∵ AB =BC ,∴ △MBC ≌△NBA .…………………5分 ∴ ∠NAB =∠BCM =120°. 设AB 与NQ 交于H 点, ∵ NQ ⊥BC ,∴ ∠HQB =90°. ∵ ∠ABC =60°,∴ ∠BHQ =∠NHA =30°.∴ ∠HNA =180°-30°-120°=30°.∴ NA =AH . …………………6分∴ 在Rt △BHQ 中,HQ =BQ ·tan ∠HBQ =3m …………………7分 又∵ BH =2m , ∴ AH =4-2m .过点A 作AG ⊥NH , ∴ NG =GH在Rt △AGH 中, GH =AH ·cos ∠AHN =32(4-2m )=23-3m . …………………8分∴ NH =2GH =43-23m . ∵ NQ =NH +HQ ,∴ n =-3m +4 3 …………………9分所以n 关于m 的函数解析式为:n =-3m +4 3 (12≤m ≤2).…………………10分24.(本题满分12分)解:(1)(本小题满分4分)精品文档由题意得T =22-h100×0.5,即T =-1200h +22(0≤h ≤1000). ……………………3分因为-1200<0,所以T 随h 的增大而减小.所以当h =1000m 时,T 有最小值17°C . ……………………4分(2)(本小题满分8分)根据表一的数据可知,当19≤T ≤21时,成活率p 与温度T 之间的关系大致符合一次函数关系,不妨设p 1=k 1T +b 1;当17.5≤T <19时,成活率p 与温度T 之间的关系大致符合一次函数关系,不妨设p 2=k 2T +b 2. ……………………5分因为当T =21时,p 1=0.9;当T =20时,p 1=0.94,解得⎩⎪⎨⎪⎧k 1=-125b 1=8750,所以 p 1=-125T +8750(19≤T ≤21). ……………………6分 因为当T =19时,p 2=0.98;当T =18时,p 2=0.94,解得⎩⎪⎨⎪⎧k 2=125b 2=1150,所以p 2=125T +1150(17.5≤T <19). ……………………7分由图12,除点E 外,其余点大致在一条直线上.因此,当0≤h ≤1000时,可估计种植量w 与山高h 之间的关系大致符合一次函数关系,不妨设w =k 3h +b 3. …………8分因为当h =200时,w =1600;当h =300时,w =1400,解得⎩⎨⎧k 3=-2b 3=2000,所以w =-2h +2000(0≤h ≤1000). ……………………9分考虑到成活率p 不低于92%, 则17.5≤T ≤20.5由T =-1200h +22,可知T 为17.5°C ,19°C ,20.5°C 时,h 分别为900m ,600m ,300m.由一次函数增减性可知:精品文档当300≤h ≤600时,p 1=-125T +8750=-125(-1200h +22)+8750=15000h +4350. 当600<h ≤900时,p 2=125T +1150=125(-1200h +22)+1150=-15000h +1110. 所以当300≤h ≤600时,成活量=w ·p 1=(-2h +2000)·(15000h +4350). ……………………10分 因为-12500<0,对称轴在y 轴左侧,所以当300≤h ≤600时,成活量随h 的增大而减小. 所以当h =300时,成活量最大.根据统计结果中的数据,可知h =300时成活率为92%,种植量为1400株, 所以此时最大成活量为1400×92%=1288(株). ……………………11分当600<h ≤900时,成活量=w ·p 2=(-2h +2000)·(-15000h +1110). 因为12500>0,对称轴在h =900的右侧,所以当600<h ≤900时,成活量随h 的增大而减小. 且当h =600时,w ·p 1=w ·p 2综上,可知当h =300时,成活量最大.所以山高h 为300米时该作物的成活量最大.……………………12分25.(本题满分14分)解:(1)(本小题满分3分)答:A (4,-6)或(-4,6). …………………3分 (2)①(本小题满分4分)答:E (1,-1)不是点N 的对称位似点,理由如下:方法一: 设A 1(x 1,y 1) ,A 2(x 2,y 2) ,由题可知x 2x 1=y 2y 1=OA 2OA 1=q .当k =12时,2k -2=-1.把y =-1, k =12分别代入y =kx -2,可得x =2.可得 N (2,-1) . …………………5分所以N (2,-1)关于x 轴的对称点N 1(2,1) . …………………6分精品文档因为对于E (1,-1) ,-11≠12,所以不存在q ,使得E (1,-1)是点N 的对称位似点所以E (1,-1)不是点N 的对称位似点. …………………7分方法二:设A 1(x 1,y 1) ,A 2(x 2,y 2) ,由题可知A 1,A 2,O 在一条直线上.当k =12时,2k -2=-1.把y =-1, k =12分别代入y =kx -2,可得x =2.可得 N (2,-1) . …………………5分所以N (2,-1)关于x 轴的对称点N 1(2,1) . …………………6分因为N 1(2,1),E (1,-1)分别在第一、第四象限,N 1E 所在直线不过原点,因此E (1,-1)不是点N 的对称位似点. …………………7分②(本小题满分7分)答:点M 的对称位似点可能仍在抛物线C 上,理由如下: 方法一:把 N (m (m -k )k 2,2k -2)代入y =kx -2,可得m 2-mk -2k 2=0.(m -2k )(m +k )=0.所以m =2k 或m =-k . …………………8分 当直线与二次函数图象相交时,有kx -2=-12x 2+mx -2.即kx =-12x 2+mx .因为x ≠0,所以k =-12x +m . 所以x 1=2(m -k ).精品文档抛物线C 的对称轴为x =m因为点M 不是抛物线的顶点,所以2(m -k ) ≠m , 所以m ≠2k .所以m =-k . …………………9分所以x 1=-4k ,可得M (-4k ,-4k 2-2)所以点M 关于x 轴的对称点坐标为M 1(-4k ,4k 2+2). …………………10分 设点M 的对称位似点M 2为(-4kq ,4k 2q +2q )或(4kq ,-4k 2q -2q ).…………11分当M 2为(4kq ,-4k 2q -2q )时,将点M 2(4kq ,-4k 2q -2q )代入y =-12x 2-kx -2.可得8k 2q 2-2q +2=0,即4k 2q 2-q +1=0. …………12分 当△≥0,即k 2≤116时, q =1±1-16k 28k 2>0符合题意. 因为m >0,m =-k , 所以k <0. 又因为k 2≤116, 所以-14≤k <0.所以当-14≤k <0时,点M 的对称位似点仍在抛物线C 上. …………14分方法二:把 N (m (m -k )k 2,2k -2)代入y =kx -2可得m 2-mk -2k 2=0. (m -2k )(m +k )=0.所以m =2k 或m =-k . …………………8分当直线与二次函数图象相交时,有kx -2=-12x 2+mx -2. 即kx =-12x 2+mx .精品文档因为x ≠0,所以k =-12x +m .所以x 1=2(m -k ).抛物线C 的对称轴为x =m因为点M 不是抛物线的顶点,所以2(m -k ) ≠m , 所以m ≠2k .所以m =-k . …………………9分 所以x 1=-4k ,可得M (-4k ,-4k 2-2)所以点M 关于x 轴的对称点坐标为M 1(-4k ,4k 2+2).…………………10分 设直线OM 1的表达式为y =nx ,把M 1(-4k ,4k 2+2)代入y =nx , 可得y =4k 2+2-4kx . …………………11分若直线OM 1与抛物线C 相交,有4k 2+2-4k x =-12x 2-kx -2.………………12分化简可得2kx 2-2x +8k =0,即kx 2-x +4k =0. 当△≥0,即k 2≤116时,二者有交点.设交点为M 2,此时令OM 2OM 1=q ,则M 2是点M 的对称点位似点.因为m >0,m =-k , 所以k <0. 又因为k 2≤116, 所以-14≤k <0.所以当-14≤k <0时,点M 的对称位似点仍在抛物线C 上.………………14分。
2019年福建省初中学业水平考试数学参考答案一、选择题(每小题4分,共40分)1. A2. B3. D4. C5. B6. D7. D8. B9. B 10. D 二、填空题(每题4分,共24分)11. (x +3)(x -3) 12. -1 13. 1200 14. (1,2) 15. π-1 16. 6+2 3 三、解答题(共9小题,共86分)17.解:⎩⎪⎨⎪⎧x -y =5, ①2x +y =4,②.①+②,得3x =9 解得x =3.把x =3代入①,得3-y =5, 解得y =-2∴原方程组的解为⎩⎪⎨⎪⎧x =3y =-218. 证明:∵四边形ABCD 是矩形,∴∠B =∠D =90°,AD =BC 又∵DF =∠BE ∴△ADF ≌△CBE ∴AF =CE19.解:原式=(x -1)÷x 2-2x +1x=(x -1)·x(x -1)2=xx -1当x =2+1时,原式=2+12+1-1=1+2220.解:(1)B'C'ACA'B△A ′B ′C ′即为所求作的三角形。
(2)证明:DEF ACBE'B'C'F'D'A'∵D 、E 、F 分别是△ABC 三边中点, ∴DE =12AC ,DF =12BC ,EF =12AB ,同理D ′E ′=12A ′C ′,D ′F ′=12B ′C ′,E ′F ′=12A ′B ′,∵△ABC ∽△A ′B ′C ′ ∴AB A′B ′=AC A′C ′=BC B ′C ′, 又DE D ′E ′=AC A′C ′,DF D ′F ′=BC B ′C ′,EF E ′F ′=ABA′B ′, ∴DE D ′E ′=DF D ′F ′=EFE ′F ′∴△DEF ∽△D'E'F'.21.解:(1)∵△DEC 是由△ABC 绕点C 顺时针旋转得到,∴△DEC ≌△ABC∴AC =DC ,∠DCE =∠ACB =30°, ∴∠CAD =∠CDA =75°, 又∠DEC =90° ∴∠ADE =15°(2)∵∠ACB =30°,∠ABC =90° ∴AB =12AC =CF ,∠BAC =60°∵F 为AC 中点, ∴BF =12AC =CF由旋转性质得:AC =CD ,BC =CE ,AB =DE ,∠ACD =∠BCE = =60°, ∴△BCE 是等边三角形, ∴BE =BC在△ABC 和△CFD 中∵∠BAC =60°,AB =CF ,AC =CD , ∴△ABC ≌△CFD , ∴AB =DE ,DF =BC , ∴BF =DE ,DF =BE∴四边形BEDF 是平行四边形22.解:(1)若m ≥35,则30+35×8=310<370,不合题意,舍去; ∴0<m <35,8m +30+(35-m )×12=370,解得m =20 故该车间的日废水处理量为20吨。