所以 x4 x1 , y4 y1.
根据三角函数的定义,得
y
y
sin y1 , cos x1 , tan 1 ;
x1
sin( ) y4 , cos( ) x4 , tan( )
sin( ) sin
公式四: cos( ) cos
所以 x3 x1 , y3 y1.
P1 ( x1 , y1 )
O
x
P3 ( x3 , y3 )
作点 关于x轴的对称点P3
所以 x3 x1 , y3 y1.
根据三角函数的定义,得
y1
sin y1 , cos x1 , tan ;
x1
y
y3
sin( ) y3 , cos( ) x3 , tan( ) .
x3
sin( ) sin
公式三: cos( ) cos
tan( ) tan
P1 ( x1 , y1 )
O
x
P3 ( x3 , y3 )
作点 关于y轴的对称点P4
2k ( )(k Z ).
终边相同的角,即:
以OP4 为终边的角 都是与角
即对于正弦和余弦的诱导公式,
式, 的终边不能落在y轴上,即 k
2
(k Z ).
追问2
探究公式二的过程,可以概括为哪些步骤?每一步蕴含的数学思想
是什么?
第一步,根据圆的对称性,建立角之间的联系;
形
第二步,形的关系代数化,建立坐标之间的关系;
数
第三步,等量代换,得到三角函数值的关系.