汽轮机单多阀
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
汽轮机进汽阀的使用与调试说明书一、引言汽轮机是一种高效率的能量转换设备,而进汽阀作为汽轮机中的重要组成部分,起着控制汽轮机进气流量和调节汽轮机负荷的关键作用。
本说明书旨在详细介绍汽轮机进汽阀的使用与调试方法,以确保汽轮机运行的安全和稳定。
二、进汽阀的结构与工作原理汽轮机进汽阀通常由阀体、阀瓣、传动机构和控制系统组成。
阀体为铸铁或钢制成,通常采用闸式、平衡式或调节式结构,以实现流量控制和压力调节的功能。
进汽阀的工作原理是通过调整阀瓣的开度来控制进入汽轮机的蒸汽流量。
在汽轮机负荷变化时,进汽阀能够根据控制系统的指令迅速响应,并通过传动机构实现阀瓣的平稳运动,以控制进汽阀的开度。
三、进汽阀的使用1. 进汽阀的开启与关闭在每次启动汽轮机之前,应先确保进汽阀处于关闭状态。
启动汽轮机后,根据需要逐步开启进汽阀,控制蒸汽流量的增加,使汽轮机达到设计负荷。
2. 进汽阀的调节与控制进汽阀的调节与控制需要依靠汽轮机的自动控制系统。
通过监测汽轮机运行参数,如蒸汽压力、负荷与转速等,控制系统能够根据设定的参数范围自动调节进汽阀的开度,以保持汽轮机的稳定运行。
3. 进汽阀的维护与保养为确保进汽阀的正常运行,定期维护与保养是必要的。
包括检查阀体密封性能、阀瓣与传动机构的磨损情况,清洗阀体内部及传动机构的积灰和杂物等。
四、进汽阀的调试方法1. 调试前的准备工作在进行进汽阀的调试前,需要先关闭汽轮机系统,并确保相关设备的安全。
同时,检查进汽阀的连接是否牢固,传动机构是否灵活。
2. 进汽阀的启动与调节将进汽阀的控制系统连接好,并根据汽轮机的启停顺序逐步启动。
启动后,观察进汽阀的运动情况,并调整控制系统的参数,确保阀瓣的开度符合要求。
3. 进汽阀的性能测试调试完成后,需要进行进汽阀的性能测试。
通过增大或减小负荷,观察进汽阀对蒸汽流量的调节情况,并检查控制系统的响应速度和准确性。
五、安全注意事项在使用和调试汽轮机进汽阀时,应注意以下安全事项:1. 严格遵守操作规程,切勿超过进汽阀的额定工作压力和温度范围。
汽轮机控制系统汽轮机控制系统组成一般来讲,汽轮机控制系统由人机界面、测量元件、控制装置、执行机构等部分组成。
人机界面为各种操作显示设备,如CRT,各种指示灯/表,鼠标,操作按钮/开关等。
测量元件为各种传感器,如测速头,热电偶,变送器,行程开关等。
它们将各种工艺过程变量转换成不同形式的电子信号,送往控制装置。
控制装置是整个控制系统的核心,实现系统的各种控制功能。
目前常用的控制装置都是以微处理器和网络技术为基础的数字式控制系统。
通常由通过网络连接的控制站、操作员站、工程师站以及电源装置和必要的机柜等辅助设备构成。
其中,控制站包括运算处理部件和I/O转换部件。
由于汽轮机是一种大型高速旋转设备。
其执行机构必须具有较大出力和快速响应,所以普遍采用液压型执行机构,也称作油动机。
因此,还必须配备液压动力源向执行机构提供液压工作介质。
根据设计的不同,可以采用汽轮机润滑油作为工作介质,也可以配置独立油源。
另外,在数字式控制系统中还有大量的不同功能的软件程序分布在系统各部件中,与硬件设备协同工作,共同完成控制任务。
汽轮机作为一种在高温、高压、高速条件下连续运行的大型机械设备,其高可靠性既是工艺过程的要求,也是自身安全的需要。
所以在配置汽轮机控制系统时必须给予高度重视。
冗余技术、自诊断技术和分散结构被广泛采用。
在控制装置内部,均采用双网结构,防止信息传送故障。
CPU处理器采用三冗余配置,3取2表决机制或双机热备配置,裁决机制,一用一备。
对重要信号,从一次元件到I/O通道都采用3冗余或双冗余配置。
执行器一般采用双线圈伺服阀;双泵供油,一用一备,自动连锁。
另外,分散结构使系统各功能科学合理地分配在不同的部件中,任何部件损坏只会引起系统部分功能丧失,不会导致整个系统故障,更不会危及机组运行安全;同时系统中非常完善的自诊断功能可以对系统中绝大多数异常进行有效的鉴别、报警,必要时自动将故障部件从系统中隔离。
目前,自诊断都可以达到具体I/O通道。
汽轮机单顺阀切换分析与研究摘要:本文针对黄陵矿业煤矸石发电公司2*300MW发电机组汽轮机配汽方式进行论述,对单阀和顺序阀运行的优缺点进行了对比,介绍了单顺阀切换的目的。
通过对切换前后的各项技术参数进行统计、研究,以解决单顺阀切换过程中存在的问题。
关键词:300MW汽轮机;单阀;顺序阀;切换;振动;温度黄陵矿业煤矸石发电公司2*300MW发电机组汽轮机由上海汽轮机厂设计制造。
汽轮机进汽设有两个高压主汽门和两个中压主汽门、两个中压调门和6个高压调门,正常运行时,高压主汽门、中压主汽门、中压调门保持全开,高压调门调节汽轮机进汽量,调整机组负荷。
单阀运行时,6个高压调门同时动作,即同时开大或关小,顺序阀运行时,按照上海汽轮机厂说明书规定,新投产机组在单阀运行六个月后,允许单阀切换为顺序阀运行。
一、单阀/顺序阀单阀控制,调节方式为节流调节,进汽为全周进汽。
该运行方式优点为调节级处金属温度受热均匀,热应力较小,对汽轮机寿命有益;同时,机组响应负荷变化较快,在进行变负荷调峰时,调节级金属温度波动较小。
不足之处是,机组在部分负荷运行时,由于所有高压调门都未全开,导致进汽节流,造成节流损失。
发电汽耗增大。
顺序阀控制,调节方式为喷嘴调节,进汽为部分进汽。
该运行方式优点为,机组在带部分负荷运行时,调门按照DEH逻辑里设定好的阀门开启顺序进行开启,最终阀门状态为,一部分阀门全开或全关,只留一个调门进行调节负荷。
这样,进入汽轮机的蒸汽节流少,节流损失较小,发电汽耗减小。
缺点是调节级处为部分进汽,调节级处金属温度受热不均匀,热应力较大,对汽轮机寿命不利;同时,在机组负荷变化较频繁时,调节级处运行工况更加恶劣。
我厂在对#2汽轮机进行单顺阀切换时,切换过程历时5min,切换开始前,负荷:245MW,阀门为单阀控制,阀位为:27.5%。
负荷投入功率控制,切换开始后,高压调阀按照GV1,2(同时开启)-GV4-GV5-GV6-GV3的顺序进行切换。
汽轮机单、顺阀操作说明
一、汽轮机在下列情况下采取单阀控制方式:
1、汽轮机在最初运行半年以内;
2、汽轮机在冷态、温态启动时,保持单阀运行一天;
3、汽轮机在停机之前,切至单阀方式;
4、汽轮机在进行阀门活动试验之前,切至单阀方式。
二、单阀切换至顺阀操作说明:
1、整个切换过程,必须在汽机“自动”控制方式下运行。
2、切换过程,可以投入“汽机主控”即在“遥控”方式下运行。
3、单阀切换至顺阀时,点击DEH控制画面“阀门方式”,点击“顺序阀”,然
后点击“转换”。
“SEQ”平光开始闪烁,切换开始。
4、切换过程中,#1、#2高调门同时逐步开大,#4高调门逐步关小。
整个过程
调门开度跟踪综合阀位的变化而调整。
5、切换结束时,#1、#2高调门开至100%、#3、#4依照阀位指令顺序开启。
“SEQ”显示平光,停止闪烁。
6、切换过程中,注意轴承温度和振动变化。
三、顺阀切换至单阀操作说明:
1、整个切换过程,必须在汽机“自动”控制方式下运行。
2、切换过程,可以投入“汽机主控”即在“遥控”方式下运行。
3、顺阀切换至单阀时,点击DEH控制画面“阀门方式”,点击“单阀”,然后点击“转换”。
“SIG”平光开始闪烁,切换开始。
4、切换过程中,#1、#2高调门同时逐步关小,#3、#4高调门逐步开启。
整个过程调门开度跟踪综合阀位的变化而调整。
5、切换结束时,四个调门开度基本一致。
“SIG”显示平光,停止闪烁。
6、切换过程中,注意轴承温度和振动变化。
汽轮机(汽机)运行负荷调节与暖机操作技术措施一、汽轮机负荷的调节:1、汽轮机负荷调节的方式:(1)节流调节:主蒸汽通过一个或几个同时开闭的阀门然后进入汽轮机。
(2)喷嘴调节:负荷变化时,依次开启或关闭若干个调节阀,改变调节级的通流面积控制进入汽轮机的蒸汽流量。
(3)滑压调节:汽轮机的调门开度保持不变,通过调节主蒸汽的压力以调节进入汽轮机的蒸汽流量和汽轮机的负荷。
2、各调节的方式的优缺点:(1)节流调节:调节装置的结构比较简单,没有调节级结构简单,制造成本低,但在部分负荷下因有节流损失,效率较低。
(2)喷嘴调节:喷嘴调节的调门控制机构比较复杂,不利于维修,但在部分负荷下只有部分调门存在节流损失,其他调门全开,因此经济效率较高。
(3)滑压调节:一般滑压运行时,调门开度为全开位置,不存在节流损失,但由于主蒸汽压力下降,使蒸汽的做功能力下降,降低了汽轮机的效率,但有利于汽轮机的快速加减负荷。
3、汽轮机负荷低于30%时为什么不得投入协调控制:由于我厂1、2U机组的DEH对汽轮机的负荷控制有调节级压力控制和功率控制两路反馈调节方式。
当汽轮机负荷低于30%负荷时,由于调节级压力不能准确的反映汽轮机的进汽量,因此不能作为汽轮机负荷调节的反馈。
这时,1、2U的DEH采用功率控制的模式,由于MCS也以汽轮机的功率作为对汽轮机调节的反馈,而MCS和DEH的功率仪表的偏差会造成汽轮机调节指令的频繁晃动,并造成汽轮机的调节不稳,因此应在DEH投入调节级压力控制,切除功率控制后,投入MCS控制。
4、汽轮机负荷低于30%时为什么不得投入协调控制:由于我厂1、2U机组的DEH对汽轮机的负荷控制有调节级压力控制和功率控制两路反馈调节方式。
当汽轮机负荷低于30%负荷时,由于调节级压力不能准确的反映汽轮机的进汽量,因此不能作为汽轮机负荷调节的反馈。
这时,1、2U的DEH采用功率控制的模式,由于MCS也以汽轮机的功率作为对汽轮机调节的反馈,而MCS和DEH的功率仪表的偏差会造成汽轮机调节指令的频繁晃动,并造成汽轮机的调节不稳,因此应在DEH投入调节级压力控制,切除功率控制后,投入MCS控制。
•如何对汽轮机的进行单阀和顺序阀进行切换在实际的工作中,为了进一步提高汽轮机的使用效率,经常会需要对汽轮机进行单阀和顺序阀的切换,但是在操作的过程中,经常会发生各种各样的问题,因此本文就简单介绍如何对汽轮机进行单阀和顺序阀的切换。
单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节流损失较大。
假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。
单阀系数乘以单阀开度指令与顺序阀系数乘以顺序阀开度指令相加后得到的就是各个阀门实际的开度指令。
单阀指令和顺序阀指令是当前负荷指令分别经过单阀曲线和顺序阀曲线转换后得出的。
在实际的阀门切换过程中,上述分析中的假设条件是难以成立的,所以不可避免地会有负荷扰动;但如果投入闭环控制,负荷扰动在一定程度上可以得到改善,即如果投入功率闭环回路,当实际功率与负荷设定值相差大于4%时,切换自动中止;当负荷调节精度达到3%以内时,切换又自动恢复。
投入调节级压力控制回路与此类似。
对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。
对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。
对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。
电力工作者在实际的工作中,需要不断总结经验,掌握汽轮机单阀和顺序阀间切换的规律,保障汽轮机即高效又安全的运行。
浅谈汽轮机阀门控制叶茂顾晓华(安徽铜陵发电有限公司热工机控班244012)摘要:DEH系统的主要功能就是阀门的管理,本文通过对我厂所使用的300MW哈汽机组、新华DEH控制系统的分析,简单描述阀门控制信号的形成原理及其过程。
同时对单阀多阀的切换及其切换的时间、单阀多阀切换时阀门的参数设置作个简单的介绍。
关键词:DEH,阀门管理,单阀,多阀一、前言现代发电厂组中汽轮机均采用数字电液控制系统即DEH进行控制,各进汽阀门是由电信号控制、高压油动机驱动。
其中进汽阀门的管理显然是DEH系统的重要功能,汽轮机从开始的启动冲转到同期再到并网带负荷,都是通过控制汽轮机的阀门开度来实现,为了使管理程序更为准确更为科学,我们就迫切需要很好地了解阀门控制过程当中指令的形成变换过程,掌握阀门控制当中各个参数的整定调试方法;在此基础上去调整各参数使阀门的控制更稳定,下面我就我厂新华DEH的基本情况作个简单的介绍。
二、DEH阀门控制方式2.1阀门控制方式DEH阀门控制方式可以分为两种:单阀控制和顺序阀控制,单阀控制即我们平常所说的节流调节方式;顺序阀即我们平常说的喷嘴调节方式。
在单阀控制方式下,所有阀门被当成一个阀门来调节,所以各个阀门的开度是一致的,都处于调节状态。
这样就不可避免的存在很大的节流损失。
新建机组在试运期间一般采取全周进汽的单阀运行方式,这种方式下汽缸、转子加热很均匀,使得转子和定子的温差较小,有利于机组初期的磨合。
另外在机组启动过程中,也同样需要采用单阀控制,以便更好地给转子、定子加热,减少加热不均给机组造成的损害。
机组在正常运行中都采用顺序阀控制方式,在顺序阀门控制方式下,只有一个高压调节阀进行流量调节,其余的阀门处于全开或全关位置,这样减少了节流损失,有利于提高机组热效率。
图1是单阀跟顺序阀方式下的热效率曲线,可见两者的效率在低负荷时差距好大。
2.2单阀多阀的切换平时机组每个星期都必须做一次汽门的活动实验,此时就需要在这两种控制方式之间进行切换(因为平常都是顺序阀控制方式,新华DEH要求做实验时必须切到单阀);它们之间的切换是通过单阀多阀切换系数STRAN来实现的。
单阀/顺序阀切换的目的是为了提高机组的经济性和快速性,实质是通过喷嘴的节流配汽(单阀控制)和喷嘴配汽(顺序阀控制)的无扰切换,解决变负荷过程中均匀加热与部分负荷经济性的矛盾。
单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节流损失较大。
顺序阀方式则是让调节阀按照预先设定的次序逐个开启和关闭,在一个调节阀完全开启之前,另外的调节阀保持关闭状态,蒸汽以部分进汽的形式通过调节阀和喷嘴室,节流损失大大减小,机组运行的热经济性得以明显改善,但同时对叶片存在产生冲击,容易形成部分应力区,机组负荷改变速度受到限制。
因此,冷态启动或低参数下变负荷运行期间,采用单阀方式能够加快机组的热膨胀,减小热应力,延长机组寿命;额定参数下变负荷运行时,机组的热经济性是电厂运行水平的考核目标,采用顺序阀方式能有效地减小节流损失,提高汽机热效率。
对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。
对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。
对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。
假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。
单阀系数乘以单阀
开度指令与顺序阀系数乘以顺序阀开度指令相加后得到的就是各个阀门实际的开度指令。
单阀指令和顺序阀指令是当前负荷指令分别经过单阀曲线和顺序阀曲线转换后得出的。
在实际的阀门切换过程中,上述分析中的假设条件是难以成立的,所以不可避免地会有负荷扰动;但如果投入闭环控制,负荷扰动在一定程度上可以得到改善,即如果投入功率闭环回路,当实际功率与负荷设定值相差大于4%时,切换自动中止;当负荷调节精度达到3%以内时,切换又自动恢复。
投入调节级压力控制回路与此类似。
上述限制过程对运行人员的操作没有任何要求。
这样,阀门切换过程中如果投入功率闭环,则功率控制精度在3%以内;如果投入调节级压力闭环,则调节级压力控制精度在1.5%以内。
单阀/顺序阀切换也可以开环进行,显然,此时负荷扰动的大小与阀门特性曲线的准确性及汽机运行工况有关。
在单阀向顺序阀切换过程中或阀门已处于顺序阀方式时,如果汽机跳闸或出现任一个GV紧急状态,即实际阀位和阀定位卡的阀位指令之间偏差大于设定的限值,则强行将阀门置于单阀方式。
这种情况下强制成单阀方式可以减小负荷扰动。