商务数学64广义积分与Γ函数(改进版)
- 格式:docx
- 大小:269.21 KB
- 文档页数:22
第六章 广义函数与Sobolev 空间简介函数是经典分析中的基本概念之一,然而这样的一个基本概念,在近代科学技术的发展中逐渐不够用了。
下面用几个例子加以说明。
例6.1(脉冲) 20世纪初,Heaviside 在解电路方程时,提出了一种运算方法,称之为算子演算。
这套算法要求对如下函数10()00x h x x ⎧≥⎪=⎨<⎪⎩ 求导数,并把导数记为()x δ。
但按照经典分析的理论,()h x 并不可导,因此()x δ不可能是普通意义下的函数,它除了作为一个记号进行形式演算外,在数学上是没有意义的。
但是,这个()x δ在实际中是没有意义的,又代表一种理想化的“瞬时”单位脉冲。
例6.2(Dirac 符号) 在微观世界中,把可观测到物质的状态用波函数来描述,最简单的波函数具有形式((,))i x e x λ∈-∞+∞,λ是实参数,并考虑如下形式的积分12i x e dx λπ+∞-∞⎰这种积分按Cauchy 积分来定义,即111sin lim lim 22n i x i x n n n n e dx e dx λλλπππλ+∞+-∞-→∞→∞==⎰⎰ 显然,这个极限在普通意义下不存在。
然而,物理学家认为这个极限是前面所提到的()x δ,并认为是Dirac 符号。
特别,在量子力学中,进一步发展了不少关于()x δ的运算法则,并广泛地使用。
例 6.3(广义微分) 在数学本身的发展中,也时常要求冲破经典分析中对一些基本运算使用范围所加的限制。
20世纪30年代,Sobolev 为了确定微分方程的存在性和惟一性问题,通过分部积分公式,推广了函数可微性的概念,建立了广义微商理论,形成了以他的名字命名的Sobolev 空间理论。
这标志着现代微分方程理论的诞生。
基于上述原因,扩充函数概念,为广义函数寻找坚实的数学基础,对数学家提出了新的挑战。
20世纪40年代,Schwartz 完成了这一艰巨的任务,创立了广义函数的系统理论,并因此于1950年获得数学最高奖——菲尔兹奖。
第六章定积分Definite Integral§4 广义积分与Γ函数对于定积分有两方面的要求:①积分f区间[]b a,是有限的;②被积函数()x 是有界的.但在一些实际问题中常会遇到具有无穷间断点的函数(无界函数)的积分或函数在无穷区间上的积分问题.因此把定积分的概念推广,就得到无穷积分(infinite integral)和瑕积分(flaw integral),这两类积分统称为广义积分(improper integral).而Γ函数(Gamma function )则是一类应用十分广泛的无穷积分.无穷积分(无穷区间上的积分)Definition (See )设函数()x f 在区间[)+∞,a 上连续,如果极限()⎰+∞→bab dx x f lim (a <b )存在,则称此极限值为()x f 在[)+∞,a 上的无穷积分(infinite integral ),记作()⎰+∞a dx x f ,即()()⎰⎰+∞→+∞=bab adx x f dx x f lim,这时我们说无穷积分()⎰+∞adxx f 存在(existence )或称其收敛(convergence 或converges );如果极限()⎰+∞→bab dx x f lim(a <b )不存在,我们就说无穷积分()⎰+∞adxx f 不存在(non-existence )或称其发散(divergence 或diverges ). 【Note 】类似地,可以定义()x f 在区间(]b ,∞-及()+∞∞-,上的无穷积分: ①()()⎰⎰-∞→∞-=baa b dx x f dx x f lim;②()()()dx x f dx x f dx x f c c⎰⎰⎰+∞∞-+∞∞-+=()()dx x f dx x f bcb c aa ⎰⎰+∞→-∞→+=lim lim(其中()+∞∞-∈,c ).※ 对于无穷积分()dx x f ⎰+∞∞-,其收敛的充分必要条件是()⎰∞-cdx x f 与()dx x f c⎰+∞均收敛.若()x F 是()x f 的原函数,且分别将()x F lim a -∞→和()x F lim b +∞→简记为()∞-F 和()∞+F ,则仿Newton-Leibniz 公式,无穷积分可简记为:Example 6.4.1(See )求⎰+∞-0xdx e . 解()b 0xb bxb 0xelim dx e limdx e -+∞→-+∞→+∞--==⎰⎰()1e 1lim bb =-=-+∞→.【Note 】也可写为⎰⎰+∞-+∞--=0x0xde dx e()101e 0x=-=-+∞-.Example 6.4.2(See )求⎰+∞0xdx cos . 解b 0xsin lim xdx cos limdx x cos b bb 0+∞→+∞→+∞==⎰⎰b sin lim b +∞→=,此极限不存在,于是⎰+∞0xdx cos 发散.Example 6.4.3(See )求⎰+∞∞+-dx x 112.解+∞∞-=+⎰+∞∞x arctan dx x 112-πππ=⎪⎭⎫⎝⎛--=-=-∞→+∞→22a arctan lim b arctan lim a b .Example 6.4.4(See )Determinewhether⎰+∞-0xdxxe converges ordiverges .Solution From the definition , we have dx xe limdx xe RxR 0x⎰⎰-+∞→+∞-=.To evaluate the last integral , you will need integration by parts . Letx u = dx e dv x-=dx du = xe v --=we than have⎪⎭⎫ ⎝⎛+-==⎰⎰⎰--+∞→-+∞→+∞-R0x xR RxR 0xdx e xelim dx xe limdx xe R 0⎪⎭⎫ ⎝⎛--=--+∞→R0x R R e Re 0lim ()RR R e 1Re lim --+∞→-+-=.Note that the limit RR Re lim -+∞→has the indeterminate form ∞⋅0. We resolve this with L ’Hospital ’s Rule, as follows:e 1lim edRd RdR d lim e R lim Re lim R R R R R R R R ====+∞→+∞→⎪⎭⎫ ⎝⎛∞∞+∞→-+∞→. Returning to the improper integral, we now have⎰+∞-0xdx xe ()1e 1Re lim R R R =-+-=--+∞→.Example6.4.5(See )已知dt te x x 1lim a taxx ⎰∞-∞→=⎪⎭⎫ ⎝⎛+,求a 的值. 解 a axx ax x e x 11lim x x 1lim =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+∞→∞→,dt te a t⎰∞-()a a taattat e0ae dt e tetde ∞-∞---=-==⎰⎰∞-∞-()()1a e 0e ae a a a -=--=,故()1a e e a a -=,于是1a 1-=,即2a =.※ Example 6.4.6(See )证明无穷积分⎰+∞1x dx α当α>1时收敛于11-α,当α≤1时发散.证明 当1≠α时,ααααα--=-=--⎰11b 1xxdx 11b1b1,所以当1=α时,b ln lim x dx lim xdxb b 1b 1+∞→+∞→+∞==⎰⎰α+∞=.所以无穷积分⎰+∞1xdx α当α>1时收敛于11-α,当α≤1时发散.瑕积分(无界函数的积分)=--=-+∞→∞+⎰ααα11lim 11b x dx b 11-α,α>1 ∞+, α<1Definition (See )设函数()x f 在区间(]b ,a 上连续,当+→a x 时,()∞→x f ,如果极限()dx x f lim bRaR ⎰+→存在,则称此极限值为无界函数()x f 在(]b ,a 上的瑕积分(flaw integral ),仍记作()dx x f ba⎰,即()()dx x f dx x f bRa R ba⎰⎰+→=lim ,这时我们说瑕积分()dx x f ba ⎰存在(existence )或称其收敛(convergence 或converges ),并称无穷间断点a 为瑕点(flaw spot );如果极限()dx x f lim bRa R ⎰+→不存在,我们就说瑕积分()dx x f ba⎰不存在(non-existence )或称其发散(divergence 或diverges ). 【Note 】类似地,可以定义()x f 在区间[)b ,a 上连续,当-→b x 时,()∞→x f 及()x f 在区间[]b ,a 上除c 点外连续,而当c x →时,()∞→x f 上的瑕积分:①()()⎰⎰-→=RabR badx x f dx x f lim ;②()()()dx x f dx x f dx x f bc c a b a ⎰⎰⎰+=()()dx x f dx x f bR cR R acR 2211⎰⎰+-→→+=lim lim(其中()b ,a c ∈).※ 对于瑕积分()dx x f ba ⎰,其收敛的充分必要条件是()⎰c a dx x f 与()dx x f bc ⎰均收敛.【Note 】需要特别注意的是,瑕积分与通常定积分的记法一样,都是()dx x f ba⎰,其是否为瑕积分,就看积分区间[]b ,a 上是否有瑕点(无穷间断点).一旦忽略了这一点,若按通常的定积分去计算,就会出现错误.例如,我们在前边曾经举过的两个例子,xln dx x 11111==-⎰-,2x1dx x 111112-=-=-⎰-都是错误的.Example 6.4.7(See )求dx x ln 10⎰. 解 因为当+→0x 时,-∞→x ln ,所以按定义()1Rx x ln x lim xdx ln lim dx x ln 1R 0R 0R 10-==⎰⎰++→→ ()R R ln R 1lim 0R +--=+→R ln R lim 10R +→--=,而()0R lim R1R 1lim R 1Rln lim R ln R lim 0R 20R 0R 0R =-=-==++++→→→→,所以1dx x ln 10-=⎰.Example 6.4.8(See )判断dx x 1112⎰-的敛散性.解 因为当0x →时,∞→2x 1,所以dx x 1112⎰-+=⎰dx x 1012-dx x112⎰dx x 1lim 11R 120R ⎰-→=- dx x1lim 1R 20R 22⎰+→+,而dx x1lim 11R 120R ⎰-→- 1R 11x1lim 0R --→-=+∞=⎪⎪⎭⎫ ⎝⎛+-=-→1R 1lim 10R 1,故瑕积分dx x 1112⎰-发散.Example 6.4.9(See )Determine whether⎰-1dx x11converges ordiverges .Solution From the definition , we have()x 1d x11lim dx x 11lim dx x 11R 01R R 01R 1---=-=-⎰⎰⎰--→→()2R 11lim 2x 1lim 21R 1R R=--=--=--→→.And so, theimproper integralconverges to 2.【Note 】也可以写成这样:()x 1d x 11dx x11101---=-⎰⎰2x1210=--=-.Example 6.4.10(See )Determine whether⎰-21dx x11converges ordiverges .Solution From the definition , we have()x 1d x 11lim dx x 11lim dx x112R 1R 2R 1R 21---=-=-⎰⎰⎰++→→-∞=-=--=++→→R 1ln lim x1ln lim 1R 1R 2R.So that the improper integral diverges. ※ Example 6.4.11(See )证明瑕积分⎰1x dx α当α<1时收敛于α-11,当α≥1时发散.证明 因为被积函数在0x =处无界,而由瑕积分定义知,当α<1时,αααα-=--=-→+⎰111R 1lim xdx 10R 10,此时积分收敛. 当1=α时,()+∞=-=+→⎰R ln lim x dxR 10α. ⎰1R x dx α= αα---1R11,1≠α lnR -, 1=α当α>1时,-∞=--=-→+⎰ααα1R 1lim x dx 10R 10.所以瑕积分⎰1x dxα当α<1时收敛于α-11,当α≥1时发散.【Note 】Example 6.4.8(See )也可这样作:dx x 1112⎰-+=⎰dx x 1012-dx x112⎰,而由上例知,dx x112⎰发散(2=α>1),故dx x 1112⎰-发散.Example 6.4.12 ①k 为何值时,瑕积分()⎰+e13k x ln x dx 收敛?②k 为何值时,无穷积分()⎰+∞-e 2k x ln x dx收敛? 解①因()()⎰⎰⎰+=====++==103k x ln t 1t ,e x 0t ,1x e 13k e13k t dt x ln x ln d x ln x dx,由上例可知,当3k +<1即k <2-时,瑕积分()⎰+e13k x ln x dx收敛.②因()()⎰⎰⎰+∞-=+∞→+∞→==+∞-+∞-==12k xln t t ,x 1t ,e x e 2k e2k t dt x ln x ln d x ln x dx,由Example 6.4.6可知,当2k ->1即k >3时,无穷积分()⎰+∞-e 2k x ln x dx收敛.Γ函数下面讨论一个在概率论中要用到的积分区间无限且含有参变量的积分. Definition (See )广义积分()dx e x s x 01s -+∞-⎰=Γ(s >0)是参变量s 的函数,称为Γ函数(或伽马函数[ gamma function ]). 可以证明()s Γ在s >0时是收敛的,其他情形皆发散.容易证明,Γ函数有一个重要性质:()()s s 1s ΓΓ=+.证明 ()x 0s xs de x dx e x 1s -+∞-+∞⎰⎰-==+Γsxxs x d e ex 0⎰+∞--+-=+∞xd e x s 0x 1s ⎰+∞--=()s s Γ=(注意,当s>0时,0ex 0xs =-+∞-).【Note 】 公式()()s s 1s ΓΓ=+是一个递推公式(recurrence formula 或recursion formula ).利用这一公式,计算Γ函数的任意一个函数值都可化为求Γ函数在区间(]1,0上的函数值. ※ 若s 是正整数n ,易证明()!n 1n =+Γ事实上,()()()()1n 1n n n n 1n --==ΓΓΓ+ ()()()()()()2232n 1n n 2n 2n 1n n ΓΓ⋅--==---= ()1!n Γ=,而()1dx e 10x ==⎰+∞-Γ,所以()!n 1n =+Γ.由上式易知,()11=Γ,()12=Γ. Example 6.4.13(See )计算下列各值:①()6.4Γ;②()()3521ΓΓ⋅;③⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛2125ΓΓ.解 ①()()()6.36.316.36.4ΓΓΓ=+=()()6.16.16.26.36.26.26.3ΓΓ⨯⨯=⨯=()()6.09856.86.06.06.16.26.3ΓΓ=⨯⨯⨯=;②()()24!2!4213521=⨯⨯=⋅ΓΓ; ③43212121232123232125=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⨯=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛ΓΓΓΓΓΓ.Example 6.4.14(See )计算积分dx e x x 05-+∞⎰.解 ()120!56dx e x x 05===-+∞⎰Γ.Γ函数还可以写成另外一种形式,例如,设Γ函数中的2y x =,则有()dy e y 2s 2y 01s 2-+∞-⎰=Γ.此式中的广义积分dy e 0y 2⎰+∞-是概率论中常见的泊松积分(Poisson ’s integral ),可以证明dy e 0y 2⎰+∞-收敛且等于2π(要用到多元积分学中的二重积分知识,在本课程以中将不涉及这部分内容),所。