中职数学基础模块说课课件
- 格式:ppt
- 大小:50.00 KB
- 文档页数:18
中职数学的说课课件一、教材分析:《集合与元素》是江苏教育出版社,中职《数学》基础模块上册第一章第一节的内容。
本节课的主要内容:集合以及与集合有关的概念,元素与集合间的关系.初中数学课本中已出现了一些数和点的集合,如:自然数的集合,有理数的集合,不等式解的集合,线段的垂直平分线是到线段的两个端点距离相等的点的集合??但学生并不清楚“集合”在数学中的含义.集合是一个基础性概念,也是高中数学的开篇,是我们后续学习的重要工具,如用集合语言表示函数的定义域、值域,方程与不等式的解集,曲线上点的集合等.通过本章的学习,能让学生领会到集合语言的简洁和准确,帮助学会用集合语言描述客观,发展学生运用数学语言交流的能力。
二、教学目标根据教学大纲及上述对教材的分析,我确定本节课的教学目标为:知识目标:1.通过实例,了解集合的含义,理解集合以及与有关的概念;2.初步体会元素与集合的“属于”关系,掌握元素与集合关系的表示方法:能力目标:1.让学生感知数学知识与实际生活的密切联系,培养解决实际问题的能力;2.学会借助实例分析、探究数学问题,发展学生的观察、归纳能力;情感目标:1.通过联系生活,提高学生学习数学的积极性,形成积极的`学习态度;2.通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨.三、重点和难点根据上述对教材的分析,确定的教学目标,本节课的教学重点定位为:集合的概念,元素与集合的关系;考虑到学生已有的知识基础与认知能力,教学难点定位为集合的含义。
教学中从学生已有的知识和经验入手,结合现实生活中的例子、教师引导、学生自主探索等活动,让学生亲自参与概念、结论的逐步形成过程,达到化难为易,突破难点。
四、学情分析:高中阶段是学生智力发展的关键年龄,学生逻辑思维从经验型逐步走向理论型发展,观察能力、记忆能力和想象能力也随之迅速发展.心理方面:高中学生有着强烈的好奇心,有表现的欲望,也有探索原理、明白方法的理性愿望,他们希望平等交流研讨,厌烦空洞的说教.对刚进入职中的学生来说,学生的数学基础相对薄弱,他们还没具备一定的观察、分析、理解、推理、解决实际问题的能力.五.教法与学法:根据上面的分析,从高中生的心理特点和认知水平出发,结合学生的实际情况与认知障碍,按照突出重点,突破难点,本课采用探究式教学,让学生主动去探索,激发学生的学习兴趣,而教师则在情境创设、认知策略上给予适当的点拨和引导.在教师的指导下,学生主动思考、交流、讨论、提出问题,在此基础上,教师层层深入,启发学生积极思维,逐步提升学生的数学学习能力.集合概念的形成遵循由感性到理性,由具体到抽象,便于学生理解和掌握.本课采用多媒体辅助教学,提高课堂效率,激发学习热情。
数学基础模块中职完整全套教学课件一、教学内容本课件依据《中等职业学校数学教学大纲》的要求,选取教材第四章“不等式与不等式组”为主要教学内容。
详细内容包括:不等式的性质、一元一次不等式及其应用、不等式组的解法及应用等。
二、教学目标1. 理解不等式的性质,掌握一元一次不等式及其应用。
2. 学会解不等式组,并能应用于解决实际问题。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
三、教学难点与重点重点:不等式的性质、一元一次不等式的解法、不等式组的解法。
难点:一元一次不等式的应用、不等式组的应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入:通过现实生活中的实例,引出不等式的概念。
2. 知识讲解:(1)不等式的性质:通过实例讲解不等式的性质,如:可加性、可乘性等。
(2)一元一次不等式的解法:以具体例题讲解一元一次不等式的解法。
(3)不等式组的解法:以具体例题讲解不等式组的解法。
3. 例题讲解:讲解典型例题,分析解题思路和方法。
4. 随堂练习:让学生独立完成练习题,巩固所学知识。
六、板书设计1. 不等式的性质2. 一元一次不等式的解法3. 不等式组的解法4. 典型例题及解题方法七、作业设计1. 作业题目:(1)解下列不等式:2x 5 > 3(2)解下列不等式组:2x 3y < 6x + 3y > 9答案:(1)x > 4(2)x > 3, y > 22. 让学生结合实际生活,编写一道应用不等式的实际问题,并解答。
八、课后反思及拓展延伸1. 反思本次课程的难点和重点,针对学生的掌握情况进行讲解。
2. 拓展延伸:引入一元二次不等式及其应用,为学生进一步学习打下基础。
重点和难点解析1. 教学内容的安排与衔接2. 教学目标的设定3. 教学难点与重点的识别4. 教学过程的实践情景引入5. 例题讲解的深度和广度6. 作业设计的针对性与实践性7. 课后反思与拓展延伸的实际效果详细补充和说明:一、教学内容的安排与衔接在教学内容的选择上,应确保章节之间的逻辑连贯性,以及与前后知识的有效衔接。
数学基础模块中职完整全套教学课件一、教学内容本节课选自数学基础模块中职课程第四章第二节,详细内容为“一元二次方程的解法与应用”。
主要包括一元二次方程的定义、求解方法(配方法、公式法、因式分解法)及其在实际问题中的应用。
二、教学目标1. 知识与技能:掌握一元二次方程的定义,熟练运用配方法、公式法、因式分解法求解一元二次方程。
2. 过程与方法:培养学生分析问题、解决问题的能力,提高数学逻辑思维能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的合作精神和创新意识。
三、教学难点与重点教学难点:一元二次方程求解方法的选择与运用。
教学重点:一元二次方程的定义,配方法、公式法、因式分解法的求解过程。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
2. 学具:课本、练习本、草稿纸。
五、教学过程1. 实践情景引入:通过生活中的实际问题,引出一元二次方程。
2. 知识讲解:(1)一元二次方程的定义。
(2)配方法求解一元二次方程。
(3)公式法求解一元二次方程。
(4)因式分解法求解一元二次方程。
3. 例题讲解:选取具有代表性的例题,详细讲解求解过程。
4. 随堂练习:布置相关练习题,巩固所学知识。
六、板书设计1. 一元二次方程的定义。
2. 配方法、公式法、因式分解法的求解步骤。
3. 典型例题及解答过程。
七、作业设计1. 作业题目:(1)求解一元二次方程:x^2 5x + 6 = 0。
(2)利用一元二次方程解决实际问题。
2. 答案:(1)x1 = 3,x2 = 2。
(2)答案不唯一,合理即可。
八、课后反思及拓展延伸2. 拓展延伸:引导学生探讨一元二次方程在生活中的应用,提高学生的实际应用能力。
重点和难点解析1. 教学内容的针对性:一元二次方程的解法与应用。
2. 教学目标的明确性:知识与技能、过程与方法、情感态度价值观。
3. 教学难点与重点的区分:一元二次方程求解方法的选择与运用。
4. 教学过程中的实践情景引入、例题讲解和随堂练习。