高等数学 第六章 第6节 广义积分与T函数(中央财经大学)
- 格式:pdf
- 大小:436.15 KB
- 文档页数:40
一、微分元素法)( 或称为积分元素法法数学建模中的微分元素 ,当把非均匀变化的问题实际中在物理、几何以及工程 , ,则通积达形式能表示为某两个量的乘看作是均匀变化时. 分问题来处理常可将问题归结为定积 . 具有对区间的可加性要求量运用定积分处理问题时A取极限”—求和—近似“分划—,局利用整体上变化的量在局部问题的步骤将整体问题化成 , ,替“变”在局部上以“不变”代关系部上近似于不变的辩证,采用按照定积分的概念]. ,[ )( 111i i i ni i i ni i x x x f A A −==∈∆≈∆=∑∑ξξ便有关系式, ,个将具有代表性的第略去下标为简便和醒目起见i i, , ]d ,[ ] ,[ 1且取称之为典型小区间表示为小区间x x x x x i i +−, 则有为区间的左端点x i ξ. d )(x x f A ≈∆, )( d )( 记为或积分元素的微分元素为量通常称A x x f. d )(d x x f A =( 0d , 相当于取极限过程对区间的可加性由量→x A ] ,[ d , 0)||||上“无限累加”起来在区间将微分元素b a A x →∆] ,[ )(上的值:在区间就得到量即作定积分b a A. d )(d ∫∫==babax x f A A. ,加解为微分元素的无限累我们在这里将定积分理简言之一、平面图形的面积1解解解解y2解3解二、旋转体的体积一轴旋转一周所生成的将平面图形绕平面上某 . ,该轴称为旋转轴几何体称为旋转体 . , 间的可加性旋转体的体积具有对区上在区间I:旋转体的特点 ,截旋转体所得的的平面任何一个垂直于旋转轴. 图形均为圆截口1 y1 y2解Oaa b解解2πy三、平行截面面积为已知的几何体的体积解解。
,杂平面图形面积的方法该过程告诉了我们求复. 形面积的定义同时,也告知了平面图想方法是:解决曲边梯形面积的思. 取极限—求和—代替—分划 处理的问题的结果,即通常人们把这类方法所. ],[ )( 上的定积分在区间这种极限值,称为函数b a x f定积分符号:. )(lim d )(10∑∫=→∆=n i i i b a x f x x f ξλ 定积分号;—∫b a 积分下限;—a积分上限;—b d )(被积表达式;—x x f )(被积函数;—x f d 积分变量;—中的x x. ],[积分区间—b a ) ( 积分变量的取值范围关于定积分定义的几点说明. ] ,[ )( , T ),( d )( )1(有关区间及只与的选择无关及点它与分法具体的数是一个极限值定积分b a x f x x f i ba ξ∫ . d )(d )(d )()2(⋯===∫∫∫ba b a b a t t f y y f x x f 号无关:定积分与积分变量的记喂!下面是几个关于函数可积性的定理.运用定积分的概念及定积分的几何意义, 由函数的极限运算性质容易证明它们, 所以我们在这里不进行证明.定理 1. ]),([)( ]),,([)( b a R x f b a C x f ∈∈则若, ],[ )( 上单调、有界在若b a x f. ]),([)( b a R x f ∈则)( , ],[ )(第一类且仅有有限个上有界在b a x f. ]),([)( ,b a R x f ∈则间断点定理 2O xya b c �. ]),([|)(| ]),,([)( b a R x f b a R x f ∈∈则若. 3 的逆不真定理⎩⎨⎧−= . 1, , 1 )( ,为无理数,为有理数例如x x x f 定理 3, ],[ ],[ ]),,([)( b a d c b a R x f ⊂∀∈则若. ]),([)(d c R x f ∈O xya b c d 定理 4]),,([)(),( 则若b a R x g x f ∈ . ]),([)()( ),()( ),(b a R x g x f x g x f x kf ∈⋅±定理 5为常数)k (三. 定积分的性质由于定积分是一种和式的极限, 所以极限的某些性质在定积分中将有所反映.在以下的叙述中, 假设所出现的函数均可积, 所出现的定积分均存在.: ,定积分反号交换积分上、下限. d )(d )(∫∫−=abbax x f x x f 1 性质)( 2 线性性质性质, d )(d )(d )]()([∫∫∫±=±ba b a b a x x g x x f x x g x f βαβα. ,为常数、式中βα)( 3 保号性性质. 0d )( ],,[ ,0)( ≥∈≥∫ba x x fb a x x f 则若(小于零的情形类似. )1 3 的推论性质. d )(d )( ,],[ )()( ∫∫≥∈≥babax x g x x f b a x x g x f 则若2 3 的推论性质∫∫≤babaxx f x x f d |)(| |d )(|证(f)( 4 对区间的可加性性质∫∫∫+=bcc abaxx f x x f x x f d )(d )(d )(. ,b c a <<其中注意:不论a, b, c 大小关系如何,上式仍然成立!)( 5 估值定理性质,, ],[ )( , 则最小值上的最大在分别为设b a x f m M. )(d )()(a b M x x f a b m ba −≤≤−∫. 0d )(=∫bax x f 时当补充规定:b a =证)( 6 积分中值定理性质使得则上保持符号不变在 , ],[ , ],[ b a b a ∈∃ξ. d )()(d )()(∫∫=babax x g f x x g x f ξ )( ]),,([)( ]),,([)( x g b a R x g b a C x f 且若∈∈解f t3。
第六章 定积分及其应用积分学的另一个基本概念是定积分.本章我们将阐明定积分的定义,它的基本性质以及它的应用.此外,我们要重点讲述沟通微分法与积分法之间关系的微积分学基本定理,它把过去一直分开研究的微分和积分彼此互逆地联系起来,成为一个有机的整体.最后,我们把定积分的概念加以推广,简要讨论两类广义积分.§ 6.1 定积分的概念与性质1. 定积分的定义我们先来研究两个实际问题. 例1 计算曲边梯形的面积设)(x f y =为闭区间],[b a 上的连续函数,且0)(≥x f .由曲线)(x f y =,直线b x a x == ,及x 轴所围成的平面图形(图6—1)称为)(x f 在],[b a 上的曲边梯形,试求图6—1我们先来分析计算会遇到的困难.由于曲边梯形的高)(x f 是随x 而变化的,所以不能直接按矩形或直角梯形的面积公式去计算它的面积.但我们可以用平行于y 轴的直线将曲边梯形细分为许多小曲边梯形如图6—1所示.在每个小曲边梯形以其底边一点的函数值为高,得到相应的小矩形,把所有这些小矩形的面积加起来,就得到原曲边梯形面积的近似值.容易想象,把曲边梯形分得越细,所得到的近似值就愈接近原曲边梯形的面积,从而运用极限的思想就为曲边梯形面积的计算提供了一种方法.下面我们分三步进行具体讨论:(1) 分割 在],[b a 中任意插入1-n 个分点b x x x x x a n n =<<<<<=-1210把],[b a 分成n 个子区间],[10x x ,],[21x x ,…,],[1n n x x -,每个子区间的长度为1--=∆i i i x x x ),,2,1( n i =.(2) 近似求和 在每个子区间],[1i i x x -),,2,1( n i =上任取一点i ξ,作和式ini ix f ∆∑=1)(ξ (1。
1)(3) 取极限 当上述分割越来越细(即分点越来越多,同时各个子区间的长度越来越小)时,和式(1。