重庆市人教新课标A版高中数学必修4第三章三角恒等变换3.2简单的三角恒等变换同步测试
- 格式:doc
- 大小:378.51 KB
- 文档页数:10
第三章 三角恒等变换3.2 简单的三角恒等变换一、教学内容及其分析本节内容《简单的三角恒等变换》选自人教A 版必修四第三章第二节,其中新任务是通过已知的两角和差公式及二倍角公式探索简单的三角恒等变换,通过简单运用,使学生初步理解简单的三角恒等变换的基本原则、方法. 本节把三角恒等变换的应用放在三角变换与三角函数间的内在联系上,从而使三角函数性质的研究得到延伸.二、教学目标及学科素养分析课程目标:1、能用两角和与差的正弦、余弦,二倍角正弦、余弦公式进行简单的三角恒等变换,记住sin cos y a x b x ωω=+的化简方法.2、能正确的对形如sin()y A x ωϕ=+的三角函数性质进行讨论,能灵活利用公式,通过三角恒等变换,解决函数的最值、周期、单调性等问题.3、能运用三角公式解决一些实际问题.4、通过三角恒等变换的训练,能够培养转化与化归的数学思想. 学科素养:1、 数学抽象:三角函数公式之间的内在联系;2、 逻辑推理:运用三角函数公式进行简单的三角恒等变换;3、 数学运算:利用三角函数公式进行计算和化简;4、 直观想象:让学生感受由特殊到一般的数学思想方法;5、 数学建模:通过对实际问题的探究过程,感知应用数学解决问题的方法,理解转化、化归、换元等数学思想方法在数学中的应用.三、教学重难点教学重点:引导学生以已有的十一个公式为依据,进行三角恒等变换,对形如sin()y A x ωϕ=+的三角函数性质进行讨论教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.对形如sin()y A x ωϕ=+三角函数的应用. 四、教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体,调动学生参与课堂教学的主动性和积极性.五、教学过程探究一:形如sin()y A x ωϕ=+函数性质的探究三角函数主要刻画的是周期性质,随着周期变化,函数的图象发生变化,从而导致函数的相关性质而发生改变.问题1.求函数2sin(2)()6y x x R π=+∈的周期,最大值. 生:函数2sin(2)()6y x x R π=+∈的周期为T π=,最大值为2.问题2.求函数sin ()y x x x R =+∈的周期,最大值.生:函数sin ()y x x x R =+∈的最大值为2,周期为2T π=.学生也可能不会回答.师:通过第一章的学习我们已经对形如sin()y A x ωϕ=+的函数性质做了探究,今天再继续探究形如sin()y A x ωϕ=+的函数性质.只不过今天我们研究的函数没有直接给出sin()y A x ωϕ=+的形式,需要先将所给的函数式化简为sin()y A x ωϕ=+的形式,从而使三角函数的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.这就是本节课我们学习的内容.问题.函数sin y x x =+如何化简为sin()y A x ωϕ=+的形式?提问学生回答:因为sin y x x =12(sin cos )22x x =+ 2(sin cos cos sin )33x x ππ=+2sin()3x π=+. 所以函数sin ()y x x x R =+∈的最大值为2,周期为2T π=.问题4.刚才所化简的函数是形如sin cos y a x b x ωω=+的函数,那么我们如何将形如sin cos y a x b x ωω=+的函数化简为sin()y A x ωϕ=+的形式呢? 生:思考后讨论(2分钟),提问回答:sin cos )y a x b x x x ωωωω=+=+ 令cos ϕϕ==则sin cos y a x b x ωω=+cos cos sin )x x ωϕωϕ=+)x ωϕ=+.师:sin cos y a x b x ωω=+)x ωϕ+,其中tan b aϕ=.这个公式我们称为辅助角公式.现在我们利用这个公式解决下面的例题.例题:函数3sin ()22x x y x R =∈的周期为 .生:思考后,提问回答:3sin 22x x y =-1cos )222x x =-cos cos sin )2626x x ππ=-sin()26x π=-. 所以函数3sin ()22x x y x R =∈的周期为=4T π.。
§3.2 简单的三角恒等变换学习目标 1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法. 2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一 半角公式思考 半角公式对任意角都适用吗? 答案 不是,要使得式子有意义的角才适用. 知识点二 辅助角公式 辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).⎝⎛⎭⎫其中tan θ=ba1.若α≠k π,k ∈Z ,则tan α2=sin α1+cos α=1-cos αsin α恒成立.( √ )2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ所在的象限由a ,b 的符号决定,φ与点(a ,b )同象限.( √ )3.sin x +3cos x =2sin ⎝⎛⎭⎫x +π6.( × ) 提示 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x =2sin ⎝⎛⎭⎫x +π3.题型一 应用半角公式求值例1 已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 ∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.∵5π4<θ2<3π2,∴cos θ2=-1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思感悟 利用半角公式求值的思路(1)看角:若已知三角函数式中的角是待求三角函数式中角的两倍,则求解时常常借助半角公式求解.(2)明范围:由于半角公式求值常涉及符号问题,因此求解时务必依据角的范围,求出相应半角的范围.(3)选公式:涉及半角公式的正切值时,常用tan α2=sin α1+cos α=1-cos αsin α,其优点是计算时可避免因开方带来的求角的范围问题;涉及半角公式的正弦、余弦值时,常先利用sin 2α2=1-cos α2,cos 2α2=1+cos α2计算. (4)下结论:结合(2)求值. 跟踪训练1 已知cos α=33,α为第四象限角,则tan α2的值为________. 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案2-62解析 方法一 ⎝⎛⎭⎪⎫用tan α2=±1-cos α1+cos α来处理因为α为第四象限角,所以α2是第二或第四象限角.所以tan α2<0.所以tan α2=-1-cos α1+cos α=-1-331+33 =-2-3=-128-4 3 =-12(6-2)2=2-62.方法二 ⎝⎛⎭⎫用tan α2=1-cos αsin α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=1-cos αsin α=1-33-63=2-62.方法三 ⎝⎛⎭⎫用tan α2=sin α1+cos α来处理因为α为第四象限角,所以sin α<0. 所以sin α=-1-cos 2α=-1-13=-63. 所以tan α2=sin α1+cos α=-631+33=-63+3=2-62.题型二 三角函数式的化简 例2 化简:2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α.考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 解 2cos 2α-12tan ⎝⎛⎭⎫π4-αsin 2⎝⎛⎭⎫π4+α=cos 2α2cos ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4+α·sin 2⎝⎛⎭⎫π4+α =cos 2αsin ⎝⎛⎭⎫π2+2α=cos 2αcos 2α=1. 反思感悟 三角函数式化简的要求、思路和方法(1)化简的要求:①能求出值的应求出值.②尽量使三角函数种数最少.③尽量使项数最少.④尽量使分母不含三角函数.⑤尽量使被开方数不含三角函数.(2)化简的思路:对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用.另外,还可以用切化弦、变量代换、角度归一等方法.跟踪训练2 化简:(1-sin α-cos α)⎝⎛⎭⎫sin α2+cos α22-2cos α(-π<α<0).考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值解 原式=⎝⎛⎭⎫2sin 2α2-2sin α2cos α2⎝⎛⎭⎫sin α2+cos α22×2sin2α2=2sin α2⎝⎛⎭⎫sin α2-cos α2⎝⎛⎭⎫sin α2+cos α22⎪⎪⎪⎪sin α2=sin α2⎝⎛⎭⎫sin 2α2-cos 2α2⎪⎪⎪⎪sin α2=-sin α2cos α⎪⎪⎪⎪sin α2.因为-π<α<0,所以-π2<α2<0,所以sin α2<0,所以原式=-sin α2cos α-sinα2=cos α.题型三 三角函数式的证明例3 求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ.考点 三角恒等式的证明 题点 三角恒等式的证明 证明 要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ.∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ,∴左边=右边, ∴原式得证.反思感悟 证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练3 求证:2sin x cos x(sin x +cos x -1)(sin x -cos x +1)=1+cos x sin x .考点 三角恒等式的证明 题点 三角恒等式的证明 证明 左边=2sin x cos x⎝⎛⎭⎫2sin x 2cos x 2-2sin 2 x 2⎝⎛⎭⎫2sin x 2cos x 2+2sin 2x 2=2sin x cos x4sin 2x 2⎝⎛⎭⎫cos 2x 2-sin 2x 2=sin x2sin 2 x 2=cos x 2sin x 2=2cos 2x 22sin x 2cosx 2=1+cos xsin x=右边.所以原等式成立. 题型四 辅助角公式的应用例4 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 =3sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1-cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12 =2⎩⎨⎧⎭⎬⎫32sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-12cos ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1,有2x -π3=2k π+π2(k ∈Z ),即x =k π+5π12(k ∈Z ),∴所求x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π+5π12,k ∈Z . 反思感悟 (1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)的正弦、余弦、正切公式、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,以便于讨论函数性质. 跟踪训练4 已知函数f (x )=cos ⎝⎛⎭⎫π3+x ·cos ⎝⎛⎭⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 考点 简单的三角恒等变换的综合应用 题点 辅助角公式与三角函数的综合应用 解 (1)f (x )=⎝⎛⎭⎫12cos x -32sin x ·⎝⎛⎭⎫12cos x +32sin x =14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π.(2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎫2x +π4, 当2x +π4=2k π(k ∈Z ),即x =k π-π8(k ∈Z )时,h (x )有最大值22.此时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =k π-π8,k ∈Z .利用半角公式化简求值典例 已知等腰三角形的顶角的余弦值为725,则它的底角的余弦值为( )A.34B.35C.12D.45考点 简单的三角恒等变换的综合应用题点 三角恒等变换与三角形的综合应用 答案 B解析 设等腰三角形的顶角为α,底角为β,则cos α=725.又β=π2-α2,所以cos β=cos ⎝⎛⎭⎫π2-α2=sin α2=1-7252=35,故选B. [素养评析] 从实际问题提炼出等腰三角形底角、顶角间的关系,利用半角公式进行恒等变换化简,进而求值,这正是数学核心素养数学抽象的具体体现.1.若cos α=13,α∈(0,π),则cos α2的值为( )A.63 B .-63 C .±63 D .±33考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 由题意知α2∈⎝⎛⎭⎫0,π2,∴cos α2>0,cos α2=1+cos α2=63. 2.已知sin θ=-35,3π<θ<72π,则tan θ2的值为( )A .3B .-3 C.13 D .-13考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 ∵3π<θ<7π2,sin θ=-35,∴cos θ=-45,tan θ2=sin θ1+cos θ=-3.3.已知2sin α=1+cos α,则tan α2等于( )A.12B.12或不存在 C .2D .2或不存在考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值答案 B解析 2sin α=1+cos α,即4sin α2cos α2=2cos 2α2,当cos α2=0时,tan α2不存在,当cos α2≠0时,tan α2=12.4.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果为( )A .tan αB .tan 2αC .1D .2 考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 B解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α.5.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( ) A.π6 B.π3 C.π2 D.2π3考点 利用简单的三角恒等变换化简求值 题点 利用辅助角公式化简求值 答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ) =2sin ⎝⎛⎭⎫2x +π3+θ. 当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x 是奇函数.6.已知在△ABC 中,sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,求证:sin A +sin C =2sin B .考点 三角恒等式的证明 题点 三角恒等式的证明证明 由sin A ·cos 2C 2+sin C ·cos 2A 2=32sin B ,得sin A ·1+cos C 2+sin C ·1+cos A 2=32sin B ,即sin A +sin C +sin A ·cos C +sin C ·cos A =3sin B , ∴sin A +sin C +sin(A +C )=3sin B , ∴sin A +sin C +sin(π-B )=3sin B , 即sin A +sin C +sin B =3sin B , ∴sin A +sin C =2sin B .1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式. 2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ满足: ①φ与点(a ,b )同象限; ②tan φ=b a ⎝ ⎛⎭⎪⎫或sin φ=b a 2+b 2,cos φ=a a 2+b 2.3.研究形如f (x )=a sin x +b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a ,b 应熟练掌握, 例如sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4; sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.一、选择题1.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π, sin α2=1-cos α2=105. 2.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2等于( )A .-55 B.55 C.35 D .-35考点 利用简单的三角恒等变换化简求值 题点 利用半角公式化简求值 答案 A解析 因为α是第二象限角,且sin α2<cos α2,所以α2为第三象限角,所以cos α2<0.因为tan α=-43,所以cos α=-35,所以cos α2=-1+cos α2=-55. 3.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <c C .a <c <bD .b <c <a考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用 答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°cos 13°=sin 26°,c =sin 25°, ∵当0°≤x ≤90°时,y =sin x 是单调递增的, ∴a <c <b .4.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于( )A .-12 B.12C .2D .-2考点 利用简单的三角恒等变换化简求值 题点 利用弦化切对齐次分式化简求值 答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35.∴1+tan α21-tan α2=1+sinα2cos α21-sin α2cosα2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45=-12.故选A.5.sin x cos x +sin 2x 可化为( ) A.22sin ⎝⎛⎭⎫2x -π4+12 B.2sin ⎝⎛⎭⎫2x +π4-12 C .sin ⎝⎛⎭⎫2x -π4+12 D .2sin ⎝⎛⎭⎫2x +3π4+1 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 A解析 y =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22⎝⎛⎭⎫22sin 2x -22cos 2x +12=22sin ⎝⎛⎭⎫2x -π4+12.故选A. 6.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1,则函数f (x )的单调递增区间为( ) A.⎣⎡⎦⎤2k π-π3,2k π+π6(k ∈Z ) B.⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ) C.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ) D.⎣⎡⎦⎤2k π-π6,2k π+π3(k ∈Z ) 考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 因为f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6,所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ),故选C. 7.已知sin θ=m -3m +5,cos θ=4-2m m +5⎝⎛⎭⎫π2<θ<π,则tan θ2等于( ) A .-13B .5C .-5或13D .-13或5 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换化简求值答案 B解析 由sin 2θ+cos 2θ=1,得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1, 解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π. ∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5. 二、填空题8.已知α∈⎝⎛⎭⎫0,π2,sin 2α=12,则sin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 32解析 因为1-2sin 2⎝⎛⎭⎫α+π4=cos ⎝⎛⎭⎫2α+π2=-sin 2α, 所以sin 2⎝⎛⎭⎫α+π4=34, 因为α∈⎝⎛⎭⎫0,π2, 所以α+π4∈⎝⎛⎭⎫π4,3π4, 所以sin ⎝⎛⎭⎫α+π4=32. 9.化简:sin 4x 1+cos 4x ·cos 2x 1+cos 2x ·cos x 1+cos x=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 tan x 2解析 原式=2sin 2x cos 2x 2cos 22x ·cos 2x 1+cos 2x ·cos x 1+cos x =sin 2x 1+cos 2x ·cos x 1+cos x =2sin x cos x 2cos 2x ·cos x 1+cos x=sin x 1+cos x=tan x 2. 10.已知cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,则cos 2αsin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 65解析 因为cos ⎝⎛⎭⎫α-π4=45,α∈⎝⎛⎭⎫0,π4,所以sin ⎝⎛⎭⎫α-π4=-35,sin ⎝⎛⎭⎫π4-α=35. 所以cos 2αsin ⎝⎛⎭⎫α+π4=sin ⎝⎛⎭⎫2α+π2sin ⎝⎛⎭⎫α+π4=2cos ⎝⎛⎭⎫α+π4 =2sin ⎣⎡⎦⎤π2-⎝⎛⎭⎫α+π4=2sin ⎝⎛⎭⎫π4-α=65. 11.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0,即2sin 2α-cos 2α≤0,所以4sin 2α≤1,所以-12≤sin α≤12. 因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π. 三、解答题12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 考点 三角恒等式的证明题点 三角恒等式的证明证明 ∵左边=tan 3x 2-tan x 2=sin3x 2cos 3x 2-sin x 2cos x 2 =sin3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝⎛⎭⎫3x 2-x 2cos 3x 2cos x 2=sin x cos 3x 2cos x 2=2sin x cos ⎝⎛⎭⎫3x 2+x 2+cos ⎝⎛⎭⎫3x 2-x 2 =2sin x cos x +cos 2x =右边. ∴原等式得证.13.(2018·浙江宁波高三期末)已知函数f (x )=2sin x ·cos x +1-2sin 2x .(1)求f (x )的最小正周期;(2)求f (x )在区间⎣⎡⎦⎤-π3,π4上的最大值与最小值.考点 简单的三角恒等变换的应用题点 辅助角公式与三角函数的综合应用解 (1)因为f (x )=sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4, 所以f (x )的最小正周期为π.(2)因为-π3≤x ≤π4,所以-5π12≤2x +π4≤3π4. 当2x +π4=π2,即x =π8时,f (x )取得最大值2; 当2x +π4=-5π12,即x =-π3时, f (x )min =f ⎝⎛⎭⎫-π3=sin ⎝⎛⎭⎫-2π3+cos ⎝⎛⎭⎫-2π3=-3+12, 即f (x )的最小值为-3+12.14.如果若干个函数的图象经过平移后能够重合,则称这些函数为“同簇函数”.给出下列函数:①f (x )=2sin x cos x +1;②f (x )=2sin ⎝⎛⎭⎫x +π4; ③f (x )=sin x +3cos x ;④f (x )=2sin 2x +1.其中是“同簇函数”的有( )A .①②B .①④C .②③D .③④考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 ①式化简后为f (x )=sin 2x +1,③式化简后为f (x )=2sin ⎝⎛⎭⎫x +π3,①④中振幅不同,平移后不能重合.②③振幅、周期相同,平移后可以重合.15.证明:sin 10°·sin 30°·sin 50°·sin 70°=116. 考点 三角恒等式的证明题点 三角恒等式的证明证明 原式=sin 10°·sin 30°·sin 50°·sin 70°=12cos 20°·cos 40°·cos 80°=2sin 20°·cos 20°·cos 40°·cos 80°4sin 20°=sin 40°·cos 40°·cos 80°4sin 20°=sin 80°cos 80°8sin 20°=116·sin 160°sin 20°=116=右边,所以原等式得证.。
第三章第二节简单的三角恒等变换第二课时 导入新课思路 1.(问题导入)三角化简、求值与证明中,往往会出现较多相异的角,我们可根据角与角之间的和差、倍半、互补、互余等关系,运用角的变换,沟通条件与结论中角的差异,使问题获得解决,如:α=(α+β)-β,2α=(α+β)+(α-β)=(π4+α)-(π4-α),π4+α=π2-(π4-α)等,你能总结出三角变换的哪些策略?由此探讨展开.思路 2.(复习导入)前面已经学过如何把形如y =a sin x +b cos x 的函数转化为形如y =A sin(ωx +φ)的函数,本节主要研究函数y =a sin x +b cos x 的周期、最值等性质.三角函数和代数、几何知识联系密切,它是研究其他各类知识的重要工具.高考题中与三角函数有关的问题,大都以恒等变形为研究手段.三角变换是运算、化简、求值、证明过程中不可缺少的解题技巧,要学会创设条件灵活运用三角公式,掌握运算,化简的方法和技能. 推进新课新知探究提出问题①三角函数y =sin x ,y =cos x 的周期,最大值和最小值是多少?②函数y =a sin x +b cos x 的变形与应用是怎样的?③三角变换在几何问题中有什么应用?活动:教师引导学生对前面已学习过的三角函数的图象与性质进行复习与回顾,我们知道正弦函数,余弦函数的图象都具有周期性、对称性、单调性等性质.而且正弦函数,余弦函数的周期都是2k π(k ∈Z 且k ≠0),最小正周期都是2π.三角函数的自变量的系数变化时,会对其周期性产生一定的影响,例如,函数y =sin x 的周期是2k π(k ∈Z 且k ≠0),且最小正周期是2π,函数y =sin2x 的周期是k π(k ∈Z 且k ≠0),且最小正周期是π.正弦函数,余弦函数的最大值是1,最小值是-1,所以这两个函数的值域都是[-1,1].函数y =a sin x +b cos x =a 2+b 2(a a 2+b 2sin x +b a 2+b 2cos x ), ∵(aa 2+b 2)2+(b a 2+b 2)2=1,从而可令a a 2+b 2=cos φ,ba 2+b 2=sin φ,则有a sin x +b cos x =a 2+b 2(sin x cos φ+cos x sin φ)=a 2+b 2sin(x +φ).因此,我们有如下结论:a sin x +b cos x =a 2+b 2sin(x +φ),其中tan φ=b a.在以后的学习中可以用此结论进行求几何中的最值问题或者角度问题.我们知道角的概念起源于几何图形,从而使得三角函数与平面几何有着密切的内在联系.几何中的角度、长度、面积等几何问题,常需借助三角函数的变换来解决,通过三角变换来解决几何中的有关问题,是一种重要的数学方法.讨论结果:①y =sin x ,y =cos x 的周期是2k π(k ∈Z 且k ≠0),最小正周期都是2π;最大值都是1,最小值都是-1.②~③(略)见活动.应用示例思路1例1如图1,已知OPQ 是半径为1,圆心角为π3的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.活动:要求当角α取何值时,矩形ABCD 的面积S 最大,先找出S 与α之间的函数关系,再求函数的最值.找S 与α之间的函数关系可以让学生自己解决,得到:S =AB ·BC =(cos α-33sin α)sin α=sin αcos α-33sin 2α.求这种y =a sin 2x +b sin x cos x +c cos 2x 函数的最值,应先降幂,再利用公式化成A sin(ωx +φ)型的三角函数求最值.教师引导学生思考:要求当角α取何值时,矩形ABCD 的面积S 最大,可分两步进行:(1)找出S 与α之间的函数关系;(2)由得出的函数关系,求S 的最大值.解:在Rt△OBC 中,OB =cos α,BC =sin α,图1在Rt△OAD 中,DA OA =tan60°=3, 所以OA =33DA =33BC =33sin α. 所以AB =OB -OA =cos α-33sin α. 设矩形ABCD 的面积为S ,则S =AB ·BC =(cos α-33sin α)sin α =sin αcos α-33sin 2α =12sin2α+36cos2α-36=13(32sin2α+12cos2α)-36 =13sin(2α+π6)-36. 由于0<α<π3,所以当2α+π6=π2,即α=π6时,S 最大=13-36=36. 因此,当α=π6时,矩形ABCD 的面积最大,最大面积为36. 点评:可以看到,通过三角变换,我们把形如y =a sin x +b cos x 的函数转化为形如y =A sin(ωx +φ)的函数,从而使问题得到简化.这个过程中蕴涵了化归思想.此题可引申即可以去掉“记∠COP =α”,结论改成“求矩形ABCD 的最大面积”,这时,对自变量可多一种选择,如设AD =x ,S =x (1-x 2-33x ),尽管对所得函数还暂时无法求其最大值,但能促进学生对函数模型多样性的理解,并能使学生感受到以角为自变量的优点.最小值;并写出该函数在[0,π]上的单调递增区间.活动:教师引导学生利用公式解题,本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.先用二倍角公式把函数化成最简形式,然后再解决与此相关的问题.解:y =sin 4x +23sin x cos x -cos 4x=(sin 2x +cos 2x )(sin 2x -cos 2x )+3sin2x =3sin2x -cos2x=2sin(2x -π6). 故该函数的最小正周期是π;最小值是-2;在[0,π]上单调增区间是[0,π3],[5π6,π]. 点评:本题主要考查二倍角公式以及三角函数的单调性和周期性等基础知识.例1已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点M (3π4,0)对称,且在区间[0,π2]上是单调函数,求φ和ω的值.活动:学生在解此题时,对f (x )是偶函数这一条件的运用不存在问题,而在对“f (x )的图象关于M (3π4,0)对称”这一条件的使用上,多数考生都存在一定问题.一般地,定义在R 上的函数y =f (x )对定义域内任意x 满足条件:f (x +a )=2b -f (a -x ),则y =f (x )的图象关于点(a ,b )对称,反之亦然.教师在这类问题的教学时要给予充分的提示与总结,多做些这种类型的变式训练.解:由f (x )是偶函数,得f (-x )=f (x ),即sin(-ωx +φ)=sin(ωx +φ),所以-cos φsin ωx =cos φsin ωx 对任意x 都成立.又ω>0,所以,得cos φ=0.依题设0≤φ≤π,所以,解得φ=π2. 由f (x )的图象关于点M 对称,得f (3π4-x )=-f (3π4+x ). 取x =0,得f (3π4)=-f (3π4),所以f (3π4)=0. ∵f (3π4)=sin(3ωπ4+π2)=cos 3ωπ4,∴cos 3ωπ4=0. 又ω>0,得3ωπ4=π2+k π,k =0,1,2,….∴ω=23(2k +1),k =0,1,2,…. 当k =0时,ω=23,f (x )=sin(23x +π2)在[0,π2]上是减函数; 当k =1时,ω=2,f (x )=sin(2x +π2)在[0,π2]上是减函数; 当k ≥2时,ω≥103,f (x )=sin(ωx +π2)在[0,π2]上不是单调函数.所以,综合得ω=23或ω=2. 点评:本题是利用函数思想进行解题,结合三角函数的图象与性质,对函数进行变换然后进而解决此题.∴cos B 2cos C 2=2sin B sin C =8sin B 2·cos B 2cos C 2sin C 2.∴sin B 2sin C 2=18. 积化和差,得4(cos B +C2-cos B -C2)=-1,若存在θ使等式cos θ-sin θ=4(cosB +C 2-cos B -C 2)成立,则2cos(θ+π4)=-1, ∴cos(θ+π4)=-22.而π<θ≤2π, ∴5π4<θ+π4≤9π4.∴这样的θ不存在. 点评:对于不确定的开放式问题,通常称之为存在性问题.处理这类问题的一般思路是先假设结论是肯定的,再进行演绎推理,若推证出现矛盾,即可否定假设;若推出合理结果,即假设成立.这个探索结论的过程可概括为假设——推证——定论.例2已知tan(α-β)=12,tan β=-17,且α,β∈(0,π),求2α-β的值.解:∵2α-β=2(α-β)+β,tan(α-β)=12, ∴tan2(α-β)=2tan α-β1-tan 2α-β=43. 从而tan(2α-β)=tan[2(α-β)+β]=tan2α-β+tan β1-tan2α-βtan β=43-171+43×17=25212521=1. 又∵tan α=tan[(α-β)+β]=tan α-β+tan β1-tan α-βtan β=13<1.且0<α<π,∴0<α<π4.∴0<2α<π2. 又tan β=-17<0,且β∈(0,π),∴π2<β<π,-π<-β<-π2. ∴-π<2α-β<0.∴2α-β=-3π4. 点评:本题通过变形转化为已知三角函数值求角的问题,关键在于对角的范围的讨论,注意合理利用不等式的性质,必要时,根据三角函数值,缩小角的范围,从而求出准确角.另外,求角一般都通过三角函数值来实现,但求该角的哪一种函数值,往往有一定的规律,若α∈(0,π),则求cos α;若α∈(-π2,π2),则求sin α等.知能训练课本本节练习4.解答:4.(1)y =12sin4x .最小正周期为π2,递增区间为[-π8+k π2,π8+k π2](k ∈Z ),最大值为12; (2)y =cos x +2.最小正周期为2π,递增区间为[π+2k π,2π+2k π](k ∈Z ),最大值为3;(3)y =2sin(4x +π3).最小正周期为π2,递增区间为[-5π24+k π2,π24+k π2](k ∈Z ),最大值为2. 课堂小结本节课主要研究了通过三角恒等变形,把形如y =a sin x +b cos x 的函数转化为形如y =A sin(ωx +φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的,充分体现出“活”的数学.作业课本复习参考题A 组11、12.设计感想1.本节课主要是三角恒等变换的应用,通过三角恒等变形,把形如y =a sin x +b cos x 的函数转化为形如y =A sin(ωx +φ)的函数,从而能顺利考查函数的若干性质,达到解决问题的目的.在教学中教师要强调:分析、研究三角函数的性质,是三角函数的重要内容.如果给出的三角函数的表达式较为复杂,我们必须先通过三角恒等变换,将三角函数的解析式变形化简,然后再根据化简后的三角函数,讨论其图象和性质.因此,三角恒等变换是求解三角函数问题的一个基本步骤.但需注意的是,在三角恒等变换过程中,由于消项、约分、合并等原因,函数的定义域往往会发生一些变化,从而导致变形化简后的三角函数与原三角函数不等价.因此,在对三角函数式进行三角恒等变换后,还要确定原三角函数的定义域,并在这个定义域内分析其性质.2.在三角恒等变化中,首先是掌握利用向量的数量积推导出两角差的余弦公式,并由此导出角和与差的正弦、余弦、正切公式,二倍角公式和积化差、和差化积及半角公式,以此作为基本训练.其次要搞清楚各公式之间的内在联系,自己画出知识结构图.第三就是在三角恒等变换中,要结合第一章的三角函数关系、诱导公式等基础知识,对三角知识有整体的把握.3.今后高考对三角变换的考查估计仍以考查求值为主.和、差、倍、半角的三角函数公式、同角关系的运用仍然是重点考查的地方,应该引起足够重视,特别是对角的范围的讨论,从而确定符号.另外,在三角形中的三角变换问题,以及平面向量为模型的三角变换问题将是高考的热点.对三角函数综合应用的考查,估计仍然以三角与数列、不等式、平面向量、解析几何、三角与解三角形的实际应用为主,题型主要是选择题、填空题,也可能以解答题形式出现,难度不会太大.应注意新情景立意下的三角综合应用也是考试的热点.备课资料一、三角函数的综合问题三角函数是中学学习的重要的基本初等函数之一,近年来,高考每年都要考查三角函数的图象和性质的基础知识.在综合题中,也常常会涉及三角函数的基础知识的应用.因此,对本单元的学习要落实在基础知识、基本技能和基本方法的前提下,还应注意与其他部分知识的综合运用.三角函数同其他函数一样,具有奇偶性、单调性、最值等问题,我们还要研究三角函数的周期性、图象及图象的变化,有关三角函数的求值、化简、证明等问题.应熟知三角函数的基本性质,并能以此为依据,研究解析式为三角式的函数的性质,掌握判断周期性,确定单调区间的方法,能准确认识三角函数的图象,会做简图、对图象进行变化.二、备用习题1.sin10°+sin20°cos10°+cos20°的值是( ) A .tan10°+tan20° B.33C .tan5°D .2-3 答案:D2.若α-β=π4,则sin αsin β的最大值是( ) A.2-24 B.2+24C.34D .1 答案:B3.若cos αsin x =12,则函数y =sin αcos x 的值域是( ) A .[-32,12] B .[-12,12]C .[-12,32] D .[-1,1] 答案:B4.log 2(1+tan19°)+log 2(1+tan26°)=________. 答案:15.已知函数f (x )=cos2x cos(π3-2x ),求f (x )的单调递减区间、最小正周期及最大值.答案:解:f (x )=12[cos π3+cos(4x -π3)]=12cos(4x -π3)+14,由2k π≤4x -π3≤2k π+π(k ∈Z ),得原函数的单调递减区间是[k π2+π12,k π2+π3](k ∈Z ),T =π2,最大值是34. 6.已知sin A =-35,cos B =-941,A ∈(3π2,2π),B ∈(π,3π2),求sin(2A -B 2)的值,并判定2A -B 2所在的象限. 答案:解:cos A =45,sin2A =-2425,cos2A =1-2sin 2A =725, ∵B ∈(π,3π2), ∴B 2∈(π2,3π4). ∴sin B 2=541,cos B 2=-441.∴sin(2A -B 2)=sin2A cos B 2-cos2A sin B 2=61411 025. 又cos(2A -B 2)=cos2A cos B 2+sin2A sin B 2<0, ∴2A -B2是第二象限角. 7.已知f (0)=a ,f (π2)=b ,解函数方程:f (x +y )+f (x -y )=2f (x )·cos y .答案:解:分别取⎩⎪⎨⎪⎧ x =0,y =t ,⎩⎪⎨⎪⎧ x =π2+t ,y =π2,⎩⎪⎨⎪⎧ x =π2,y =π2+t ,代入方程,得错误! ①+②-③,得2f (t )=2f (0)cos t +2f (π2)sin t . ∵f (0)=a ,f (π2)=b , ∴f (x )=a cos x +b sin x .。
3.2 简单的三角恒等变换自主学习知识梳理1.半角公式(1)S α2:sin α2=__________;(2)C α2:cos α2=________; (3)T α2:tan α2=________________=________________=__________(有理形式). 2.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),cos φ=__________,sin φ=______________其中φ称为辅助角,它的终边所在象限由________决定.自主探究1.试用cos α表示sin 2α2、cos 2α2、tan 2α2.2.证明:tan α2=sin α1+cos α=1-cos αsin α.对点讲练知识点一 半角公式的应用例1 已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2的值.回顾归纳 在运用半角公式时,要注意根号前符号的选取,不能确定时,根号前应保持正、负两个符号.变式训练1 已知α为钝角,β为锐角,且sin α=45,sin β=1213,求cos α-β2.知识点二 利用辅助角公式研究函数性质例2 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合.回顾归纳 研究形如f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质时,先化成f (x )=A sin(ω′x +φ)+B 的形式后,再解答.这是一个基本题型,许多题目化简后都化归为该题型.变式训练2 已知函数f (x )=sin(x +π6)+sin ⎝⎛⎭⎫x -π6+cos x +a (a ∈R ). (1)求函数y =f (x )的单调增区间;(2)若函数f (x )在⎣⎡⎦⎤-π2,π2上的最大值与最小值的和为3,求实数a 的值.知识点三 三角函数在实际问题中的应用例3 如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.回顾归纳 利用三角函数知识解决实际问题,关键是目标函数的构建,自变量常常选取一个恰当的角度,要注意结合实际问题确定自变量的范围.变式训练3 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图所示).1.学习三角恒等变换,不要只顾死记硬背公式,而忽视对思想方法的理解,要立足于在推导过程中记忆和运用公式.2.形如f (x )=a sin x +b cos x ,运用辅助角公式熟练化为一个角的一个三角函数的形式,即f (x )=a 2+b 2sin(x +φ) (φ由sin φ=b a 2+b 2,cos φ=a a 2+b2确定)进而研究函数f (x )性质. 如f (x )=sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4, f (x )=sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.课时作业一、选择题1.已知180°<α<360°,则cos α2的值等于( ) A .-1-cos α2 B. 1-cos α2C .-1+cos α2 D. 1+cos α22.如果|cos θ|=15,5π2<θ<3π,那么sin θ2的值为( ) A .-105 B.105C .-155 D.1553.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <cC .a <c <bD .b <c <a4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A.⎣⎡⎦⎤-π,-5π6B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,0 5.函数f (x )=cos x (sin x +cos x )的最小正周期为( )A .2πB .π C.π2 D.π4二、填空题6.函数y =cos x +cos ⎝⎛⎭⎫x +π3的最大值是________. 7.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ的值是________.8.已知函数f (x )=a sin[(1-a )x ]+cos[(1-a )x ]的最大值为2,则f (x )的最小正周期为________.三、解答题9.已知向量a =(sin(π2+x ),3cos x ),b =(sin x ,cos x ),f (x )=a ·b . (1)求f (x )的最小正周期和单调增区间;(2)如果三角形ABC 中,满足f (A )=32,求角A 的值.10.已知函数f (x )=2a sin 2x -23a sin x cos x +b (a >0)的定义域为⎣⎡⎦⎤0,π2,值域为[-5,4],求常数a ,b 的值.§3.2 简单的三角恒等变换答案知识梳理1.(1)±1-cos α2 (2)± 1+cos α2 (3)± 1-cos α1+cos α sin α1+cos α 1-cos αsin α 2.a a 2+b 2 b a 2+b 2点(a ,b ) 自主探究1.解 ∵cos α=cos 2α2-sin 2α2=1-2sin 2α2∴2sin 2α2=1-cos α,sin 2α2=1-cos α2. ① ∵cos α=2cos 2α2-1,∴cos 2α2=1+cos α2② 由①②得:tan 2α2=1-cos α1+cos α. 2.证明 ∵sin α1+cos α=2sin α2cos α22cos 2α2=tan α2. ∴tan α2=sin α1+cos α,同理可证:tan α2=1-cos αsin α. ∴tan α2=sin α1+cos α=1-cos αsin α. 对点讲练例1 解 ∵sin θ=45,5π2<θ<3π. ∴cos θ=-1-sin 2θ=-35. 又5π4<θ2<3π2. ∴cos θ2=-1+cos θ2=-1-352=-55. tan θ2=1-cos θ1+cos θ=1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=2.变式训练1 解 ∵α为钝角,β为锐角,sin α=45,sin β=1213. ∴cos α=-35,cos β=513. cos(α-β)=cos αcos β+sin αsin β=-35×513+45×1213=3365. 又∵π2<α<π,0<β<π2, ∴0<α-β<π.0<α-β2<π2. ∴cos α-β2=1+cos (α-β)2=1+33652=76565. 例2 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6 +2sin 2⎝⎛⎭⎫x -π12 =3sin2⎝⎛⎭⎫x -π12+1-cos2⎝⎛⎭⎫x -π12 =2⎣⎡⎦⎤32sin2⎝⎛⎭⎫x -π12-12cos2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1,∴T =2π2=π. (2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2, 即x =k π+5π12(k ∈Z ), ∴所求x 的集合为{x |x =k π+5π12,k ∈Z }. 变式训练2 解 (1)f (x )=sin ⎝⎛⎭⎫x +π6+ sin ⎝⎛⎭⎫x -π6+cos x +a =3sin x +cos x +a =2sin ⎝⎛⎭⎫x +π6+a , 解不等式2k π-π2≤x +π6≤2k π+π2(k ∈Z ), 得y =f (x )的单调增区间是 ⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ). (2)当x ∈⎣⎡⎦⎤-π2,π2时,-π3≤x +π6≤2π3,sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤-32,1, ∴f (x )的值域是[-3+a,2+a ].故(-3+a )+(2+a )=3,即a =3-1.例3 解 在直角三角形OBC 中,OB =cos α,BC =sin α. 在直角三角形OAD 中,DA OA=tan 60°= 3.∴OA =33DA =33BC =33sin α, ∴AB =OB -OA =cos α-33sin α 设矩形ABCD 的面积为S ,则S =AB ·BC =⎝⎛⎭⎫cos α-33sin αsin α =sin αcos α-33sin 2α =12sin 2α-36(1-cos 2α) =12sin 2α+36cos 2α-36=13⎝⎛⎭⎫32sin 2α+12cos 2α-36 =13sin ⎝⎛⎭⎫2α+π6-36. 由于0<α<π3,所以π6<2α+π6<5π6, 所以当2α+π6=π2, 即α=π6时,S 最大=13-36=36. 因此,当α=π6时,矩形ABCD 的面积最大,最大面积为36. 变式训练3 解如图所示,连OC , 设∠COB =θ,则0<θ<π4,OC =1. ∵AB =OB -OA =cos θ-AD=cos θ-sin θ,∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ =12(sin 2θ+cos 2θ)-12=22cos ⎝⎛⎭⎫2θ-π4-12 ∴当2θ-π4=0,即θ=π8时,S max =2-12(m 2), ∴割出的长方形桌面的最大面积为2-12(m 2). 课时作业1.C 2.C3.C [由题可得a =sin 24°,b =sin 26°,c =sin 25°,所以a <c <b .]4.D [f (x )=2sin ⎝⎛⎭⎫x -π3,f (x )的单调递增区间为 ⎣⎡⎦⎤2k π-π6,2k π+56π (k ∈Z ), 令k =0得增区间为⎣⎡⎦⎤-π6,5π6.] 5.B [f (x )=sin x cos x +cos 2x =12sin 2x +1+cos 2x 2=12sin 2x +12cos 2x +12=22sin ⎝⎛⎭⎫2x +π4+12.∴T =π.] 6. 3解析 (1)y =cos x +cos ⎝⎛⎭⎫x +π3 =cos x +cos x cos π3-sin x sin π3=32cos x -32sin x =3⎝⎛⎭⎫32cos x -12sin x =3cos ⎝⎛⎭⎫x +π6. 当cos ⎝⎛⎭⎫x +π6=1时,y 有最大值 3. 7.-π6解析 3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6.∴φ=-π6. 8.π解析 由a +1=2,∴a =3,∴f (x )=-3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +5π6,∴T =π. 9.解 (1)由题意知,f (x )=sin x cos x +32+32cos 2x =sin(2x +π3)+32 2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 即k π-5π12≤x ≤k π+π12,k ∈Z 最小正周期为π,单调增区间为[k π-5π12,k π+π12],k ∈Z . (2)由(1)知,f (x )=sin ⎝⎛⎭⎫2x +π3+32. ∵f (A )=32,∴sin(2A +π3)=0, 又∵A ∈(0,π),∴π3<2A +π3<7π3,∴2A +π3=π或2π, ∴A =π3或5π6. 10.解 f (x )=2a sin 2x -23a sin x cos x +b=2a ·1-cos 2x 2-3a sin 2x +b =-(3a sin 2x +a cos 2x )+a +b=-2a sin ⎝⎛⎭⎫2x +π6+a +b ∵0≤x ≤π2,∴π6≤2x +π6≤76π. ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. ∵a >0,∴f (x )max =2a +b =4,f (x )min =b -a =-5. 由⎩⎪⎨⎪⎧ 2a +b =4b -a =-5,得⎩⎪⎨⎪⎧a =3b =-2.。
2019-2020学年高一数学必修四校本作业课题:3.2 简单的三角恒等变换(一)班级_______姓名________座号________一、选择题1.已知tan θ-1tan θ=m ,则tan2θ=( ) A .-1m B .-2mC .2m D.2m解析:tan θ-1tan θ=m =tan 2θ-1tan θ又tan2θ=2tan θ1-tan 2θ=-2tan θtan 2θ-1,∴tan θ=-2m . 答案:B2.已知cos α=15,α∈⎝⎛⎭⎫3π2,2π,则sin α2等于( ) A.105 B .-105 C.265 D.255 考点 利用简单的三角恒等变换化简求值题点 利用半角公式化简求值答案 A解析 ∵α∈⎝⎛⎭⎫3π2,2π,∴α2∈⎝⎛⎭⎫3π4,π, sin α2=1-cos α2=105. 3.化简2sin 2α1+cos 2α·cos 2αcos 2α的结果为( ) A .tan α B .tan 2α C .1 D .2考点 利用简单的三角恒等变换化简求值题点 利用半角公式化简求值答案 B解析 原式=2sin 2α2cos 2α·cos 2αcos 2α=tan 2α. 4.sin x cos x +sin 2x 可化为( )A.22sin ⎝⎛⎭⎫2x -π4+12B.2sin ⎝⎛⎭⎫2x +π4-12 C .sin ⎝⎛⎭⎫2x -π4+12 D .2sin ⎝⎛⎭⎫2x +3π4+1 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 A解析 y =12sin 2x +1-cos 2x 2=12sin 2x -12cos 2x +12=22⎝⎛⎭⎫22sin 2x -22cos 2x +12=22sin ⎝⎛⎭⎫2x -π4+12.故选A. 5.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .c <b <a B .a <b <cC .a <c <bD .b <c <a考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°,b =2sin 13°cos 13°=sin 26°,c =sin 25°,∵当0°≤x ≤90°时,y =sin x 是单调递增的,∴a <c <b .6.使函数f (x )=sin(2x +θ)+3cos(2x +θ)为奇函数的θ的一个值是( )A.π6 B.π3 C.π2 D.2π3考点 利用简单的三角恒等变换化简求值题点 利用辅助角公式化简求值答案 D解析 f (x )=sin(2x +θ)+3cos(2x +θ)=2sin ⎝⎛⎭⎫2x +π3+θ.当θ=23π时,f (x )=2sin(2x +π)=-2sin 2x 是奇函数.7.已知函数f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1,则函数f (x )的单调递增区间为()A.⎣⎡⎦⎤2k π-π3,2k π+π6(k ∈Z )B.⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z )C.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z )D.⎣⎡⎦⎤2k π-π6,2k π+π3(k ∈Z )考点 简单的三角恒等变换的综合应用题点 简单的三角恒等变换与三角函数的综合应用答案 C解析 因为f (x )=sin ⎝⎛⎭⎫2x -π6+2cos 2x -1=32sin 2x -12cos 2x +cos 2x =32sin 2x +12cos 2x =sin ⎝⎛⎭⎫2x +π6,所以函数f (x )的单调递增区间是⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z ),故选C. 二、填空题8.已知α∈⎝⎛⎭⎫0,π2,sin 2α=12,则sin ⎝⎛⎭⎫α+π4=________. 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换公式化简求值答案 32解析 因为1-2sin 2⎝⎛⎭⎫α+π4=cos ⎝⎛⎭⎫2α+π2=-sin 2α, 所以sin 2⎝⎛⎭⎫α+π4=34, 因为α∈⎝⎛⎭⎫0,π2, 所以α+π4∈⎝⎛⎭⎫π4,3π4, 所以sin ⎝⎛⎭⎫α+π4=32. 9.若cos α=-45,α是第三象限角,则1+tan α21-tan α2等于( ) A .-12 B.12C .2D .-2 考点 利用简单的三角恒等变换化简求值题点 利用弦化切对齐次分式化简求值答案 A解析 ∵α是第三象限角,cos α=-45,∴sin α=-35.∴1+tan α21-tan α2=1+sinα2cos α21-sin α2cos α2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sin α2cos α2+sin α2=1+sin αcos α=1-35-45 =-12.故选A. 10.化简:sin50°(1+3tan10°).解:原式=sin50°cos10°+3sin10°cos10°=2sin50°sin40°cos10°=sin80°cos10°=1. 11.设0≤α≤π,不等式8x 2-8x sin α+cos 2α≥0对任意x ∈R 恒成立,则α的取值范围是________.答案 ⎣⎡⎦⎤0,π6∪⎣⎡⎦⎤5π6,π 解析 Δ=(8sin α)2-4×8×cos 2α≤0,即2sin 2α-cos 2α≤0,所以4sin 2α≤1,所以-12≤sin α≤12. 因为0≤α≤π,所以0≤α≤π6或5π6≤α≤π. 三、解答题12.已知α,β为锐角,tanα=43,cos(α+β)=-55. (1)求cos2α的值;(2)求tan(α-β)的值.解析 (1)因为tanα=43,tanα=sinαcosα, 所以sinα=43cosα. 因为sin 2α+cos 2α=1,所以cos 2α=925, 因此,cos2α=2cos 2α-1=-725. (2)因为α,β为锐角,所以α+β∈(0,π).因为cos(α+β) =-55,所以sin(α+β)=1-cos 2(α+β)=255. 因此tan(α+β)=-2. 因为tanα=43,所以tan2α=2tanα1-tan 2α=-247, 因此tan(α-β)=tan[2α-(α+β)]=tan2α-tan (α+β)1+tan2αtan (α+β)=-211.13.已知函数f (x )=cos x ·sin(x +π3)-3cos 2x +34,x ∈R .(1)求f (x )的最小正周期;(2)求f (x )在区间[-π4,π4]上的值域.解:(1)由已知有f (x )=cos x (12sin x +32cos x )-3cos 2x +34=12sin x cos x -32cos 2x +34=14sin2x -34(1+cos2x )+34=14sin2x -34cos2x=12sin(2x -π3).∴f (x )的最小正周期T =2π2=π.(2)∵x ∈[-π4,π4],∴2x -π3∈[-5π6,π6].当2x -π3=-π2,即sin(2x -π3)=-1时,f (x )取最小值为-12.当2x -π3=π6,即sin(2x -π3)=12时,f (x )取最大值为14.∴f (x )在区间[-π4,π4]上的值域为[-12,14]14.已知sin θ=m -3m +5,cos θ=4-2mm +5⎝⎛⎭⎫π2<θ<π,则tan θ2等于() A .-13 B .5C .-5或13D .-13或5 考点 利用简单的三角恒等变换化简求值题点 综合运用三角恒等变换化简求值答案 B解析 由sin 2θ+cos 2θ=1,得⎝ ⎛⎭⎪⎫m -3m +52+⎝ ⎛⎭⎪⎫4-2m m +52=1, 解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π. ∴m =0舍去,故m =8,sin θ=513,cos θ=-1213, tan θ2=1-cos θsin θ=1+1213513=5. 15.已知α,β均为锐角,且sin2α=2sin2β,则( )A .tan(α+β)=3tan(α-β)B .tan(α+β)=2tan(α-β)C .3tan(α+β)=tan(α-β)D .3tan(α+β)=2tan(α-β)解析:∵sin2α=2sin2β,∴sin[(α+β)+(α-β)]=2sin[(α+β)-(α-β)], ∴sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=2sin(α+β)cos(α-β)-2cos(α+β)sin(α-β), ∴3cos(α+β)sin(α-β)=sin(α+β)cos(α-β), ∴tan(α+β)=3tan(α-β),故选A.答案:A。
3.2 简单的三角恒等变换[目标] 1.记住三角恒等变换常用公式. 2.能够利用三角函数公式进行简单的三角函数式的化简、求值和证明.[重点] 三角恒等变换常用公式. [难点] 三角恒等变换的化简与求值.知识点一 降幂公式与半角公式[填一填][答一答]1.半角公式中“±”号如何选取? 提示:符号由α2所在象限决定.2.已知sin θ=45,且5π2<θ<3π,则sin θ2=-255,cos θ2=-55,tan θ2=2.解析:∵sin θ=45,5π2<θ<3π, ∴cos θ=-1-sin 2θ=-35, ∵5π4<θ2<3π2, ∴sin θ2=-1-cos θ2=-1+352=-255. cos θ2=-1+cos θ2=-1-352=-55.tan θ2=sin θ2cos θ2=2(或tan θ2=sin θ1+cos θ=451-35=2).知识点二 常见的三角恒等变换[填一填]1.a sin α+b cos α =a 2+b 2(sin α·a a 2+b 2+cos α·ba 2+b2) =a 2+b 2sin(α+φ).(其中令cos φ=a a 2+b 2,sin φ=ba 2+b2)2.sin 2α=1-cos2α2,cos 2α=1+cos2α2,sin αcos α=12sin2α.[答一答]3.如何确定上述辅助角公式中的φ值?提示:可以由sin φ和cos φ的符号来确定φ所在的象限,由sin φ或cos φ的值确定角φ的大小.4.填空:(1)sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (2)3sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π6. (3)sin α±3cos α=2sin ⎝ ⎛⎭⎪⎫α±π3.类型一 半角公式的应用[例1] (1)设5π<θ<6π,cos θ2=a ,则sin θ4等于( ) A.1+a 2 B .1-a 2 C .-1+a 2D .-1-a 2(2)若sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.[解析] (1)由题知,5π<θ<6π,cos θ2=a ,则54π<θ4<32π,则sin θ4=-1-cos θ22=-1-a2.故选D.(2)∵sin(π-α)=-53,α∈⎝ ⎛⎭⎪⎫π,32π, ∴sin α=-53,cos α=-23,又∵α2∈⎝ ⎛⎭⎪⎫π2,34π,∴sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-1+cos α2=-66.[★★答案★★](1)D(2)-66已知θ的某个三角函数值,求θ2的三角函数值的步骤是:(1)利用同角三角函数基本关系式求得θ的其他三角函数值;(2)代入半角公式计算即可.[变式训练1]已知α∈(-π2,0),cosα=45,则tanα2=(D) A.3B.-3C.13D.-13解析:因为α∈(-π2,0),且cosα=45,所以α2∈(-π4,0),tanα2=-1-cosα1+cosα=-1-451+45=-13,故选D.类型二三角恒等式的化简与证明[例2]已知π<α<3π2,化简:1+sinα1+cosα-1-cosα+1-sinα1+cosα+1-cosα.[解]原式=⎝⎛⎭⎪⎫sinα2+cosα222⎪⎪⎪⎪⎪⎪cosα2-2⎪⎪⎪⎪⎪⎪sinα2+⎝⎛⎭⎪⎫sinα2-cosα222⎪⎪⎪⎪⎪⎪cosα2+2⎪⎪⎪⎪⎪⎪sinα2,∵π<α<3π2,∴π2<α2<3π4. ∴cos α2<0,sin α2>0.∴原式=⎝ ⎛⎭⎪⎫sin α2+cos α22-2⎝ ⎛⎭⎪⎫sin α2+cos α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫sin α2-cos α2 =-sin α2+cos α22+sin α2-cos α22=-2cos α2.三角恒等变换是指依据三角函数的有关公式、定理,对三角函数式进行某种变形的过程,凡三角问题几乎都要通过三角恒等变换来解决.具体步骤如下:(1)发现差异——观察角、名、形三方面的差异;(2)寻找联系——根据式子的结构特征,找出差异间的联系; (3)合理转化——选取恰当的公式,进行恒等变形,促使差异转化. [变式训练2] 化简sin4α4sin 2⎝ ⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α得( A )A .sin2αB .cos2αC .sin αD .cos α解析:∵4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α=4cos 2⎝⎛⎭⎪⎫π4-αtan ⎝ ⎛⎭⎪⎫π4-α=4cos ⎝ ⎛⎭⎪⎫π4-αsin ⎝ ⎛⎭⎪⎫π4-α =2sin ⎝ ⎛⎭⎪⎫π2-2α=2cos2α,∴原式=sin4α4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝⎛⎭⎪⎫π4-α=sin4α2cos2α=2sin2αcos2α2cos2α=sin2α. 类型三 三角恒等变换的应用命题视角1:三角恒等变换与三角函数性质的结合[例3] 函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.[解析] 由题意知,f (x )=12sin2x +12(1-cos2x )+1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ).[★★答案★★] π [3π8+k π,7π8+k π](k ∈Z )讨论三角函数的性质一般要把三角函数化为y =A sin (ωx +φ),y =A cos (ωx +φ),y =A tan (ωx +φ)的形式才能进行讨论.[变式训练3] 已知函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6,则函数的值域为[-1,1],对称轴方程为x =56π+k π(k ∈Z ).解析:f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6=sin x -32cos x -12sin x=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3则函数f (x )的值域是[-1,1].令x -π3=π2+k π,k ∈Z ,得x =56π+k π,k ∈Z . 所以函数f (x )的对称轴方程为x =56π+k π(k ∈Z). 命题视角2:三角恒等变换与平面向量的结合[例4] 在平面直角坐标系xOy 中,点A (cos θ,2sin θ),B (sin θ,0),其中θ∈R .(1)当θ=2π3时,求向量AB →的坐标; (2)当θ∈⎣⎢⎡⎦⎥⎤0,π2时,求|AB →|的最大值.[解] (1)由题意得AB →=(sin θ-cos θ,-2sin θ),当θ=2π3时,sin θ-cos θ=sin 2π3-cos 2π3=1+32,-2sin θ=-2sin 2π3=-62,所以AB →=⎝ ⎛⎭⎪⎫1+32,-62. (2)因为AB →=(sin θ-cos θ,-2sin θ), 所以|AB →|2=(sin θ-cos θ)2+(-2sin θ)2 =1-sin2θ+2sin 2θ=1-sin2θ+1-cos2θ =2-2sin ⎝ ⎛⎭⎪⎫2θ+π4.因为0≤θ≤π2,所以π4≤2θ+π4≤5π4. 所以当2θ+π4=5π4时,|AB →|2取到最大值, |AB →|2=2-2×⎝⎛⎭⎪⎫-22=3,即当θ=π2时,|AB →|取到最大值 3.三角恒等变换与平面向量的坐标运算相结合是常见的题型,这种题型往往体现了三角恒等变换的工具性.[变式训练4] 已知A ,B ,C 是△ABC 三内角,向量m =(-1,3),n =(cos A ,sin A ),且m·n =1,则角A =( D )A.π2B.π6C.π4D.π3 解析:∵m·n =1,∴(-1,3)·(cos A ,sin A )=1,即3sin A -cos A =1,∴2⎝⎛⎭⎪⎫sin A ·32-cos A ·12=1,∴sin ⎝ ⎛⎭⎪⎫A -π6=12.∵0<A <π,∴-π6<A -π6<5π6, ∴A -π6=π6,∴A =π3.命题视角3:三角恒等变换的实际应用[例5] 有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另外两点B ,C 落在半圆的圆周上,已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大?[分析] 在△AOB 中利用∠AOB 表示OA ,AB 的长→ 表示矩形面积:2OA ·AB →得到面积与角间的函数关系→ 通过求函数的最值得到面积的最值 [解]画图如图所示,设∠AOB =θ(θ∈(0,π2)),则AB =a sin θ,OA =a cos θ. 设矩形ABCD 的面积为S ,则S =2OA ·AB ,即S =2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin2θ.∵θ∈(0,π2),∴2θ∈(0,π),当2θ=π2,即θ=π4时,S max =a 2,此时,A ,D 距离O 点都为22a .解决实际问题应首先设定主变量角α以及相关的常量与变量,建立含有角α的三角函数关系式,再利用三角函数的变换、性质等进行求解.求三角函数最值的问题,一般需利用三角函数的有界性来解决.[变式训练5] 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解:如图,连接OC ,设∠COB =θ,则0°<θ<45°,OC =1.∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ=-12(1-cos2θ)+12sin2θ =12(sin2θ+cos2θ)-12=22cos ⎝ ⎛⎭⎪⎫2θ-π4-12.当2θ-π4=0,即θ=π8时,S max =2-12(m 2).∴割出的长方形桌面的最大面积为2-12m 2.1.已知cos α=-15,π2<α<π,则sin α2等于( D ) A .-105 B.105 C .-155 D .155 解析:∵π2<α<π,∴π4<α2<π2, ∵cos α=-15,∴sin α2=1-cos α2=155.2.下列各式中,值为12的是( B ) A .sin15°cos15°B .cos 2π6-sin 2π6C.tan30°1-tan 230° D .1+cos60°2解析:A 中,原式=12sin30°=14; B 中,原式=cos π3=12;C 中,原式=12×2tan30°1-tan 230°=12tan60°=32; D 中,原式=cos30°=32,故选B.3.函数y =12sin2x +sin 2x ,x ∈R 的值域是( C )A.⎣⎢⎡⎦⎥⎤-12,32 B .⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎡⎦⎥⎤-22+12,22+12 D .⎣⎢⎡⎦⎥⎤-22-12,22-12 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝ ⎛⎭⎪⎫2x -π4+12.故函数值域为⎣⎢⎡⎦⎥⎤-22+12,22+12. 4.若α∈(0,π),且cos α+sin α=-13,则cos2α=179.解析:∵(cos α+sin α)2=19,∴sin αcos α=-49, 而sin α>0,∴cos α<0.∴cos α-sin α=-(cos α+sin α)2-4sin αcos α=-173. ∴cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=-13×⎝⎛⎭⎪⎫-173=179. 5.证明:sin α+11+sin α+cos α=12tan α2+12.证明:∵左边=2tanα21+tan2α2+11+2tanα21+tan2α2+1-tan2α21+tan2α2=tan2α2+2tanα2+11+tan2α2+2tanα2+1-tan2α2=⎝⎛⎭⎪⎫tanα2+122tanα2+2=12⎝⎛⎭⎪⎫tanα2+1=12tanα2+12=右边.∴等式成立.——本课须掌握的三大问题1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tanφ=ba(或sinφ=ba2+b2,cosφ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
3.2 简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-;即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin 3y x x =的周期,最大值和最小值.解:sin 3y x x =这种形式我们在前面见过,13sin 32sin cos 2sin 223y x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用. 小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P - 14T T -。
重庆市人教新课标A版高中数学必修4 第三章三角恒等变换 3.2简单的三角恒等变换
同步测试
姓名:________ 班级:________ 成绩:________
一、单选题 (共15题;共30分)
1. (2分) (2017高二下·深圳月考) 已知曲线的参数方程是 ),若以此曲线所在直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则此曲线的极坐标方程为()
A .
B .
C .
D .
2. (2分)已知中,角A,B,C所对的边分别为a,b,c,外接圆半径是1,,且满足条件
,则的面积的最大值为()
A .
B .
C .
D .
3. (2分)若若,则()
A .
B .
C .
D .
4. (2分)若则的值为()
A .
B .
C .
D . -2
5. (2分)若,则的值为()
A .
B .
C .
D .
6. (2分) (2020高一上·武汉期末) 已知角、,,,则()
A .
B .
C .
D .
7. (2分) (2019高三上·广州月考) ,若,则()
A . 1
B . 2
C . 4
D . 8
8. (2分) (2016高三上·连城期中) 函数f(x)=cos2x﹣cos4x的最大值和最小正周期分别为()
A . ,π
B . ,
C . ,π
D . ,
9. (2分)实数x满足,则的值为()
A . 8.5
B . 8.5或7.5
C . 7.5
D . 不确定
10. (2分)将函数f(x)=2sin的图象向左平移个单位,得到函数y="g" (x)的图象.若y=g(x)在[]上为增函数,则的最大值()
A . 1
B . 2
C . 3
D . 4
11. (2分)已知向量=(s inθ,-2),=(1,cosθ),且,则sin2θ+cos2θ的值为()
A . 1
B . 2
C .
D . 3
12. (2分)已知,且sinα,cosα为方程25x2﹣35x+12=0的两根,则tan的值为()
A . 3
B .
C . 2
D .
13. (2分) (2016高一上·余杭期末) 若sin(α+β)= ,则为()
A . 5
B . ﹣1
C . 6
D .
14. (2分)在△ABC中,,且,则内角C的余弦值为()
A . 1
B .
C .
D .
15. (2分)在△ABC中,C>90°,E=sinC,F=sinA+sinB,G=cosA+cosB,则E,F,G之间的大小关系为()
A . G>F>E
B . E>F>G
C . F>E>G
D . F>G>E
二、填空题 (共5题;共5分)
16. (1分) (2018高三上·山西期末) 在平面直角坐标系中,已知角的顶点和点重合,始边与
轴的非负半轴重合,终边上一点坐标为,则 ________.
17. (1分)已知,且,则的值为________.
18. (1分)已知tanx=2,求的值________
19. (1分)已知,且2π<α<3π,则=________
20. (1分)若α∈,且,则cosα=________
三、解答题 (共5题;共25分)
21. (5分)已知0<β<<α<, cos(2α﹣β)=﹣, sin(α﹣2β)=,求sin的值.
22. (5分)(2018·黄山模拟) 已知函数 .
(1)求的单调递增区间;
(2)设的内角的对边分别为,且,若,求的值.
23. (5分)计算题
(1)求值:;
(2)已知sinθ+2cosθ=0,求的值.
24. (5分)(2018·枣庄模拟) 已知向量,函数 .
(1)求的对称中心;
(2)求函数在区间上的最大值和最小值,并求出相应的值.
25. (5分) (2017高二下·张家口期末) 已知曲线C1 , C2的极坐标方程分别为ρ=2cosθ,
,射线θ=φ,,与曲线C1交于(不包括极点O)三点A,B,C.(Ⅰ)求证:;
(Ⅱ)当时,求点B到曲线C2上的点的距离的最小值.
参考答案一、单选题 (共15题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、填空题 (共5题;共5分) 16-1、
17-1、
18-1、
19-1、
20-1、
三、解答题 (共5题;共25分)
21-1、
22-1、
22-2、
23-1、
23-2、
24-1、
24-2、答案:略
25-1、。